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Abstract

In this paper we present the Bayesian Combined Predictor (BCP), a probabilistically motivated
predictor for time series prediction. BCP utilizes local predictors of several types (e.g. linear
predictors, artificial neural network predictors, polynomial predictors etc.) and produces a final
prediction which is a weighted combination of the local predictions; the weights can be interpreted
as Bayesian posterior probabilities and are computed online. Two examples of the method are given,
based on real world data: (a) short term load forecasting for the Greek Public Power Corporation
dispatching center of the island of Crete, and (b) prediction of sugar beet yield based on data collected
from the Greek Sugar Industry. In both cases, the BCP outperforms conventional predictors.

1 Introduction

The problem addressed in this paper is the development of modular time series predictors. This is an
example of a multiple models methodology applied to time series prediction.

In the last decade there has been great activity in the machine learning community for the de-
velopment of “multiple models” methods. There is special interest in the development of clustering,
classification, prediction and parameter estimation algorithms for time series (“dynamic”) problems.
Some remarkable efforts in this direction include partition algorithms [10, 19], miztures of experts
[5, 12, 13, 14, 15, 16, 25|, ensembles of neural networks [3, 7, 26|, trees of neural networks [17, 32],
threshold models [35], Takagi-Sugeno fuzzy models [34], and much more. For an extensive bibliograph-
ical coverage see the books [22, 31].

The predictor architecture proposed in this paper is modular in the sense that it makes concurrent
use of several alternative models of the same “process” (hence it is a multiple-models method); any one
of the models can be replaced by an alternative model (which performs the same or a similar function)
without requiring extensive modification (for instance retraining) of the remaining components (hence
the total system is modular).

The models which comprise the proposed modular predictor, are themselves predictors. In fact, the
general principle utilized is to build a complex predictor with superior predictive power from simpler
component predictors which are easier to train. Each of the component predictors may have good
predictive performance for a particular segment of the target time series. It is expected that, by
incorporating an appropriate number of such specialized predictors, as well as a combination module
which will activate the appropriate predictor at the apropriate time, one may obtain superior total
performance. This approach has been used widely in prediction tasks (see for example [18, 28, 29, 30,
31)).



2 The Bayesian Combined Predictor

2.1 Introduction

We now present the Bayesian Combined Predictor (BCP). The BCP is based on probabilistic concepts,
in particular on conditional probability and Bayes’ rule. The original idea appears in [10, 19]; see also
[18, 28, 29, 30] and for a more detailed exposition the book [31], where the original probabilistic formu-
lation is expanded to include nonprobabilistic generalizations in the context of time series classification,
prediction and parameter estimation.

The central ideas of BCP are the following.

1. Postulate several alternative predictors of a time series.

2. Obtain a recursive formula for computing the posterior probability of each predictor, based on the
observable predictor error of the same predictor (as well as the errors of the remaining predictors).
These predictors are also called local models of the time series, because each one may be valid for
a particular section (or operating regime) of the time series.

3. Use the posterior probabilities to combine the predictions of the local models and so obtain a
better, global predictor.

Let us then consider a time series xy, t=1, 2, ... ; for simplicity we take x; to be scalar, but
extensions to vector valued time series are immediate. We assume the existence of K predictors of the
general form

i‘f :f(xt,l,...,xt_M;wk), k= 1,2,...,K. (1)

It can be seen from the above that the K predictors belong to a general family f(-,w), where w is a
parameter vector; the k-th predictor is obtained by setting w = wy. Let us now proceed to obtain a
recursive formula for the posterior probability of each predictor.

2.2 Recursive Application of Bayes Rule

It is reasonable to assign higher posterior probability to predictors which are more succesful in predicting
the actual observations x1, x2, ... . This observation can be formalized as follows. Assume that the
difference between the actual observation z; and its k-th prediction 2 is a random variable ef:

e¥ =z, — 7k,
It is reasonable to assume that, if the k-th predictor is the one actually describing the evolution of
the time series, then the prediction errors ef form a sequence of independent, identically distributed
random variables with zero mean. In other words, if we denote mathematical expectation by E(-) then
we have

B(ef) =0,  Befek) = 0> 8(t,9).

where §(t, s) is the Kronecker delta function. Let us also denote the probability density function of ef
by gx(+) (independent of t). Now, for the probability density of x; — 2F, conditional on the observations
1, T2, ... , Ty—1 we have

p(xy — :Ef]:vl,xg, oy 1) = g(ay — i‘f) = g(zy — f(®p—1, ooy Tp—pr; WE))-

Now define a new stochastic process Z; as follows: Z;= k if at time ¢ the correct model of x; is Eff Let
us define pf as follows
pf = Pr(Zt =k ’xla "'7:1315)‘



Then, from Bayes’ rule we obtain the following recursion (for details see [31])

Py 9@ — f(@eots oo Tem s wy))

74 - .
Dim1 Pl 9@ — (@1, s Temprs wj))

(2)

pf =

Eq.(2) is the required recursion for the posterior probability of Z;, i.e. for the probability of the k-th
predictor being the correct one at time ¢. The validity of this formula depends on our assumptions,
namely that (a) the time series is produced by one of the K models of eq.(1) and (b) the prediction error
is white noise. When these assumptions hold, eq.(2) expresses the probability that model k actually
generates the observed load data; this probability is conditional, dependent on observations up to time
t.

There is an alternative, nonprobabilistic interpretation of the pf ’s, which will become clearer if we
temporarily assume a specific form for the density function gi(-). Assume then that, for all k, ef is
zero mean and Gaussian, i.e.

(@) = ——exp(~L2L) ®)
x) = exp(——y5).
9k oL p 20_2
Substituting eq.(3) in eq.(2) we obtain
pf,l - exp(— |a7t—f($t7172-;72xt—M§wk)|2)
- : (1)
Py K j re=fre—1,e @ awy) |2
Zj:l Py - exp( 207 )

From eq.(4) becomes clear that three factors determine the value of pf.

1. First, there is the absolute value of the current prediction error |z; — f(zi—1, ..., xt—pr; wg)|. When
this is large, then the negative exponential results in decrease of pf.

2. However, a second factor which must be taken in account is the previous predictive performance
of the k-th predictor, which is reflected in pfﬁl. If this is large (which means close to unity),
a temporarily large prediction error will not have a drastic effect on pf. This corresponds to
a certain stability in the computation of pf: temporary stochastic fluctuations will not have a
catastrophic effect on pf if the k-th predictor performs well on the average.

3. Finally, and quite importantly, in the computation of p¥ what counts is not the absolute predictive
accuracy of the k-th predictor, but the relative one. In other words, even if the product

2
k ‘xt_f(xt—lw-thfM§wk)|
sy expl(- = ) 5)
Tk
is small, p,’f can still remain relatively close to one, if the respective products for other predictors
are even smaller. In other words, if the k-th predictor performs poorly, but relatively better than
the remaining predictors, it will maintain a high posterior probability.

We have illustrated the importance of the three factors by assuming that ef is Gaussian, but, in
fact, the same conclusions would hold for any reasonable probability density. So one can consider the
BCP algorithm as a heuristic credit assignment scheme: the model that best forecasts the observed
load data is the one with highest credit (and so with highest conditional probability, under the Bayesian
interpretation).



2.3 Bayesian Combination of Predictors

Having obtained the p;’s, there are several ways in which they can be used to obtain an improved
prediction of azf . We indicate two possibilities.

1. Maximum Likelihood Prediction. This is defined as follows

~k — ~ kx h k* = k“

T =12, where arglg}gangpt
In other words, at every time step we use the forecast of the model with maximum posterior
probability; since this model is most likely to have produced the load time series, it must on the

average have smaller forecast error. This is the mazimum likelihood prediction.

2. Weighted Prediction. Here Ef is computed as a weighted sum of all available predicitons:

K
Ak N
Ty = E Ty Py -
k=1

In fact, ¥ as defined above is the conditional expectation of z;, and it is well known [4] that this
is the prediction with minimum mean square error.

There are some practical issues to be considered in connection to the combination of predictor,
which are important for the implementation of both the ML and weighted combination scheme; these
are discussed in Section 2.4.

2.4 Implementation Issues

The main ideas of our prediction scheme have been presented in the previous paragraphs. The basic
components are:

1. A collection of local predictors, each suited to predicting a particular portion (or operating regime)
of the target time series.

2. A scheme for recursively updating the posterior probabilities of these predictors, based on their
predictive accuracy.

Up to this point we have not discussed the form or derivation of the local predictors. Not much
needs to be said, actually. The probability update scheme is independent of the predictors, which means
that various different predictor types can be used, for instance linear regressors, neural networks, fuzzy
systems and so on. In each case, the main issue is identifying appropriate data to be used for training the
predictors. The actual training will be performed using the appropriate method for the particular class
of predictors; for instance if the predictors are neural networks, then the Back Propagation algorithm
is appropriate. Finding the appropriate training data presupposes that a labeled data set is available,
i.e. our method is a supervised learning method.

The practical implementation of predictor combination raises some computational issues. For ex-
ample, perusal of eq.(4) reveals that, in case pf becomes equal to zero for some value tg, then we will
also get pf = 0 for all values t > g as well. Now, theoretically, eq.(4) may result in an arbitrarily small
value of pf, but never equal to zero. However, as a practical issue, computer underflow may result
in pf = 0. This problem can be rectified by using a threshold h (where h is a number close to zero);
whenever p,’f falls below a specified threshold h, it is reset to h. Then the usual normalization of the



pf’s is performed; this ensures that the thresholded p{’s remain approximately within the [h, 1] range
and add to 1.

In essence, this thresholding is equivalent to introducing a forgetting factor : suppose that several
samples of the time series are observed, such that predictor k£ produces a large error; if this process
is continued for several time steps, pf will eventually become zero. If we never let pf go below h, we
essentially stop penalizing predictor k for further bad predictions; these are, in effect, “forgotten”. If h
is small, then p,’f will also be small and will not essentially alter the classification results, while, if the
time series enters a regime of operation which is best described by the k-th predictor, this will still be
in the position of becoming active.

In addition to thresholding, an important practical matter is the selection of the probability density
gk (+). This entails choosing a functional form and its parameters. As a practical issue, we usually choose
a Gaussian, zero-mean density, so that our posterior probability update equation is eq.(5). The only
parameter that remains to be determined is the standard deviation oy, k=1,2,....,K. This we compute
in a standard manner, taking it equal to the root mean square error of the k-th predictor, which has
been computed in the training phase.

3 Example: Short Term Load Forecasting

In this section we present an application of the BCP. Namely we consider the problem of short term load
forecasting for the electrical power system of the island of Crete, Greece. In the summer of 1994 this
system had a peak load of about 300 MW; power is supplied by the Greek Public Power Corporation
(PPC). The data used in this example correspond to the period from 1989 to 1994.

3.1 Description of the Problem

The problem consists in predicting a vector time series. In other words, we are given a sequence
ye, t = 1,2, ..., where for each ¢ y; has dimensions 24 x 1; each of the y; components corresponds
to the load of a particular hour of the day on day ¢t. The predictors must have the general form
yt = f(Yt—1,Yt—2, ..., Yt—nN), in other words one may use data from N days from the past load history.
At midnight of day ¢ — 1 it is required to provide a prediction for the 24 hours of day ¢. This prediction
will have practical implications for scheduling the power generators to be activated in the following
working day.

The hourly load time series has several intereting features. Typical load for a winter and a summer
day are presented in Figure 1. It can be seen that there is a daily variation in the load, which has a
somewhat different structure in winter and summer periods.

Figure 1: Two representative daily loads.

It should be remarked that the formulation of economic, reliable and secure operating strategies for
a power system requires accurate short term load forecasting (STLF). The principal objective of STLF
is to provide load predictions for the basic generation scheduling functions, the security assessment of
a power system and for the dispatcher’s information.

3.2 Previous Work

A large number of computational techniques have been used for the solution of the STLF problem



Statistical STLF models can be generically separated into regression models [6] and time series
models [37]; both can be either static or dynamic. In static models, the load is considered to be a
linear combination of time functions, while the coefficients of these functions are estimated through
linear regression or exponential smoothing techniques [6]. In dynamic models weather data and random
effects are also incorporated since autoregressive moving average (ARMA) models are frequently used.
In this approach the load forecast value consists of a deterministic component that represents load
curve periodicity and a random component that represents deviations from the periodic behavior due
to weather abnormalities or random correlation effects. An overview of different statistical approaches
to the STLF problem can be found in [8]. The most common (and arguably the most efficient) statistical
predictors apply a linear regression on past load and temperature data to forecast future load. For
such predictors, we will use the generic term Linear Regression (LR) predictors.

The application of artificial neural networks to STLF yields encouraging results; a discussion can
be found in [23]. The ANN approach does not require explicit adoption of a functional relationship
between past load or weather variables and forecasted load. Instead, the functional relationship between
system inputs and outputs is learned by the network through a training process. Once training has
been completed, current data are input to the ANN, which outputs a forecast of tomorrow’s hourly
load. One of the first neural-network- based STLF models was a three-layer neural network used to
forecast the next hour load [24]. A minimum-distance based identification of the appropriate historical
patterns of load and temperature used for the training of the ANN has been proposed in [27], while
both linear and non-linear terms were adopted by the ANN structure. Due to load curve periodicity, a
non-fully connected ANN consisting of one main and three supporting neural networks has been used
to incorporate input variables like the day of the week, the hour of the day and temperature. Various
methods were proposed to accelerate the ANN training [11], while the structure of the network has
been proved to be system depended [2, 20].

Hybrid neuro-fuzzy systems applications to STLF have appeared recently. Such methods synthesize
fuzzy-expert systems and ANN techniques to yield impressive results, as reported in [1, 33].

Each of the methods discussed above has its own advantages and shortcomings. Our own experience
is that no single predictor type is universally best. For example, an ANN predictor may give more
accurate load forecasts during morning hours, while a LR predictor may be superior for evening hours.

Hence, a method that combines various different types of predictors may outperform any single
“pure” predictor of the types discussed above. It is clear that the BCP is just such a combination
method, hence it is reasonable to apply the BCP methodology to the task at hand. In Section 3.3
we will present the details of the particular BCP implementation; in Section 3.4 we will present our
experimental results which show that BCP has better performance than any of the “pure” predictors.

3.3 BCP Implementation

In this section we present the implementation details for three types of “pure” predictors, namely two
linear regression predictors and one neural predictor. Then we present the implenetation details for
the combination module.

3.3.1 “Long Past” Linear Regression

This predictor performs a straightforward linear regression on two time series: daily loads (for a given
hour of the day) and maximum daily temperature. There are M + N inputs, where M is the number of
past loads (for the given hour of the day) and N is the number of past temperatures used. Several values
of M, between 21 and 56, have been employed. This means we use data from the last 21 to 56 days;
hence the designation “long past”. (The best value turned out to be 35.) Output is tomorow’s load



for the given hour. Hence, for a complete 24-hour load forecast, we need 24 separate predictors. The
regression coefficients are determined by least square error training; this is achieved using a standard
matrix inversion routine, which takes less than one sec on a MS Windows PC. The training phase is
performed only once, offline. It should also be mentioned that the hourly load data were analysed
and ”irregular days”, such as national and religious holidays, major strikes, election days, etc, were
excluded from the training data set and replaced by equivalent regular days; of course this substitution
was performed only for the training data. Training utilized load and temperature data for the years
1992 and 1993. Training error (computed as the ratio of forecast error divided by the actual load,
averaged over all days and hours of the training set) was 2.30%. It must be mentioned that there was
a “ceiling” effect as to the possible reduction of forecast error. While training error could be reduced
below 2.30% by the introduction of more regression coefficients, this improvement was not reflected in
the test error. This is the familiar “overfitting” effect.

3.3.2 “Short Past” Linear Regression

This is very similar to the previous method. Again, it utilizes straightforward linear regression on the
time series of loads; but now loads of all hours of the day are used as input., in addition to maximum
and minimum daily temperature. There are (24M + 2N) inputs, where M is the number of past
loads (for all hours of the day) and N is the number of past temperatures used. Several values of M,
between 1 and 8, have been employed. We have found that the best value of M is 4, which means
data from four past days are used. For a given forecast day, we use the two immediately previous days
and the same weekday of the previous two weeks.; hence this predictor uses a relatively ”short past”,
as compared to the one of Section 3.3.1. Output is tomorrow’s load for every hour of the day. The
regression coeflicients are determined by least square error training; this is achieved using a standard
matrix inversion routine, which takes less than one sec on a MS Windows PC. The remarks of Section
3.3.1 on training and overfitting apply here as well. Training error (computed as the ratio of forecast
error divided by the actual load, averaged over all days and hours of the training set) was 2.36%.

3.3.3 Neural Network Prediction

A fully connected three layer feedforward ANN was used in this method. The ANN comprises of 57
input neurons, 24 hidden neurons and 24 output neurons representing next day’s 24 hourly forecasted
loads. The first 48 inputs represent past hourly load data for today and yesterday. Inputs 49-50 are
maximum and minimum daily temperatures for today. The last seven inputs, 51-57, represent the
day of the week, e.g. Monday is encoded as 1000000, Tuesday as 0100000 and so on . Other input
variables were also tested but they did not improve the performance of our model. The ANN was
trained by being presented with a set of input-desired output patterns until the average error between
the desired and the actual outputs of the ANN over all training patterns is less than a predefined
threshold. The well known back propagation algorithm [9] was used for the ANN training. The hourly
load data were carefully analysed and all ”irregular days”, such as national and religious holidays, major
strikes, election days, etc, were excluded from the training data set. Special logic for the treatment of
missing data has also been incorporated in the data analysis software. The training data set consists of
90+4-4x30=210 input/output patterns created from the current year and the four past years historical
data as follows: 90 patterns are created for the 90 days of the current year prior to the forecast day. For
every one of the 4 previous years, another 30 patterns are created around the dates of the previous years
that correspond to the current year forecast day. Initial offline training takes a few seconds on a MS
Windows PC. The ANN parameters are then updated online, on a daily basis through the following
procedure. A new round of ANN training is performed on the most recent input/output patterns;



the ANN parameters are initialized to those of the previous day. Since the training data sets of two
consecutive days differ by only a few patterns, daily model parameter updating is very efficient. Online
training takes between 1 and 3 secs per day. The network is trained until the average error becomes
less than 2.5%. It was observed that further training of the network (to an error 1.5% for example)
did not improve the accuracy of the forecasts. Training of the ANN to a very small error may result
in data overfitting.

3.3.4 The Combination Module

The implementation of the combination is straightforward. We use a Gaussian probability density
function and we set o = o , i.e. identical for all predictors; o is computed from the training phase.
We also use a threshold h = 0.01.

3.4 Results

We applied the BCP described in Section 3.3 to the prediction of loads for the period July 1st, 1994 to
September 30th, 1994. In Figure 2 we see a comparison of the prediction error for the local predictors
as well as for the BCP. The n-th point of each curve in Figure 2 (with n = 1,2, ...,24) corresponds to
the average (over the entire three month test period) prediction error for the 24-th hour of the day, i.e.

Z \l’t xtn’
| tn|2

where the index n corresponds to the hour in question. The final, 25th point represents the average
daily error (i.e. averaged over all 24 hours), i.e.

4
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Figure 2: Comparative prediction errors for local and combined predictors.

It can be seen that the BCP predictor not only outperforms all local predictors on the average, but
usually also outperforms them on individual hours (with a few exceptions). In this connection, it is
quite instructive to observe the evolution of the posterior probabilities of the three local predictors for
two different hours. In Figure 3 we plot the evolution of the posteriors for the hour lam and in Figure
4 for the hour 1pm. The reader will see that in Figure 3 the highest probability is generally assigned
to the SP LR predictor, even though over short time intervals one of the other two local predictors
may outperform it. Similarly, in Figure 4 the highest probability is generally assigned to the LP LR
predictor, even though over short time intervals one of the other two predictors may outperform it.
These results are consistent with the general results of Figure 2; the additional information presented in
Figures 3 and 4 is that a predictor that generally performs poorly, may still outperform its competitors
over short time intervals; in such cases the BCP will take this improved performance into account,as
evidenced by the adaptively changing posterior probabilities. This explains why the BCP is generally
better than the best pure predictor.

Figure 3: Evolution of posterior probabilities.

Figure 4: Evolution of posterior probabilities.



4 Example: Sugar Beet Yield Prediction

In this section we describe an application of the BPC to sugar beet yield prediction. Accurate yield
predictions are required by the Greek Sugar Industry (GSI) for the preparation of an optimal sugar
beet harvesting plan.

4.1 Description of the Problem

The time series used in this example are part of a large data set maintained by the GSI. In particular,
every year the GSI collects measurements from a large network of pilot farms, covering all of Greece.
The quantities measured for each pilot farm include sugar beet characteristics (sugar content, average
weight of the various parts of sugar beet plant), soil characteristics (concentration of various elements
such as natrium, calcium etc.) as well as weather data (temperature etc.). All of these quantities are
measured at more or less regular intervals, approximately once every ten days.

The main quantity of interest is sugar content and the final goal is to harvest the sugar beets at about
the time when they achieve maximum sugar concentration. This time must be predicted in advance
because harvesting a large number of geographically dispersed farms requires advance planning.

Hence the prediction task is to develop predictors for various time series related to the sugar beet
crop. We approach this task by the use of several BCP’s, which combine various local predictors. In
this case the predictors are literally local, in the sense that each one is developed using data from a
single geographical region. In the example presented here we have utilized a relatively small part of the
original dataset. Specifically, we have concentrated on the POL (sugar concentration), WPOL (sugar
concentration multiplied with plant root weight) and QR (ratio of POL to natrium concentration) time
series. These quantities are particularly important for scheculing the sugar beet harvest.

4.2 Previous Work

There is relatively little work in applying time series prediction methods to the problem of sugar beet
harvesting. For background material see [21] and [38]. For a method utilizing neural network prediction,
see [36]. The methods presented in this paper are currently applied at the SGI and there is an ongoing
project for more extensive experimentation.

4.3 BCP Implementation
4.3.1 The Data

We have used data from the years 1989-1991 for training and from the years 1992-1994 for testing.
For the 1989-1991 period there is a total of 26 pilot farms, resulting in 26 x3= 78 training time series.
For the 1989-1991 period there is a total of 11 pilot farms, resulting in 11x3= 33 testing time series.
Every time series corresponds to a period of approximately eight months and sampling takes place at
approximately every ten days. The actual (calendar) time of the first and last measurement varies
for each pilot farm. In order to simplify the prediction task, we arbitrarily set the time of the first
measurement as t=1 and obtain interpolated time series which evolve in discrete time t=1, 2, ... , T,
where every time unit corresponds to one day. In this manner we obtain 78 training time series. Each
time series has a different length, with average length being around 150 time steps. Some representative
time series are presented in Figure 5.

Figure 5.a: POL time series in farm 511 for the years 1992-1994.



Figure 5.b: WPOL time series in farm 511 for the years 1992-1994.

Figure 5.c: QR time series in farm 511 for the years 1992-1994.

The main difficulty in developing local predictors for the yield prediction problem is deciding how
to group the data. We have used two particularly simple grouping strategies: a “unary” strategy,
where one predictor is trained for each pilot farm, and a “geographical” strategy, where one predictor
is trained for each geographical region.

4.3.2 The Predictors

In what follows we will denote the POL time series by z;, the WPOL time series by y; and the QR
time series by u;. Respective predictors will be denoted by ZF | @f , ﬂf . For example, a POL predictor
will have the form

~k
Ty = fk(xt,?/tathrtfluytfl»ztflv )

Note the presence of a prediction horizon T, which will generally be greater than 1. In fact, T, should
be as large as possible, provided that the prediction error remains within reasonable bounds. In this
study we have experimented with prediction horizon T equal to 10, 15, 20, 25 days. For each data
grouping strategy we have developed a variety of predictors. More specifically, we use predictors of the
following types.

Interpolation Predictors. In this case every predictor is an “average” time series, e.g. at time ¢
we obtain ¢; as the average of the y;’s of the time series belonging at the corresponding data group. In
this case “training” a predictor for a particular time series depends only on that particular time series,
e.g. the POL predictor does not utilize the WPOL and QR data

Polynomial Predictors. These are polynomials in ¢, i.e. the time variable. Specifically, we use
TF o = af +aft + a5t? + afit?,

i.e. third degree polynomials. In this case, too, “training” depends only on the POL time series. For
every data group, the a coefficients are obtained by least squares regression.

Linear Regression Predictors These are linear regression models. We have used both single input
(autoregression) predictors, e.g.

~k k k k k
Ty = agx¢ + a1 1 + a7x4—2 + ... + apwe .
and multi-input predictors of the form
=~k k k k k k k k k k
Tiyp = agTy + boys + coue + ayxy 1 + 07y 1 + cyug1 + oo+ aymen + Oy + Cppue

Training of the predictors consists in obtaining the a, b, ¢ coefficients using a least squares approximation
method.
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Neural predictors This is similar to linear regression, except that we use a nonlinear regression
implemented by feedforward, sigmoid neural networks of the form

./%'\f_;'_T = f(xta xt*l’ R xt—M? wk‘)

or of the form

Loy = f(xtaxtflv vy Tt— My Yty Yt—15 oy Yt— M, Ut, Ut—1, --~,Ut—M,wk)-

Here wy, is a matrix of weights , i.e. parameters which are determined by the Back Propagation training
algorithm. Of course, f(-;w) is a sigmoid function.

The Combination Module The Bayesian combination module is very similar to the one presented
in Section 3.

4.4 Results

By choosing a particular target time series, a data grouping method, predictor types, and a combination
method we fully determine a prediction experiment. In what follows we organize the presentation of
our results into experiment groups, each group pertaining to a particular target time series, i.e. POL,
WPOL and QR. For each experiment group we summarize our results in a three part figure. Figures
6.a, 6.b and 6.c correspond to the POL time series, figures 7.a, 7.b and 7.c correspond to the WPOL
time series and Figures 8.a, 8.b and 8.c correspond to the QR time series,

Prediction errors are computed for the test period being the second half of each time series and using
two different types of combination (weighted combination and maximum likelihood combination); in
addition the prediction error is computed for the 20 “hot” days of the harvest period, using the weighted
combination method. In every case we present combinations of four prediction horizons (7= 10, 15,
20, 25 days) and several local predictors (interpolation, polynomial, single input linear, multi-input
linear, single input neural, multi-input neural); an additional parameter is the data grouping method
used (unary or geographical). Finally, it should be mentioned that the prediction error is computed as

relative error, i.e. by the formula
Trin ‘xt . i'\t’2
E, = —_
X
for the POL time series and by similar formulas for the WPOL and QR time series. The index n refers
to the particular combination of predictors, prediction horizon and prediction combination method.

Figure 6.a: POL time series: relative prediction errors for various prediciton horizons and different
types of local predictors. Time series: second half of the 1992-1994 years. Prediction combination
method: weighted.

Figure 6.b: POL time series: relative prediction errors for various prediciton horizons and different
types of local predictors. Time series: second half of the 1992-1994 years. Prediction combination
method: maximum likelihood.

Figure 6.c: POL time series: relative prediction errors for various prediciton horizons and different
types of local predictors. Time series: 20 hot days. Prediction combination method: weighted.
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Figure 7.a: WPOL time series: relative prediction errors for various prediction horizons and different
types of local predictors. Time series: second half of the 1992-1994 years. Prediction combination
method: weighted.

Figure 7.b: WPOL time series: relative prediction errors for various prediciton horizons and different
types of local predictors. Time series: second half of the 1992-1994 years. Prediction combination
method: maximum likelihood.

Figure 7.c: WPOL time series: relative prediction errors for various prediciton horizons and different
types of local predictors. Time series: 20 hot days. Prediction combination method: weighted.

Figure 8.a: QR time series: relative prediction errors for various prediciton horizons and different
types of local predictors. Time series: second half of the 1992-1994 years. Prediction combination
method: weighted.

Figure 8.b: QR time series: relative prediction errors for various prediciton horizons and different
types of local predictors. Time series: second half of the 1992-1994 years. Prediction combination
method: maximum likelihood.

Figure 8.c: QR time series: relative prediction errors for various prediciton horizons and different
types of local predictors. Time series: 20 hot days. Prediction combination method: weighted.

4.4.1 Discussion

We see that weighted prediction combination generally gives better results than maximum likelihood
prediction. Prediction accuracy is very good for the POL time series and quite good for the WPOL
time series (which is the series of main interest). Results are not so good for the QR time series. Linear
regression prediction gives the best overalll results. We conjecture that the neural predictors would
perform better if more data were available.

5 Conclusion

We have presented a probabilistically motivated method of time series prediction, namely the Bayesian
Combined Predictor. The Bayesian Combined Predictor is a modular architecture consisting of local
predictors, i.e. each predictor is specialized in predicting a particular portion of the time series to be
predicted. As a result, each predictor is quite accurate for a specific regime of the time series, and
in particular is more accurate than a “global” predictor. In addition, the local predictors can be of
various different types, e.g. linear, neural and fuzzy predictors can be combined. The combination
of the various predictors is effected by use of Bayes’ rule and produces a final prediction which is a
weighted combination of the local predictions; the combination coefficients are the Bayesian posterior
probabilities of the various predictors and are computed recursively, making our method suitable for
online implementation. We have demonstrated the utility of our approach on two real world problems
and we have seen that the combined predictor outperforms the local ones. It should be noted that,
while our method is based on probabilistic principles, it can be extended into nonprobabilistic contexts.
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Figure 8. (a) Prediction error for the second half of QR time series, using max likelihood prediction.
(b) Prediction error for the second half of the QR time series using weighted prediction.
(c) Prediction error for the 20 hot days of the QR time series, using weighted prediction.

Legend: sqi: single input interpolation; sqp: single input polynomial; sgr: single input regression;
sqc: single input regression (geog. grouping); sgn: single input neural; mgr: multiinput regression;
mqgn: multiinput neural.
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Figure 1 Hourly electric load for the Crete island power network. The load is illustrated for one
representative winter day (Jan. 1st, 1993) and for one representative summer day (July 1st, 1993).
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Figure 2. Relative error of the three local predictors and of the BCP, plotted against
the 24 hours of the day. The last point of each line is the average error (l.e. averaged
over the 24 hours of the day).
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Figure 3 Evolution of posterior probabilities for the predictors of 1am load, over the period July 1st,
1994 to September 30th, 1994 (LP LR: Long Past Lin. Regression,
SP LR: Short Past Lin. Regression, ANN: artificial neural network).
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Figure 4 Evolution of posterior probabilities for the predictors of 1pm load, over the period
July 1st, 1994 to September 30th, 1994 (LP LR: Long Past Lin. Regression,
SP LR: Short Past Lin. Regression, ANN: artificial neural network).
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Figure 5 (@) The POL time series in farm 511 for the year 1992 (circle).
(b) The WPOL time series in farm 511 for the year 1993 (triangle).
(c) The QR time series in farm 511 for the year 1994 (square).
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Figure 6. (a) Prediction error for second half of POL time series, using max likelihood prediction.
(b) Prediction error for the second half of the POL time series using weighted prediction.
(c) Prediction error for the 20 hot days of the POL time series, using weighted prediction.

Legend: spi: single input interpolation; spp: single input polynomial; spr: single input regression;
spc: single input regression (geog. grouping); spn: single input neural; mpr: multiinput regression;
mpn: multiinput neural.
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Figure 7. (a) Prediction error for second half of WPOL time series, using max likelihood prediction.
(b) Prediction error for the second half of the WPOL time series using weighted prediction.
(c) Prediction error for the 20 hot days of the WPOL time series, using weighted prediction.

Legend: swi: single input interpolation; swp: single input polynomial; swr: single input regression;
swc: single input regression (geog. grouping); swn: single input neural; mwr: multiinput regression;
mwn: multiinput neural.
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Figure 8. (a) Prediction error for the second half of QR time series, using max likelihood prediction.
(b) Prediction error for the second half of the QR time series using weighted prediction.
(c) Prediction error for the 20 hot days of the QR time series, using weighted prediction.

Legend: sqi: single input interpolation; sqp: single input polynomial; sgr: single input regression;
sqc: single input regression (geog. grouping); sgn: single input neural; mgr: multiinput regression;
mqgn: multiinput neural.
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Figure 8. (a) Prediction error for the second half of QR time series, using max likelihood prediction.
(b) Prediction error for the second half of the QR time series using weighted prediction.
(c ) Prediction error for the 20 hot days of the QR time series, using weighted prediction.

Legend: sqi: single input interpolation; sqp: single input polynomial; sqgr: single input regression;
sqc: single input regression (geog. grouping); sqn: single input neural; mgr: multiinput regression;
mqgn: multiinput neural.




