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Based on an overall consideration of factors a	ecting road safety evaluations, the Bayesian network theory based on probability
risk analysis was applied to the causation analysis of road accidents. By taking Adelaide Central Business District (CBD) in South
Australia as a case, the Bayesian network structure was established by integrating K2 algorithm with experts’ knowledge, and
Expectation-Maximization algorithm that could process missing data was adopted to conduct the parameter learning in Netica,
thereby establishing the Bayesian network model for the causation analysis of road accidents. �en Netica was used to carry out
posterior probability reasoning, the most probable explanation, and inferential analysis. �e results showed that the Bayesian
network model could e	ectively explore the complex logical relation in road accidents and express the uncertain relation among
related variables. �e model not only can quantitatively predict the probability of an accident in certain road tra
c condition but
also can �nd the key reasons and the most unfavorable state combination which leads to the occurrence of an accident. �e results
of the study can provide theoretical support for urban road management authorities to thoroughly analyse the induction factors of
road accidents and then establish basis in improving the safety performance of the urban road tra
c system.

1. Introduction

With the expansion of urban development and the surging
of vehicle ownership, urban travel becomes vulnerable to
three “chronic diseases,” which are congestion, accident,
and pollution. Among the above three, accident has been
recognised as the most negative aspect, in particular in and
aroundCentral Business District (CBD). According toGlobal
Plan for the Decade of Action for Road Safety 2011–2020
developed by the UN Road Safety Collaboration in 2011,
nearly 1.3 million people die as a result of road tra
c
collisions per annum, whichmeansmore than 3,000 fatalities
per day. And 20 to 50 million more people sustained nonfatal
injuries from collisions, and these injuries were an important
cause of disability worldwide. �e case in Australia is also
at an alarming level; there were around 25 deaths and 700
serious injuries per week, and cost to tax payers was more
than 32 billion dollars a year [1]. Unless immediate and
e	ective action is taken, road tra
c injuries are predicted
to become the �h leading cause of death in the world.

�erefore, the analysis and evaluation on the in�uencing
factors on tra
c accident, estimation of the potential safety
hazards, and selection of appropriate measures in advance,
so as to reduce the frequency and severity of tra
c accidents,
are important research topics in road safety engineering.

Previous studies showed that there are many reasons
behind road accidents; these causes may be coherent to each
other, and, for instance, poor road alignments and unex-
pected vehicle compositions or behaviours may result in the
confusion of road users, which may lead to tra
c accidents.
However, many o
cial records of road accidents indicated
that most of the crashes are only pointed to single causes,
especially human errors. For example, according to a crash
causation survey released by the USNational Highway Tra
c
Safety Administration (NHTSA) in 2015 [2, 3], drivers are to
be criticised for 94% of crash cases. Apparently, the 94% of
such accidents are also related to other causes from common
experience, such as road alignment [4–6], tra
c sign [7–9],
and weather condition [10–12]. �erefore, the existing road
accident statistics cannot fully reveal the causes, and tra
c
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engineers and road infrastructure designers are provided
with limited information for the accident mechanism and the
formulation of improvement plans. It is of great importance
to take full advantage of the tra
c accident statistics andmine
potential information so as to provide a basis for the analysis
of accident mechanism and the improvement of road safety.

Bayesian network is one of the e	ective methods in the
�eld of arti�cial intelligence to express uncertainty analysis
and probability reasoning of a system. It can exploit the
dependence relationships based on local conditions in a
model to conduct bidirectional uncertainty investigation for
prediction, classi�cation, and diagnostic analyses. At present,
there are some soware platforms available for the con-
struction of a Bayesian network, such as Bayes Net Toolbox
(BNT), BayesBuilder, and JavaBayes, of which the MATLAB-
based BNT developed by Murphy [13] is extensively used.
�is toolbox provides a lot of underlying basic function
libraries for Bayesian network learning, but it does not
integrate the basic functions for Bayesian network learning
into a system. Moreover, BNT does not have Graphical User
Interface (GUI), which is not user-friendly, nor can it be well
generalized. Netica is a Bayesian network learning soware
developed by Norsys Soware Corporation in Canada, which
has been extensively applied in uncertaintymanagement such
as business, engineering, medicine, and ecology [14–16] due
to its powerful functions, friendly GUI, reliable computation,
and good performance. In this paper, a model is formulated
using Bayesian network for road accident studies, and then a
Bayesian network learning process, posterior probability rea-
soning, most probable explanation, and inferential analysis
are conducted by using Netica.

�is paper is organized as follows: Section 2 reviews the
related literature on causation analysis of road accidents;
Section 3 describes the construction of a Bayesian network
model; Section 4 presents a case study on Bayesian network
model application for Adelaide Central Business District
(CBD) in South Australia; the �ndings of this study are
summarized in Section 5.

2. Literature Review

�e use of causation theory for road accident analysis aims
to extract the accident mechanisms and accident models
from a large number of typical accidents so as to provide
theoretical basis for the qualitative and quantitative analyses,
the predication and prevention of accidents, and the improve-
ment of safety management. Scholars across the world have
done some researches in road accident causation analysis and
various data sources, variables, sample sizes, and analytical
models, such as aggregated models which include Frequency

Analysis [17–19] and �2 Test [20, 21].
In terms of disaggregated models, as the frequency of

road accidents is in a form of nonnegative, discrete, and
abnormal distribution and based on experience the frequency
of accidents follows Poisson distribution, the Poisson regres-
sion model can be applied to analyse the in�uence of each
risk factor on the frequency of accidents [22]. �e negative
binomial distribution regression is based on Poisson distribu-
tion, but its speci�cation error follows Gamma distribution.

�e negative binomial regression model has been extensively
applied in tra
c safety analysis model [23–27]. However, the
assumption that the mean value of Poisson distribution is
equal to the variance is oen inconsistent with realities. And
in the analysis of longitudinal data samples, the adoptions of
Poisson regression model and negative binomial regression
model are likely to generate biased estimate and even incor-
rect results. When the explained variables only take a limited
number ofmultiple discrete values, the established regression
model is a discrete choice model, in which Logit model is
the earliest discrete choice model and is one of the widely
used models [28–31]. For an applicable statistical model,
research object is required to be in independent distribution;
while the safety data has a complex spatial distribution, the
accuracy and robustness of safety level estimation will be
greatly a	ected if the spatial feature is neglected.

�rough the review of the existing literature, it has been
discovered that past researches on the causation analysis of
tra
c accidents are gradually evolving from the descriptive
simple analysis based on aggregated models to the multi-
variable complex modeling analysis based on disaggregated
models. However, the de�ciencies of the existing studies
are the following: the in�uencing factors on accidents are
not fully considered; most are based on speci�c, isolated,
super�cial single-factor analysis, considering only the main
in�uence factors. �ese studies revealed the inherent rules of
the occurrence of accidents in one aspect or case but ignored
the multidimensionality of accident relationships and their
correlations, so that the complex logical relationship between
causes, accident occurrence, and accident consequence was
not re�ected. �erefore, research methods and analysis tech-
nologies are not generally applicable. Although some scholars
used Decision Tree [26, 32, 33], Bayesian network [34–36],
and other complex systems to research the correlation between
accident causes, the theoretical systems and related support-
ing technologies have not been systematically established.

3. Construction of Bayesian Network Model

3.1. Basic Principles of Bayesian Network. Bayesian network,
also referred to as belief network, is considered as one of the
most e	ective theoretical models in the �elds of uncertainty
knowledge representation and reasoning. It is a directed
acyclic network topology consisting of node set and directed
edge, and each node denotes one variable state, while directed
edge denotes the dependence between variables. �e corre-
lation intension or con�dence coe
cient between variables
is described by using Conditional Probability Table (CPT).
Prediction, diagnosis, classi�cation, and other tasks can be
achieved by using learning and statistical inference functions
of Bayes theorem. Bayesian network uses probability to
denote the uncertainty of all forms and uses the probabilistic
rules to achieve learning and reasoning process. It has the
following relationship:

� (�) = �∏
�=1

� (�� | ���) . (1)

A set of variables � = {�1, �2, . . . , ��} of Bayesian network
consists of the following components [37] 	 is a network
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Figure 1: Graph of a valid Bayesian network (no cycle exists).

structure which denotes the conditional independent asser-
tion in variable set �, 
 is a set of local probability distribu-
tions associated with each variable, �� denotes the variable
node, and ��� denotes the father node of�� in 	.	 and 
 de�ne the joint probability distribution of �.	 is a directed acyclic graph (DAG), and each node in 	
corresponds to a variable in � (Figure 1). �e default arc
between nodes of 	 denotes conditional independence.

Use 
 to denote the local probability distribution in (1),
namely, the product term �(�� | ���) (� = 1, 2, . . . , �);
then the binary group (	, 
) denotes the joint probability
distribution �(�).

�e construction of a Bayesian network mainly involves
the following steps:

(1) Structure learning: determine the factor variables
(nodes) related to the study object, and then deter-
mine the dependent or independent relationship
between the nodes so as to construct a directed acyclic
network structure

(2) Parameter learning: based on the given Bayesian
network structure, learn the Conditional Probability
Table (CPT) at each node of the Bayesian network
model

3.2. Structure Learning. As the network structure and data set
can be used to determine the parameters, structure learning
is the basis of Bayesian network learning, and the e	ective
structure learning is the key to constructing the optimal
network structure.

�e construction of Bayesian network structure includes
the following three points:

(1) Based on expert experience and prior knowledge,
determine the variable nodes of Bayesian network so
as to determine the structure of Bayesian network.

(2) �rough the learning of sample data, automatically
acquire the Bayesian network structure by using
machine learning algorithm.

(3) Based on expert experience and machine learning of
data, acquire the Bayesian network structure by using
data fusion method.

As the third point combines the advantages of expert
experience and machine learning and avoids the disad-
vantage of using one method to determine the Bayesian
network structure only, in this paper, the third method to
determine the Bayesian network structure for the causation
analysis of road accidents will be used. Common machine
learning methods include K2 algorithm, MCMC algorithm,
and hill-climbing algorithm. K2 algorithm is based on the
scoring function and hill-climbing algorithm, which lies in
the basic principle: from an empty network, according to
the prede�ned order of nodes, select the node with the
most posterior probability as the father node of this node,
sequentially traverse all nodes, and gradually add the optimal
father node to each variable. K2 algorithm uses posterior
probabilities as the scoring function, which is described as
follows:


 ( | ��) = �∏
�=1

score (�, ���) , (2)

where

score (�, ���)
= ��∏
�=1

[ Γ (���)
Γ (��� + ���)

��∏
�=1

Γ (���� + ����)
Γ (����) ] . (3)

 is a set of variables.

�� is the network structure.� are the numbers of nodes in the graph.

�� are con�gurations (states) of the parents of the �th
node.

�� are mutual exclusive states of the �th node.

���� are instances of the �th node being in the �th state
when its parents are in their �th con�guration, and��� = ∑���=1����.���� are the hyperparameters of the Dirichlet distri-
bution and correspond to the a priori probability
distribution of �� taking on its �th state while its
parents are in their �th con�guration. ��� = ∑���=1 ����.
�e gamma function Γ(�) = ∫+∞0 �
−1�−��� satis�esΓ(� + 1) = �Γ(�) and Γ(1) = 1.

K2 algorithmuses a variable order � and a positive integer to limit the search space, which seeks the optimal model℘ that meets the following two conditions: (1) the number
of father nodes of any variable in ℘ should not be greater
than  and (2) � is a topological order of ℘. However, as K2
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algorithm adopts greedy search strategy, which may easily
fall into the local optimal solution and cannot guarantee that
the network acquired is the optimal network, the knowledge
and experience of experts need to be integrated so as to
acquire the optimal network structure. In this paper, the
combination of expert experience and K2 algorithm will
perform the Bayesian network structure learning for the
causation analysis of road accidents.

3.3. Parameter Learning. Aer determining the topological
structure of Bayesian network, the parameter learning of
Bayesian network can be performed. In the process of col-
lecting road accidents information, missing data oen occurs
due to various reasons, for instance, recording instruments
malfunction and confusion of respondents in answering
questions. Most of statistical models cannot directly anal-
yse the data with missing values, and in the case of any
missing values, the record with missing values is generally
eliminated directly to ensure that the statistical model can
be properly �tted. If the missing values are less, this will not
greatly a	ect the results if the record with missing values
is directly eliminated. However, if the multivariate analysis
is performed, more variables will be studied, which means
that more records will be eliminated; it may cause a loss of
information, reduce the power of test, and cause some bias to
research results [38].

�e Expectation-Maximization (EM) algorithm is
an asymptotic deterministic estimation method for the
unknown parameter " with missing data. It can be used to
perform maximum likelihood estimation on the parameters
from incomplete data set, which is a practical learning
algorithm [39]. EM algorithm can be widely used to deal
with incomplete data, such asmissing data and censored data.
EM algorithm mainly involves two steps: Expectation Step
(#-Step) and Maximization Step ($-Step). �e algorithm is
described as follows.

(1) Initialize "(0). Set accuracy % and correction value "̂� of
estimated value "̂.

While
'''''"̂ − "̂�''''' > %,
do "̂ ←- "̂�. (4)

(2) #-Step. Calculate the expected su
cient statistic of miss-
ing value �∗.

�e probability distribution of �∗ is

 (�∗ | �, "̂) = 
 (� | �∗, "̂) 
 (�∗ | "̂)

∑�∗ 
 (� | �∗, "̂) 
 (�∗ | "̂) , (5)

where


 (� | �∗, "̂) = 
 (�, �∗, "̂)

 (�∗, "̂) ,


 (�∗ | "̂) = 
 (�∗, "̂)

 ("̂) .

(6)

�e su
cient statistic is

#�(
|�,�̂)���� = ∑
�,�


 (���, 0 (���) | "̂) , (7)

where 
(� | �∗, "̂) is the probability distribution of � under
the condition that �∗ and "̂ are known, 
(�∗, "̂) is the joint
distribution of �∗ and "̂, �� is the �th variable, ���� is the
count of all possible joint instantiations between�� and0(��)
denoted by � and �, respectively.
(3) $-Step. Calculate the new maximum likelihood (ML)

or maximum a posteriori (MAP) values of "̂� in the given

condition 
(�∗|�, "̂).
In Expectation-Maximization, we have the following:

ML:

"̂���� = #�(
|�,�̂)����∑�� #�(
|�,�̂)����� . (8)

MAP:

"̂���� = 3��� + #�(
|�,�̂)����
∑�� (3���� + #�(
|�,�̂)�����) , (9)

where 3��� is the Dirichlet parameter that can be
obtained through the iteration process of #-Step and$-Step.

#-Step is used to calculate the expected su
cient statistic
of �∗, and $-Step is used to conduct new estimation of
learning parameter by using the statistic obtained in #-Step.
In this paper, the Bayesian network parameter learning of
road accidents is performed by using EMalgorithm inNetica.

4. Case Studies

4.1. Study Area and Data Source. Adelaide Central Business
District (CBD) in South Australia is selected as the study
case, as it attracts 22% of metropolitan Adelaide’s work
trips [40] and has the �rst and the second most dangerous
accident concentration areas which are North Terrace and
West Terrace in the CBD [41].

�e crash data of South Australia from 2006 to 2008
were provided by theDepartment of Planning, Transport and
Infrastructure (DPTI), and ArcGIS 10.5 soware was used to
locate the precise crash sites, as shown in Figure 2.

4.2. Variable Selection and Data Preprocessing. By using
ArcGIS 10.5, 1558 and 756 data sets of road accidents in
Adelaide CBD from 2006-2007 and 2008 are obtained,
respectively. �e statistical data from 2006 to 2007 will be
used for the construction of Bayesian network model and
calibration, and the statistical data in 2008 will be used for
the model validation process.

Previous studies [33, 42–45] provided some in-depth
insights to guide the variable selection, discretization, and
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Figure 2: �e location and region of Adelaide CBD.

classi�cation in this research. As a result, fourteen variables
are selected from the data sets as having “signi�cant in�u-
ence,” that is, “crash type,” “driver’s apparent error,” “road
geometry,” “vehicle type,” and others, as shown in Table 1.
However, according to the statistical result in Table 1, it can
be seen that the percentage of “inattention” reaches up to
39.84%, which is the biggest contributing factor in “driver’s
apparent error” category. In our daily routine, “inattention”
is explained as “failure to give attention, or negligence.”
Generally, such usage is quite convenient for record purposes;
however, from the perspective of psychology and physiology,
the usage is not clear and de�nite. �ere are lots of other
reasons that may be behind tra
c accidents, such as human
factors (driver’s physical and mental state, knowledge and
skill, and the operational approach), objective factors (vehi-
cles, roads, and road facilities), and safety management. If all
above factors are simply summarized as “inattention,” then
the causes of tra
c accidents are to be extremely simpli�ed.
And the prevention measures will be hardly developed.
�erefore, in this research, the factor of “inattention” will be
excluded, and all variables used for modeling are shown in
Table 2.

Bayesian network can be used to process continuous vari-
ables and discrete variables. As the classi�cation result of traf-
�c accident variables obviously has the discrete characteristic,
discrete variables are adopted for Bayesian network analysis
of road accidents. Before structure learning, discretization
processing has to be conducted for road accident variable.
�e discretization values and value descriptions of processed
variables are shown in Table 2.

4.3. Structure Learning. In this paper, the method combining
K2 algorithm and experts’ knowledge is used to formulate
the Bayesian network structure. Based on K2 algorithm,

FullBNT-1.0.7 is utilized to conduct structure learning via
MATLAB. �rough repeated selection and sequencing of
variables by experts, the Bayesian network structure is �nally
developed, as shown in Figure 3.�e network is composed by
14 nodes and several lines. �e 14 nodes refer to 14 variables,
and lines between these nodes indicate the relationships
among the variables.

It can be seen from Figure 3 that some road accident
variables have demonstrated clear hierarchical relations of
a	ecting others and being a	ected by others. Road acci-
dents result from the interaction of variables from “tra
c
participant, vehicle, road, and environment,” which is fully
re�ected by the Bayesian network structure as well. For
instance, “vehicle movement” is a	ected by “road geometry”
and “driver’s apparent error,” but it can also a	ect “total
units involved” at the same time. �e actual situation of
road accidents can be fully embodied by the interactional
hierarchical relationship of variables in Bayesian network.

4.4. Parameter Learning. Once a Bayesian network struc-
ture is formed, parameter learning can be carried out. �e
Bayesian network structure can be created in Netica, and
then parameter learning can be conducted, thus obtaining
the conditional probability distribution of nodes. Finally,
the Bayesian network model for the road accident causation
analysis can be determined, as shown in Figure 4.

4.5. Model Calibration and Validation. To validate the
parameter learning accuracy and prediction accuracy of
the Bayesian network model, sensitivity analysis is used to
identify the sensitive factors with a signi�cant impact on the
target node from a number of uncertain factors, and then the
target node is set as the evidence variable to conduct model
�tting and prediction with these sensitive factors.
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Table 1: Variables of road accidents, Adelaide CBD, 2006–2008.

Variable class Variable name Discretization value Value description Frequency Percentage

Driver Apparent error (�1)

1 Fail to stand 307 13.25%

2
Change lanes to

endanger
221 9.54%

3 Incorrect turn 31 1.34%

4
Reverse without due

care
92 3.97%

5 Follow too closely 173 7.47%

6
Overtake without due

care
52 2.24%

7 Disobey tra
c lights 171 7.38%

8 Disobey stop sign 23 0.99%

9 Disobey give way sign 47 2.03%

10 Inattention 923 39.84%

11 DUI 23 0.99%

12 Fail to give way 254 10.96%

Road

Road geometry (�2)

1 Cross road 1116 48.17%

2 Y junction 57 2.46%

3 T junction 450 19.42%

4 Multiple 33 1.42%

5 Divided road 349 15.06%

6 Not divided 294 12.69%

7 Pedestrian crossing 18 0.78%

Road moisture
condition (�3)

1 Wet 237 10.23%

2 Dry 2080 89.77%

Tra
c control (�4)
1 Tra
c signals 1282 55.33%

2 Stop sign 42 1.81%

3 Give way sign 118 5.09%

4 No control 875 37.76%

Environment

Weather condition(�5)
1 Raining 151 6.52%

2 Not raining 2166 93.48%

Light condition (�6) 1 Daylight 1716 74.06%

2 Night 601 25.94%

Vehicle

Vehicle type (�7)
1 Heavy 172 7.42%

2 Medium 901 38.89%

3 Light 1244 53.69%

Vehicle movement(�8)

1 Right turn 426 18.39%

2 Le turn 95 4.10%

3 U turn 122 5.27%

4 Swerving 242 10.44%

5 Reversing 77 3.32%

6 Straight ahead 1238 53.43%

7
Entering private

driveway
15 0.65%

8
Leaving private

driveway
50 2.16%

9 Overtaking on right 39 1.68%

10 Overtaking on le 13 0.56%
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Table 1: Continued.

Variable class Variable name Discretization value Value description Frequency Percentage

Road crash

Crash type (41)

1 Rear end 1010 43.59%

2 Hit �xed object 59 2.55%

3 Side swipe 392 16.92%

4 Right angle 377 16.27%

5 Head on 5 0.22%

6 Hit pedestrian 50 2.16%

7 Right turn 333 14.37%

8 Hit parked vehicle 91 3.93%

Crash severity (42) 1
PDO (property
damage only)

1748 75.44%

2 Injury 569 24.56%

Total units (involved
in a road crash) (43)

1 Two units 2012 86.84%

2 �ree units 258 11.14%

3 Four units 40 1.73%

4 Five units 7 0.30%

Total casualties
(fatalities and treated

injuries) (44)
1 None 1748 75.44%

2 One casualty 495 21.36%

3 Two casualties 62 2.68%

4 �ree casualties 12 0.52%

Total serious injuries(45)
1 None 2267 97.84%

2 One serious injury 50 2.16%

Total estimated
damage (A$) (46)

1 [0, 5000) 1139 49.16%

2 [5000, 10000) 795 34.31%

3 [10000, +∞) 383 16.53%

Road 

geometry

Vehicle 

movement

Driver’s 

apparent 

error

Light 

condition

Crash type

Total units 

involved

Weather 

condition

Road 

moisture 

condition

Tra�c 

control

Total 

casualties

Total 

estimated 

damage

Vehicle 

type

Crash 

severity

Total 

serious 

injuries

Figure 3: �e Bayesian network structure for the road accident analysis.
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Table 2: Variables used for the Construction of Bayesian Network.

Variable class Variable name Discretization value Value description Frequency Percentage

Driver Apparent error (�1)

1 Fail to stand 199 21.47%

2
Change lanes to

endanger
141 15.21%

3 Incorrect turn 24 2.59%

4
Reverse without due

care
61 6.58%

5 Follow too closely 119 12.84%

6
Overtake without due

care
35 3.78%

7 Disobey tra
c lights 115 12.41%

8 Disobey stop sign 18 1.94%

9 Disobey give way sign 27 2.91%

10 DUI 9 0.97%

11 Fail to give way 179 19.31%

Road

Road geometry (�2)
1 Cross road 454 48.98%

2 Y junction 11 1.19%

3 T junction 196 21.14%

4 Multiple 13 1.40%

5 Divided road 132 14.24%

6 Not divided 121 13.05%

Road moisture
condition (�3)

1 Wet 100 10.79%

2 Dry 827 89.21%

Tra
c control (�4)
1 Tra
c signals 477 51.46%

2 Stop sign 27 2.91%

3 Give way sign 56 6.04%

4 No control 367 39.59%

Environment

Weather condition(�5)
1 Raining 65 7.01%

2 Not raining 862 92.99%

Light condition (�6) 1 Daylight 677 73.03%

2 Night 250 26.97%

Vehicle

Vehicle type (�7)
1 Heavy 63 6.80%

2 Medium 379 40.88%

3 Light 485 52.32%

Vehicle movement(�8)

1 Right turn 267 28.80%

2 Le turn 41 4.42%

3 U turn 79 8.52%

4 Swerving 137 14.78%

5 Reversing 52 5.61%

6 Straight ahead 275 29.67%

7
Entering private

driveway
10 1.08%

8
Leaving private

driveway
31 3.34%

9 Overtaking on right 25 2.70%

10 Overtaking on le 10 1.08%
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Table 2: Continued.

Variable class Variable name Discretization value Value description Frequency Percentage

Road crash

Crash type (41)

1 Rear end 155 16.72%

2 Hit �xed object 4 0.43%

3 Side swipe 255 27.51%

4 Right angle 258 27.83%

5 Head on 3 0.32%

6 Hit pedestrian 22 2.37%

7 Right turn 216 23.30%

8 Hit parked vehicle 14 1.51%

Crash severity (42) 1
PDO (property
damage only)

689 74.33%

2 Injury 238 25.67%

Total units (involved
in a road crash) (43)

1 Two units 860 92.77%

2 �ree units 54 5.83%

3 Four units 9 0.97%

4 Five units 4 0.43%

Total casualties
(fatalities and treated

injuries) (44)
1 None 689 74.33%

2 One casualty 213 22.98%

3 Two casualties 21 2.27%

4 �ree casualties 4 0.43%

Total serious injuries(45)
1 None 904 97.52%

2 One serious injury 23 2.48%

Total estimated
damage (A$) (46)

1 [0, 5000) 423 45.63%

2 [5000, 10000) 342 36.89%

3 [10000, +∞) 162 17.48%

Vehicle_movement

Right turn
Le� turn
U turn
Swerving
Reversing
Straight ahead
Entering private driveway
Leaving private driveway
Overtaking on right
Overtaking on le�

27.7
6.17
8.03
15.5
6.93
25.9
1.74
2.46
3.44
2.08

Driver’s_apparent_error

Fail to stand
Change lanes to endanger
Incorrect turn
Reverse without due care
Follow too closely
Overtake without due care
Disobey tra�c lights
Disobey stop sign
Disobey give way sign
DUI
Fail to give way

21.5
15.2
2.59
6.58
12.8
3.78
12.4
1.94
2.91
0.97
19.3

Road_moisture_condition
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Figure 4: �e Bayesian network model aer parameter learning in Netica 6.02.
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Table 3: Sensitivity analysis result of the node “crash type.”

Node Mutual info Percent Variance of beliefs

Crash type 2.82978 100 0.7195390

Driver’s apparent error 0.57217 20.2 0.0869963

Vehicle movement 0.33948 12 0.0351281

Total casualties 0.21563 7.62 0.0057073

Crash severity 0.17897 6.32 0.0037534

Road geometry 0.04044 1.43 0.0008944

Total serious injuries 0.01888 0.667 0.0004707

Tra
c control 0.01125 0.398 0.0001573

Road moisture condition 0.00503 0.178 0.0001027

Light condition 0.00417 0.147 0.0000915

Total estimated damage 0.00407 0.144 0.0000533

Total units involved 0.00394 0.139 0.0002397

Weather condition 0.00313 0.111 0.0000638

Vehicle type 0.00000 0.000 0.0000000

4.5.1. Sensitivity Analysis. In Bayesian network, the sensi-
tivity analysis refers to the analysis of the in�uence and
in�uence degrees of multiple causes (node states) on result
(target node). Based on sensitivity analysis, the elementary
events with relatively greater contribution to the probabilities
of the consequential events can be determined to facilitate
the reduction of probabilities of these elementary events by
taking e	ective measures, so that the probabilities of the
consequential events will be reduced.

�e sensitivity analysis function of Netica can be used to
identify which factors have more important safety manage-
ment values in analyzing tra
c accidents. In Netica, select
the target node and then analyse the impact degrees of other
nodes on the target node in a descending order. Taking the
node “crash type” as an example, make sensitivity analysis of
it and the result is as shown in Table 3.

�e mutual information refers to the direct or indirect
information �ow rate andmeasures the degree of dependence
between nodes. In other words, the mutual information
between two nodes can indicate if the two nodes are depen-
dent on each other and if so how close their relationship is
[46]. As shown in Table 3, it can be seen that the mutual
info (=0.57217) of node “driver’s apparent error” is the largest,
which means that it has the strongest impact on “crash type,”
followed by “vehicle movement” and “road geometry” which
have mutual info = 0.33948 and 0.04044, respectively.

4.5.2. Model Fitting and Prediction. Based on the sensitivity
analysis result of “crash type,” the posterior probabilities
of “driver’s apparent error,” “vehicle movement,” and “road
geometry” obtained from the Bayesian network are compared
with the actual calculations from 2006 to 2007 and from
2008, respectively. Due to the large amount of data, “rear end”
from the parameter learning results of “crash type” is used for
exempli�cative explanation.

Figures 5, 6, and 7 show the posterior and actual prob-
ability distributions of “driver’s apparent error,” “vehicle
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Figure 5:�e comparison of posterior and actual probability curves
of driver’s apparent error when the evidence variable is “rear end.”
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Figure 6:�e comparison of posterior and actual probability curves
of vehicle movement when the evidence variable is “rear end.”
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Figure 7:�e comparison of posterior and actual probability curves
of road geometry when the evidence variable is “rear end.”

movement,” and “road geometry,” respectively, when the
evidence variable is “rear end.” Compared with the actual
computational results from2006 to 2007, themaximummean
absolute error (MAE) of Bayesian network model is 5.58%.
Similarly, compared with the actual computational results
of 2008, the maximum MAE is 6.14%, which suggests that
the Bayesian network model has both high �tting accuracy
and high prediction accuracy. �erefore, it is feasible to use
the Bayesian network model to conduct result prediction
and inferential analysis of each variable of road accidents
accordingly.

4.6. Bayesian Network Model Application

4.6.1. Posterior Probability Reasoning. Bayesian network
model can be used to perform probability reasoning, includ-
ing posterior probability calculations. Precisely, it aims to
calculate the posterior probabilities of some targeted nodes,
control the in�uence degrees of determined speci�c nodes
on the nodes of interest, predict the possibility of accident
occurrence, and analyse the major accident sources under
the condition that states of speci�c nodes are determined. In
brief, the posterior probabilities in inferring the result from
cause and inferring the cause from result are referred to as
accident prediction and causal inference, respectively.

(1) Accident Prediction. Figure 8 is the accident prediction
on the assumption that a driver “disobeys tra
c lights”
when driving in Adelaide CBD. Input the evidence variables
(“tra
c signals” and “disobey tra
c lights”) emerging from
this circumstance into the Bayesian network, so it becomes
a problem to solve the posterior probabilities of other nodes,
with the known status of some evidence variables.

In Netica, set both the statuses of “tra
c signals” and
“disobey tra
c lights” as 100%; that is, the statuses of the
evidence variables are determined.�en update the probabil-
ities of the whole network; the probability change of relevant
nodes, namely, the probability change of “crash type” and
other nodes, can be observed. In this case, the probability

of “right angle” in “crash type” is found to increase from
the initial 16.6% to 58.0%. �is suggests that if the driver
“disobeys tra
c lights,” the probability of “right angle” will
signi�cantly increase.

As shown in Figure 9, in addition to “disobey tra
c
lights,” assume that the driving time is at night; namely, the
status of “night” in “light condition” is set as 100%. Aer auto-
matically updating the probabilities of the whole network,
the probability of “right angle” is found to further increase
from 58.0% to 59.4%, which means that the probability of
“right-angle” tra
c accident is higher. Go one step further
and assume that it is also a rainy night (namely, set the status
of “raining” in “weather condition” as 100%). According to
Figure 10, once again, it can be found that the probability
of “right angle” further increases from 59.4% to 63.3%. �is
suggests that “driver’s apparent error,” “light condition,” and
“weather condition” will all a	ect the probability of “right
angle” to various degrees. �erefore, it can be found that
the status change of evidence node variables will a	ect the
probabilities of query nodes, which is consistent with the
engineering practice.

(2) Causal Inference. Another important application of the
Bayesian network is fault diagnosis of the system. �e
bidirectional reasoning technology of the Bayesian network
can calculate not only the probability of a system failure under
combined fault conditions but also the posterior probabilities
of various components under the system fault condition
and easily �nd out the most likely combination that caused
system failure, thereby making the computational analysis
more intuitive and �exible.

Conduct causal inference by taking the “side swipe”
in “crash type” as an example. In this case, the evidence
variable is “side swipe,” so its status probability is 100%. As
shown in Figure 11, aer inputting the evidence, the prob-
ability of “change lanes to endanger” in “driver’s apparent
error” increases greatly from 15.2% to 46.7% through the
automatic updating function of Netica. And the probability
of “swerving” in “vehicle movement” also increases from
15.5% to 44.9%,which reaches themaximumprobability.�is
suggests that, in the absence of other evidences, the most
probable cause to “side swipe” is “swerving” (vehicle) caused
by “change lanes to endanger” (driver).

4.6.2. Most Probable Explanation. Bayesian network model
can be used to make the most probable explanations, pre-
cisely, from sets of multiple causes (node states) which are
likely to lead to a conclusion; use Netica to identify the set
that is most likely to lead to the result, and this set with the
maximum likelihood will be the most probable explanation.

In the example of “side swipe” as illustrated in Figure 12,
use “Most Probable Explanation” function in Netica to �nd
out the most probable cause set. As shown in Figure 12, the
most probable explanation cause (node state) set of “side
swipe” is [cross road, change lanes to endanger, swerving,
daylight, not raining, dry, tra
c signals]. It explicitly shows
that most probable explanation and causal inference are
highly consistent when the evidence variable is “side swipe,”
and the set is also consistent with the engineering practice.
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Figure 8: Road accident prediction when the evidence variables are “tra
c signals” and “disobey tra
c lights.”
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Figure 9: Road accident prediction when the evidence variables are “tra
c signals,” “disobey tra
c lights,” and “night.”

4.7. Inferential Analysis of Accidents Based on “Serious
Injuries” and “Total Estimated Damage”. �e application of
the Bayesian network model in Netica to solve the pos-
terior probability reasoning problem, maximum posterior
hypothesis problem, andmost probable explanation problem

highlighted the inferential capability of the Bayesian network
model. To further analyse the factors contributing to tra
c
accidents, especially serious tra
c accidents, the Bayesian
network model was used to calculate the probabilities of
“serious injuries” and “total estimated damage over 10,000
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Figure 10: Road accident prediction when the evidence variables are “tra
c signals,” “disobey tra
c lights,” “night,” and “raining.”
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Figure 11: �e posterior probability when the evidence variable is “side swipe.”

AUD” under the in�uence of “driver’s apparent error,” “road
geometry,” “weather condition,” “light condition,” and “crash
type,” respectively. �e results are shown in Table 4.

4.7.1. Driver’s Apparent Error. �eresults presented in Table 4
indicate that “driving under the in�uence” (DUI) will most

likely cause serious injuries and heavy property damage, as
DUI is more easily to lead to dangerous behaviours including
speeding, not wearing a safety belt, and reckless or erratic
driving. According to the inference results, DUI is most likely
to cause tra
c accidents on cross roads with the inference
probability of 49.0%. As for the crash types, the inference
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Figure 12: �e most probable explanation when the evidence variable is “side swipe.”

probabilities of rear-end and head-on crashes are the two
highest (resp., 15.6% and 15.4%). In previous studies, among
all tra
c accidents caused by DUI, unrestrained occupants
were 4.70 times more likely to die or 4.66 times more likely
to be injured than restrained occupants [47]. Besides, drunk
drivers show weak control ability of vehicles, and the higher
ethanol content in their blood, the higher probability that
they will have illegal actions mentioned previously [48],
which are more likely to cause serious tra
c accidents with
heavy casualties and property damage.

4.7.2. Road Geometry. Intersections are an important part of
road system and are potentially the most dangerous locations
in a network as well. Previous studies have shown that
intersections, especially cross roads, have higher crash rates
and greater crash severity, particularly in urban areas [49–51].
As shown in Table 4, the most dangerous “road geometry”
in Adelaide CBD also is “cross road,” which means that the
probabilities of causing serious injuries and heavy property
damage at “cross roads” are both the biggest. According to
the accident records in Adelaide CBD, among serious tra
c
accidents caused at cross roads, there are two main crash
types, “right angle” and “right turn,” respectively, accounting
for 44.35% and 42.61%, while “fail to stand” and “disobey
tra
c lights” become the twomain reasons of tra
c accidents
caused at cross roads, respectively, accounting for 38.26% and
34.78%.

4.7.3. Weather Condition. Rainfall will not only decrease the
e	ectiveness of drivers’ visual search [12] but also lower the
friction coe
cient of roads, which makes roads slippery,
increases braking distance greatly, and thus results in the

possibility of tra
c accidents. A study for Melbourne, Aus-
tralia, by Keay and Simmonds [10] found that rainfall was
the strongest factor that correlated to weather parameter and
it had the greatest impact in winter and spring. Keay and
Simmonds [52] also found a contributing parameter, which
is the lagged e	ect of rain. Symons and Perry [53] found that
wet roads or raining is increasing the probability of tra
c
accidents which can reach up to 70 percent. Similarly, Qiu
and Nixon [11] found that rain can increase the crash rate
by 71% and the injury rate by 49%. �is coincides with the
results found in this research, which indicate that rainfall is
associated with tra
c accidents that had serious injuries and
heavy property damage.

4.7.4. Light Condition (Urban Heat Island). Traditional bitu-
minous pavement can absorb and store large amounts of
heat during the day and continuously output the heat to the
external environment at night, whichwill result in an increase
in external environment temperature and lead to urban heat
island (UHI). UHI might have some impacts on road dura-
bility and safety, such as accelerating bituminous pavement
aging and exacerbating road high-temperature rutting may
lead to road accidents. With the continuous expansion of city
size, the comprehensive phenomenon of such microclimatic
variationwill become increasingly obvious [54]. As one of the
major Australian cities, Adelaide is also a	ected by UHI [55].
And as waste heat from vehicles and temperature regulation
of buildings is an important determinant of UHImagnitudes,
AdelaideCBD,which has the largest density of tra
c network
and the largest number of buildings, has become the center
of UHI. As shown in Table 4, the number of road accidents
that occurred at night demonstrates a larger proportion of



Journal of Advanced Transportation 15

Table 4: Inference results for variables that are associated with “serious injuries” and “total estimated damage” in serious tra
c accidents.

Variable class Variable name Serious injuries/% Total estimated damage (≥10,000 AUD)/%

Driver’s apparent error

Fail to stand 3.54 17.5

Change lanes to endanger 2.83 17.5

Incorrect turn 3.61 17.1

Reverse without due care 4.03 17.9

Follow too closely 3.91 20.0

Overtake without due care 3.36 18.7

Disobey tra
c lights 4.15 19.4

Disobey stop sign 4.81 19.5

Disobey give way sign 4.68 18.9

DUI 5.17 20.4

Fail to give way 3.91 17.2

Road geometry

Cross road 4.47 19.6

Y junction 3.69 18.2

T junction 3.27 18.0

Multiple 4.17 18.4

Divided road 4.05 18.1

Not divided 4.12 18.3

Weather condition
Raining 4.22 18.4

Not raining 3.69 18.1

Light condition
Daylight 3.65 18.1

Night 3.93 18.2

Crash type

Rear end 3.40 19.0

Hit �xed object 2.76 17.4

Side swipe 1.20 16.9

Right angle 2.48 17.6

Head on 15.4 26.0

Hit pedestrian 9.37 18.6

Right turn 2.93 17.2

Hit parked vehicle 0.34 16.9

55.56% than by daylight. Under the in�uence of UHI, Jusuf
et al. [56] found that, at nighttime, commercial area has the
highest ambient temperature among the four land use types
(commercial, residential, industrial, and airport). Similarly,
Parker [57] also found that the urban heat island is strongest
at night in high-rise city centers. �erefore, the correlation
analysis between road accidents and nighttime UHI is a
potential research direction.

4.7.5. Crash Type. Head-on crashes are among the most
severe collision types and are of great concern to road safety
authorities [58]. For instance, according to an annual report
presented by NHTSA in 2015, head-on crashes occupied only
2.3% of total crashes; however, they accounted for 9.6% of
fatal crashes. As shown inTable 4, nomatter “serious injuries”
or “property damage over 10,000 AUD,” the possibility of
“head-on” crashes always takes the �rst place and is largely
higher than other types of tra
c accidents. As for the road
geometry, the head-on crashes are most likely to happen on
cross roads with the inference probability of 39.6%, while the
inference probability of “disobey tra
c lights” is the biggest in
drivers’ apparent errors which cause head-on crashes. �ese

results agree with Bham et al. [59] who found that head-on
collisions were at a higher risk for severe injuries compared
with other collision types. And Rizzi et al. [60] concluded
that 31% and 21% of crashes at intersections could have been
avoided entirely or in�uenced by anti-lock braking system
(ABS); however, the head-on crashes were the only crash type
for which ABS seemed to be ine	ective.

5. Conclusion and Future Work

As road accidents are unexpected, random, complex, and
latent, it is necessary to conduct investigations on accident
mechanism and accurately identify the exact causes. �e
Bayesian network combining the probability theory with
graph theory not only has a rigorous mathematical consis-
tency but also has the structure chart that can intuitively
identify problems. �erefore, it is one of the most powerful
and e	ective tools to deal with uncertainties.

�e occurrence of road accident results from the interac-
tions of “tra
c participant, vehicle, road, and environment,”
and there is a potential hierarchical relation (impacting and
impacted) among the variables. In Bayesian network, the
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directed acyclic graph is a visual expression form that is
closer to the characteristics of thought and reasoning mode
of human. In the study, the Bayesian network structure for
the road accident causation analysis was achieved by using
K2 algorithm and experts’ knowledge which combines the
advantages of machine learning and experts’ knowledge.
�e structure learning result of the Bayesian network fully
re�ects the hierarchical relations among the accident related
variables and allows for better prediction and analysis of the
characteristics of road accidents.

In this study, the Bayesian network model for the road
accident causation analyses was established by using Net-
ica, Bayesian network-based soware with friendly GUI.
�e Expectation-Maximization algorithm that can deal with
missing data was adopted to process the parameter learning,
and then the calibration and validation, posterior probability
reasoning, most probable explanation, and inferential anal-
ysis were carried out aer the construction of the Bayesian
networkmodel.�e results showed that the Bayesian network
model is feasible and e	ective for road accident causation
analyses; in particular the use of posterior probability of the
Bayesian network can not only more precisely and quickly
�nd the key causes for tra
c accidents but also identify the
most likely cause (state) combination. �e result can be used
as an important theoretical basis in developing road tra
c
management strategies so as to improve road tra
c safety.

Follow-up studies will consider the rationality of the
Bayesian model and other factors that may lead to tra
c
accidents and establish a more accurate and comprehensive
model. As the Bayesian model is a probabilistic model,
more comprehensive and extensive basic data are needed to
enhance its reliability, in which some data can be obtained
only by carrying out experiments, despite the ability of the
Bayesian mode to make up for missing data. Moreover, as the
in�uencing road accident factors in reality are more than the
factors used in this study and as Netica is also suitable for the
establishment of a larger and more complex accident analysis
model, the model can be expanded to a more sophisticated
model that can consider more factors.
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ment of lean manufacturing e	ect on business performance
using bayesian belief networks,” Expert Systems with Applica-
tions, vol. 42, no. 19, pp. 6539–6551, 2015.

[16] H. Mcheick, H. Nasser, M. Dbouk, and A. Nasser, “Stroke
prediction context-aware health care system,” in Proceedings
of IEEE First International Conference on Connected Health:
Applications, Systems and Engineering Technologies (CHASE),
pp. 30–35, Washington, Wash, USA, 2016.

[17] S. Jensen, “Pedestrian Safety in Denmark,” Transportation
Research Record: Journal of the Transportation Research Board,
vol. 1674, pp. 61–69, 1999.

[18] M. Stone and J. Broughton, “Getting o	 your bike: cycling
accidents in great britain in 1990–1999,” Accident Analysis
Prevention, vol. 35, no. 4, pp. 549–556, 2003.

[19] D. E. Le�er andH.C.Gabler, “�e fatality and injury risk of light
truck impacts with pedestrians in the United States,” Accident
Analysis Prevention, vol. 36, no. 2, pp. 295–304, 2004.

[20] O. T.Holubowycz, “Age, sex, and blood alcohol concentration of
killed and injured pedestrians,” Accident Analysis & Prevention,
vol. 27, no. 3, pp. 417–422, 1995.

[21] A. S. Al-Ghamdi, “Pedestrian–vehicle crashes and analytical
techniques for strati�ed contingency tables,” Accident Analysis
Prevention, vol. 34, no. 2, pp. 205–214, 2002.

[22] D. Lord, S. P. Washington, and J. N. Ivan, “Poisson, Poisson-
gamma and zero-in�ated regression models of motor vehicle

http://acrs.org.au/wp-content/uploads/2017-ACRS-Submission-to-Federal-Parliamentarians-FINAL.pdf
http://acrs.org.au/wp-content/uploads/2017-ACRS-Submission-to-Federal-Parliamentarians-FINAL.pdf
http://acrs.org.au/wp-content/uploads/2017-ACRS-Submission-to-Federal-Parliamentarians-FINAL.pdf
http://www.interfacesymposia.org/I01/I2001Proceedings/KMurphy/KMurphy.pdf
http://www.interfacesymposia.org/I01/I2001Proceedings/KMurphy/KMurphy.pdf
http://www.interfacesymposia.org/I01/I2001Proceedings/KMurphy/KMurphy.pdf


Journal of Advanced Transportation 17

crashes: balancing statistical �t and theory,” Accident Analysis
& Prevention, vol. 37, no. 1, pp. 35–46, 2005.

[23] M. Poch and F. Mannering, “Negative binomial analysis of
intersection-accident frequencies,” Journal of Transportation
Engineering, vol. 122, no. 2, pp. 105–113, 1996.

[24] J.-L. Martin, “Relationship between crash rate and hourly tra
c
�ow on interurbanmotorways,”Accident Analysis & Prevention,
vol. 34, no. 5, pp. 619–629, 2002.

[25] K.-s. Ng, W.-t. Hung, and W.-g. Wong, “An algorithm for
assessing the risk of tra
c accident,” Journal of Safety Research,
vol. 33, no. 3, pp. 387–410, 2002.

[26] L.-Y. Chang and W.-C. Chen, “Data mining of tree-based
models to analyze freeway accident frequency,” Journal of Safety
Research, vol. 36, no. 4, pp. 365–375, 2005.

[27] G. Lovegrove and T. Sayed, “Macrolevel collision prediction
models to enhance traditional reactive road safety improvement
programs,”TransportationResearchRecord: Journal of the Trans-
portation Research Board, pp. 65–73, 2007.

[28] M. J. M. Sullman, M. L. Meadows, and K. B. Pajo, “Aberrant
driving behaviours amongst new zealand truck drivers,” Trans-
portation Research Part F: Tra�c Psychology and Behaviour, vol.
5, no. 3, pp. 217–232, 2002.

[29] J.-K. Kim, S. Kim, G. F. Ulfarsson, and L. A. Porrello, “Bicyclist
injury severities in bicyclemotor vehicle accidents,” Accident
Analysis & Prevention, vol. 39, no. 2, pp. 238–251, 2007.

[30] P. Savolainen andF.Mannering, “Probabilisticmodels ofmotor-
cyclists injury severities in single- and multi-vehicle crashes,”
Accident Analysis & Prevention, vol. 39, no. 5, pp. 955–963, 2007.

[31] R. K. Young and J. Liesman, “Estimating the relationship
between measured wind speed and overturning truck crashes
using a binary logit model,”Accident Analysis & Prevention, vol.
39, no. 3, pp. 574–580, 2007.

[32] P. M. Kuhnert, K.-A. Do, and R. McClure, “Combining non-
parametric models with logistic regression: an application to
motor vehicle injury data,” Computational Statistics & Data
Analysis, vol. 34, no. 3, pp. 371–386, 2000.
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