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ABSTRACT
Motivation: In order to understand transcription regulation
in a given prokaryotic genome, it is critical to identify
operons, the fundamental units of transcription, in such
species. While there are a growing number of organisms
whose sequence and gene coordinates are known, by and
large their operons are not known.
Results: We present a probabilistic approach to predicting
operons using Bayesian networks. Our approach exploits
diverse evidence sources such as sequence and expres-
sion data. We evaluate our approach on the Escherichia
coli K-12 genome where our results indicate we are able
to identify over 78% of its operons at a 10% false positive
rate. Also, empirical evaluation using a reduced set of data
sources suggests that our approach may have significant
value for organisms that do not have as rich of evidence
sources as E.coli.
Availability: Our E.coli K-12 operon predictions are avail-
able at http://www.biostat.wisc.edu/gene-regulation
Contact: joebock@biostat.wisc.edu

INTRODUCTION
The availability of complete genomic sequences and
microarray expression data calls for new computational
methods for uncovering the regulatory apparatus of a cell.
We present a Bayesian network approach to predicting
operons in prokaryotic genomes. Our approach is able to
take into account several data sources including gene coor-
dinates, codon usage statistics, predicted transcription sig-
nals, and expression data. We evaluate our approach using
data from theE.coli K-12 genome (Blattneret al., 1997).

In earlier work (Cravenet al., 2000) we presented an
operon prediction approach that involved two compo-
nents: a simple probabilistic method for scoring candidate

∗To whom corresponded should be adressed.

operons, and a dynamic programming algorithm for
combining predictions across sequences of candidate
operons. With these two components together we are able
to predict anoperon mapfor an entire genome. The work
reported here extends our earlier research in several key
directions. First, we describe and evaluate more complex
probabilistic models for scoring candidate operons. These
models encode more ‘background knowledge’ about the
problem than our earlier models and as a result provide
better predictive accuracy. Second, we include codon
usage statistics in our probabilistic model and show it
to be informative. This evidence source is appealing
because it requires no additional knowledge beyond gene
coordinates and sequence and thus can be used to predict
operons in many bacterial genomes. To our knowledge,
our method is the first to incorporate codon usage statistics
in an operon model. Finally, we evaluate the accuracy
of our approach when only limited data sources are
available, and demonstrate its value in this situation.

Several other research groups (Overbeeket al., 1999;
Tamameset al., 1997) have addressed the task of predict-
ing functionally coupledgenes by identifying clusters of
genes that are conserved across different genomes. Ermo-
laevaet al. (2001) have presented an approach that uses
this kind of information to predict the more specific con-
cept of operons. We consider this method to be comple-
mentary to ours in that it is based on cross-genome in-
formation, whereas our approach is based on information
present within a single genome.

Salgado et al. (2000a) and Moreno-Hagelsieb and
Collado-Vides (2002) have investigated an approach to
predicting operons inE.coli using gene coordinates and
functional annotation data. Our work differs from theirs in
several key respects. First, our learned models use a richer
representation of the problem. Whereas their predictions
are based on likelihood ratios, ours are based on Bayesian
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networks that represent key dependencies among various
pieces of information used in the predictions. Second,
our models use additional data sources—codon usage,
expression data and predicted transcription signals—
in their predictions. Third, our experiments measure
accuracy using held-aside test instances, whereas theirs do
not.

Other operon prediction approaches use just a single
type of evidence. Yadaet al. (1999) use hidden Markov
models to predict genes as well as operons from DNA
sequence alone, Tjadenet al. (2002) use expression data
from both genes and non-coding regions and Zhenget al.
(2002) use biochemical pathway information.

Another fundamental way in which our approach differs
from some previous work (Salgadoet al., 2000a; Ermo-
laevaet al., 2001; Moreno-Hagelsieb and Collado-Vides,
2002; Tjadenet al., 2002) is that ours predictscomplete
operons whereas others predict onlypairs of genes be-
longing to the same operon.

PROBLEM DOMAIN
The task we consider here is to predict operons in the
E.coli genome, although our approach is applicable to
other prokaryotic organisms. The genome ofE.coli, which
was sequenced at the University of Wisconsin (Blattner
et al., 1997), consists of a single circular chromosome of
double-stranded DNA. The chromosome of the particular
strain ofE.coli (K-12) in our data set has 4 639 221 base
pairs. E.coli has approximately 4400 genes, which are
located on both strands.

The definition ofoperon that we use throughout the
article is a sequence of one or more genes that, under
some conditions, are transcribed as a unit. There are
several aspects of this definition that are important to note.
First, genes that are transcribed individually are included
in this definition; we refer to these special cases as
singletonoperons. Second, our definition treats as multiple
operons those cases (such asrpsU–dnaG–rpoDin E.coli)
in which multiple promoters and/or terminators result in
different subsequences of a larger gene sequence being
transcribed under different conditions. We consider each
of the distinct gene sequences that can be transcribed as a
unit to be an operon.

Figure 1 illustrates the concept of an operon. The
transcription process is initiated when RNA polymerase
binds to apromoterbefore the first gene in an operon.
The RNA polymerase then moves along the DNA using
it as a template to produce an RNA molecule. When the
RNA polymerase gets past the last gene in the operon,
it encounters a special sequence called aterminator that
signals it to release the DNA and cease transcription.

The data that we have available for learning a model
of operons, some of which come from the RegulonDB

g1

g2 g3
g4

g5

Fig. 1. The concept of an operon. The curved line represents part
of theE.coli chromosome and the rectangular boxes on it represent
genes. An operon is a sequence of genes, such as[g2, g3, g4] that
is transcribed as a unit. Transcription is controlled via an upstream
sequence, called apromoter, and a downstream sequence, called
a terminator. Each gene is transcribed in a particular direction,
determined by which of the two strands it is located. The arrows
in the figure indicate the direction of transcription for each gene.

(Salgadoet al., 2000b), include the following:

• complete DNA sequence of the genome,

• beginning and ending positions of 3033 genes and
1372 putative genes,

• positions and sequences of 438 known promoters, and
289 known terminators (147 rho-dependent and 142
rho-independent),

• gene expression data characterizing the activity levels
of the 4097 genes and putative genes across 39
experiments and

• 365 known operons.

It is estimated that there are thousands of undiscovered
operons inE.coli (Salgadoet al., 2000a; Wolk et al.,
2001). Our goal is to predict these operons using a model
learned from the data described above. We assume that
operons do not include RNA genes and that they do not
‘bridge’ genes on the opposite strand.

An interesting aspect of our learning task is that we do
not have a set of known non-operons to use as negative
examples. The nature of scientific inquiry is such that
several hundred operons have been identified inE.coli, but
little attention has been focused on identifying sequences
of genes thatdo notconstitute operons.

Weare able, however, to assemble a set of 6633 putative
non-operons by exploiting the fact that operons rarely
overlap with each other. Given this rule, we generate a
set of negative examples by enumerating every sequence
of consecutive genes, from the same strand, that contains
at least one gene from a known operon but is itself
not a known operon. Some of these generated non-
operons might actually be true operons, because operons
do overlap in some cases. However, the probability of any
particular negative example being a true operon is small
and our learning algorithms are robust in the presence of
noisy data.
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PROBLEM REPRESENTATION
In this section we describe the features that our learning
method uses to assess the probability that a given can-
didate (that is, sequence of genes) actually is an operon.
Other than the codon usage based features, these features
have been used in previous work (Cravenet al., 2000).
Space considerations dicate that the discussion of some of
these features be condensed.

Length and Spacing Features
We use several features that relate to the length and inter-
genic spacing of operons and non-operons:

• Operon length: The number of genes in the candidate
operon.

• Within-operon spacing: Themeanand themaximum
spacing (number of DNA base pairs) between the
genes contained in a candidate operon, e.g., the
distances betweeng2 and g3 and betweeng3 and
g4 in Figure 1. Since the genes in an operon are
transcribed together, there might be constraints on
inter-gene spacing. These features are not defined for
singleton operons (operons consisting of one gene).

• Distance to neighboring genes: The distances to
the preceding(g1 in Figure 1) andfollowing (g5 in
Figure 1) genes. Notice that these genes are not part
of the candidate operon.

Codon Usage Features
The codon usage characteristic of a gene is influenced by
a variety of factors (Karlin, 1998) including some, such as
gene function, expression level and evolutionary history,
that also influence the grouping of genes into operons. To
decide whether or not a sequence of genes constitutes an
operon, it may be helpful to consider the codon usage of
the genes.

We associate with each genegk a set of codon bias
vectors {�bk

a}, one for each amino acid. Letnuvw be the
number of times codonuvw appears ingk Then, the
elements of the bias vectors are

bk
a,uvw = f̂(uvw|a) − f̄(uvw|a)

whereuvw is a codon that codes fora, f̄(uvw|a) is the
frequency with whicha is encoded byuvw (relative to
other codings fora) over the whole genome and

f̂(uvw|a) = nuvw + f̄(uvw|a)∑
xyz∈codons(a) nxyz + 1

is the smoothed frequency with whicha is coded for by
uvw in the gene. The sum in the denominator ranges over
all codons that code for amino acida.

Wedefine the codon usage similarity between two genes
as

Sim(gk, gl ) =
∑

a

�bk
a · �bl

a.

This measure is symmetric and reflects both the consis-
tency and degree to which the bias vectors are correlated.

We derive four codon usage based features for a
candidate operonc: the codon usage similarity between
the first gene inc and the previous gene, the codon usage
similarity between the last gene inc and the following
gene, and the mean and minimum of the codon usage
similarity among all pairs of genes inc.

Transcription Signal Features
Other types of evidence associated with operons are tran-
scription control signals, such as promoters and termina-
tors. Thus, to decide if a given sequence of genes repre-
sents an operon or not, we would like to look upstream
from the first gene in the sequence to see if we find a pro-
moter, and to look downstream from the last gene to see
if we find a terminator. The task of recognizing promot-
ers and terminators, however, is not easily accomplished.
Although there are known examples of both types of se-
quences, the sufficient and necessary conditions for them
are not known. Thus, to use promoters and terminators as
evidence for operons, we first need some method that can
be used to predictively identify them.

Our approach is to use the known examples of these two
types of signals to learn statistical models for predicting
them. Specifically, we induceinterpolated Markov models
(IMMs) (Jelinek and Mercer, 1980) that characterize the
known promoters and terminators. Features associated
with a candidate operon are constructed by scanning the
trained promoter and terminator IMMs along the sequence
upstream and downstream of the candidate operon, and
retaining the largest predicted probability for each scan.

Gene Expression Features
The expression data we use comes from 39 microarray
experiments conducted by the WisconsinE.coli Genome
Project. Since our expression data comes from cDNA ar-
rays, we have two measurements (fluorescence intensities)
for each gene in each experiment: the relative amount of
mRNA under some experimental condition versus the rel-
ative amount under some baseline condition. We employ
the common practice of using the ratio of these two val-
ues as the expression intensity for a single gene under the
condition being measured.

We associate with each gene a vector of its expression
ratios over all conditions. The expression based features
used to classify candidate operons are based on a correla-
tion metric, used previously for analyzing gene expression
data (Eisenet al., 1998), between the expression vectors
of certain pairs of genes.
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Specifically, we use following four expression based
features to characterize a candidate operonc: (i) the
correlation between the first gene inc and the previous
gene in the sequence, (ii) the correlation between the last
gene inc and the next gene in the sequence. (iii) the mean
correlation of all pairs of genes inc and (iv) the minimum
correlation among all pairs of genes inc.

Making the feature values discrete
The operon model we employ, which we describe in the
next section, is more easily defined and accurately trained
if features are restricted to a relatively small number of
discrete values. We make all our feature values discrete by
partitioning each feature’s range into ten non-overlapping
bins. These bins are labeled one through ten and thresholds
between bins are chosen so that an equal number of
positive training examples fall into each. We use this
method of define bin boundaries because our training sets
have many more negative than positive examples and we
want to avoid the case when very few training examples
of some class fall in any one bin due to sampling effects.
The discrete value of a feature is the index of the bin into
which the associated raw value falls.

BAYESIAN NETWORK OPERON MODEL
In this section we show how the features just described are
used by a machine learning approach to induce a proba-
bilistic model, called aBayesian network(Pearl, 1988), of
operons. A Bayesian network is way of representing the
joint probability distribution of a set of random variables
that exploits the conditional independence relationships
among the variables, often greatly reducing the number
of parameters needed to represent the full joint probability
distribution. Also, Bayes nets give a powerful and natural
way to represent the dependencies that do exist. This con-
trasts to naive Bayes models, which we used in previous
work (Cravenet al., 2000), where it assumed that all non-
class variables are conditionally independent of each other
given the class.

The ability to model dependencies between variables
is important in our task for pairs of features that both
relate to a certain aspect of an operon; for example, the5′
spacing andpromoter features both refer to the 5′ edge.
The values of these features are clearly not independent
of each other for negative examples. For example, if the
promoter feature indicates there is high probability of a
promoter upstream of some negative example, it is likely
its 5′ edge is the 5′ edge of some actual operon thus
changing our distribution over5′ spacing. These types
of dependencies cannot be represented by a naive Bayes
model, but are naturally handled with general Bayes nets.

A Bayes net consists of two components: a qualitative
one (thestructure) in the form of a directed acyclic graph
whose nodes correspond to the random variables and a

Feature nodes

Operon node

Intermediate nodes

codon usage
min internal

mean internal
spacing

operon

operon length

5’ spacing promoter

5’ edge

terminator3’ spacing

spacing
max internal

internal consistency

3’ edge

5’ codon usage 5’ expression 3’ codon usage 3’ expression

expression
mean internal min internal

codon usage
mean internal

expression

(a)

5′ edge 3′ edge Pr(¬operon) Pr(operon)

false false 0.999 0.001
false true 0.999 0.001
true false 0.999 0.001
true true 0.580 0.420

(b)

Fig. 2. (a) The structure of our Bayes net operon model. (b) An
example conditional probability distribution for theoperon node
given its parents nodes5′ edge and3′ edge.

quantitative component consisting of a set of conditional
probability distributions. The structure of the graph en-
codes a set of conditional independence assertions through
the absence of arcs between nodes. In particular, a node
is conditionally independent of all non-parent ancestors
given its parents. These assertions allow the full joint prob-
ability distribution to be compactly represented by storing
a conditional probability distribution at each node con-
ditioned on its parents, as can be readily seen through a
rewriting of the chain rule

Pr(X1, . . . , Xn) =
n∏

i

Pr(Xi |X1, . . . , Xi −1) (1)

=
n∏

i

Pr(Xi |Parents(Xi )). (2)

Here theXi ’s are the random variables andParents(Xi )

is the set of Xi ’s parents. The last line exploits the
conditional independence relationships and the ordering
from 1 to n is such that a node is preceded by all of its
parents.

We construct by hand the structure of our Bayes net
operon model, shown in Figure 2, from knowledge of
the domain and with an effort to have arcs correspond
with causes. This correspondence usually results in a
network with fewer arcs and therefore fewer parameters
to estimate. Our network contains three types of nodes:
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those that represent the features just described (feature
nodes, the open in circles in Figure 2), those that represent
intermediate concepts important in describing operons
(intermediate nodes, the filled in circles in Figure 2) and
one, theoperon node, that represents whether a candidate
is an operon or not.

The intermediate nodes and theoperon node are
Boolean valued. The5′ edge node represents the case
that the first gene of the candidate is the first gene in
someactual operon; an analogous statement holds for
the 3′ edge node and the last gene. The nodeinternal
consistency represents the case that all of the genes
in a candidate are in the same actual operon. Note that
with the exception ofoperon length, the feature nodes
only influenceoperon through one of the intermediate
nodes and if that intermediate node is observable, the child
feature nodes’ values have no impact onoperon. This
matches the intuition that if, say, it is known that, for some
candidate,5′ edge is true, the distance to the nearest gene
upstream (5′ spacing) has no influence on whether or not
the candidate is a true operon.

Since all of the variables are discrete, each node’s
conditional probability distribution can be represented by
a conditional probability table (CPT). An example of the
CPT for theoperon node is shown in Figure 2(b). Each
row of this CPT refers to a state of theoperon node’s
parents and gives its probability distribution given this
parental state.

Training
Training our Bayes net involves the setting of the proba-
bility parameters. To do this, we first compute a table of
counts for each node. This table has the same dimensions
as its CPT; an example CPT is shown in Figure 2(b). A
cell in the count table forXi indicates the total number of
times over the training set thatXi took on the value given
by the cells’ column when its parents were in the state
given by its row. To create a CPT from this count table we
add 1 to each cell and normalize each row so it sums to 1.
That is, we compute Laplace estimates (Mitchell, 1997).
In some training examples the values of one or more inter-
mediate nodes are unobservable while their child nodes’
values are observable. Although, the standard approach in
these cases is to use EM or Gibbs’ sampling to fully uti-
lize these training examples, the number of these cases is
small so, for simplicity, we keep the tables of counts for
the unobservable nodes and their children unchanged.

Classification
Given a new candidate operon we use the following pro-
cedure to decide whether or not a candidate is an actual
operon. First, we set the values of any observable interme-
diate nodes. In particular, since all genes of an operon are
transcribed in the same direction, if the orientations of the

first gene and the previous gene do not match, the5′ edge
node is observable (andtrue) and if the orientations of the
last gene and the following gene do not match the3′ edge
node istrue. Also, internal consistency is true for sin-
gleton candidate operons. Next, we set the feature nodes
to the candidates’ feature values. The values of the feature
nodes are always observable with the exception that for
singletons, the children ofinternal consistency are un-
defined. However, in this caseinternal consistency is di-
rectly observable. Then, we apply the variable-elimination
inference procedure (Russell and Norvig, 1995) to com-
pute the probability distribution of theoperon node given
the values just fixed. Although inference in Bayesian net-
works is in general a computationally demanding problem,
it can be performed very quickly in our case because both
the network size and the number of hidden nodes are rel-
atively small. When we want to classify a candidate we
choose a threshold, such as 0.5, above which we call a
candidate an actual operon, or we may use the probabili-
ties themselves if we want to do further inference.

EMPIRICAL EVALUATION
In this section we examine the predictive accuracy of our
Bayes net operon model. We have conducted a set of
experiments designed to answer the following questions:

• What is the overall accuracy of our model?

• What is the predictive value of individual data sources?

• What is the predictive value of the network structure?

Werun 10-fold cross-validation experiments with a data
set consisting of 365 known operons and 6633 runs of
genes thought not to be operons. For each training/test
set split, besides learning new histograms for each of
our features, we also learn new promoter and terminator
IMMs, leaving out of these models’ training sets those
promoters and terminators that are associated with test-
set operons. In this way, we can ensure that our operon
predictions are not biased by using information that is
closely linked to a given test case (i.e. a known promoter
or terminator), that we would not have in the case of a
currently undiscovered operon.

To answer the first question above, we treat our Bayes
net operon model as a classifier and generate an ROC
(receiver operating characteristic) curve (Eagen, 1975).
An ROC curve is a plot of false positive (FP) rate versus
true positive (TP) rate where

FP rate = #false positives
#negatives

(3)

and

TP rate = #true positives
#positives

. (4)
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Fig. 3. ROC curves for our Bayes net model, a naive Bayes model,
and C5.0.

Points on the curve are generated by varying the
threshold on the posterior probability of theoperon
node that divides positive from negative predictions. A
model that guessed randomly would result in an ROC
‘line’ defined by:TP rate = FP rate. For comparison,
we consider two alternatives, the naive Bayes models
developed in our earlier work (Cravenet al., 2000) and
decision trees induced using the C5.0 algorithm (Quinlan,
1999), where both alternatives are given as features the
values of the Bayes net’s feature nodes. We generate points
on the C5.0 ROC curve by varying misclassification costs.
All ROC curves shown are averages over all folds. That is,
the TP Rate at a givenFP Rate is the mean of theTP
Rate at thatFP Rate over allfolds.

The ROC curves of the Bayes net and alternative models
are shown in Figure 3. The significant deviation of all ROC
curves from the 45◦ random-guess ROC line (not shown)
indicates that each model has substantial predictive value.
Comparing the Bayes net ROC curve to the others, we
see that at any givenFP Rate, its TP Rate is equal to
or greater than theTP Rates of the other methods.

The area under an ROC curve can be used as an
measure of model quality. For the probabilistic classifiers,
an interpretation of this measure is the probability that
a randomly selected positive instance will have a higher
probability than a randomly selected negative instance.
Table 1 shows this measure for the three models. The
Bayes net ranks first followed by the naive Bayes and C5.0
models.

We perform a statistical test to determine if the differ-
ence in the areas under the ROC curves of two models is
significant. For any two models, we define the null hypoth-
esis to be the case that the expected difference in the areas
under their ROC curves is zero. We make the assumption

Table 1. Area under ROC curves andp-values from a test comparing areas
under the ROC curve to that of the Bayes net model

Method ROC area p-value

Bayes net 0.921
Naive Bayes 0.901 0.020
C5.0 0.851 < 0.001

that the area under the ROC curve for a model on a sin-
gle fold is a normally distributed random variable whose
mean is the expected area and whose variance is constant
for all folds. Thep-values from a two-tailed, pairedt-test
comparing the Bayes net model with the alternatives are
shown in the last column of Table 1. If we use a standard
threshold of 0.05 on thep-values, there exists significant
evidence that our Bayes net model is more accurate than
both of the alternative models.

Although the alternative models employ different induc-
tive biases than the Bayes net, their predictive value as in-
dicated by their ROC curves indicates that the features we
have defined are valuable and suggests that much of the
predictive value of the Bayes net model is due to them.
However, the differences between the curves and areas un-
der them suggests that the structure of the Bayes net has
value as well.

Evaluating the Data Sources
In this section we examine the predictive power of groups
of features. We perform this analysis to determine the
relative value of the data sources and the predictive value
of our approach under conditions of reduced data sources.
This final condition is especially important because it
provides an estimate of the applicability of our approach
to organisms that do not have as diverse of data sources as
E.coli.

Weassign each feature node to a group based on its data
source. Theoperon length, promoter, and terminator
groups contain a single feature and thegene spacing,
codon usage, and expression groups each contain
multiple features. We conduct a set of experiments with
reduced Bayes net models where subsets of the feature
groups are removed from the Bayes net. The intermediate
nodes, however, are not removed even in cases where they
do not have any child feature nodes.

Figure 4 shows the ROC curves for reduced Bayes net
models containing single feature groups. For reference,
the ROC curve with all features is repeated and the ROC
curve with no features is shown. The ‘no features’ model
contains just the three intermediate nodes and theoperon
node. Thegene spacing group is the clear winner as it
dominates over the other groups and is close to the ‘all
features’ curve. Next, thecodon usage andexpression
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Fig. 4. ROC curves for our Bayes net model using single feature
groups. Note that the order of the key matches the order of the
curves. The ROC curves for models using all features and no
features are included for reference.

groups have simliar ROC curves as do thepromoter and
operon length groups, each with substantial improve-
ment over the ‘no features’ curve. Finally, we have the
terminator group with little improvement.

The robustness of the model using only thegene
spacing group is encouraging because it indicates that our
approach is applicable to other genomes that currently do
not have the rich data sources that are available forE.coli.
Furthermore, as long as gene boundaries and sequence are
known, theoperon length and codon usage features
can be easily obtained as well. In fact, experiments on the
Bayes net model with thegene spacing, operon length
andcodon usage features yield performance similar to
the full model (last line in Table 2). Of course, making
predictions presupposes the existence of a model trained
from a training set of known operons and non-operons. If
known operons are not available for a genome of interest,
a model trained on another organism, for exampleE.coli,
may be applied. Although we expect performance to
degrade somewhat as a learned model is transferred across
genomes, less so for closely related genomes, the precise
implications of such a transfer are not well understood and
is an area of current research.

Two of the weakest features are those derived from
the models of the transcription control sequences. The
relatively poor performance of these features, especially
the terminator feature, highlights the difficulty of finding
good models for these signals and suggests that consid-
ering alternate models Bockhorst and Craven (2001) may
be useful.

Figure 5 shows the ROC curves for models where
single feature groups have beenremoved. These results
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Fig. 5. ROC curves for our Bayes net model leaving individual
feature groups out. Note that the order of the key matches the order
of the curves.

support the findings from using only a single feature
group. The most significant loss occurs when thegene
spacing features are withheld. The only other groups
whose withholding results in a noticeably lower curve are
theexpression andcodon usage groups.

We are especially interested in the value of thecodon
usage features because they are easily obtained and have
not previously been used in making operon predictions. To
measure their value, we perform two pairedt-tests of ROC
curve area as above. The first compares the model trained
with all features to the model trained with all features
exceptcodon usage and the second compares the model
trained withoperon length, gene spacing and codon
usage to the model trained with justoperon length and
gene spacing (ROC curves not shown). We designed the
second test to measure the value of thecodon usage
features for a situation where only gene coordinates and
sequence are known. Thep-values for thses two tests are
0.15 and 0.05, from which we conclude that thecodon
usage features can have significant value, at least in cases
of limited data.

Evaluating the Structure
In order to more thoroughly evaluate the benefit of the
Bayes net structure, we also run the single-feature group
experiments using naive Bayes models. In addition we run
experiments with models containing the features derivable
from only gene coordinates and sequence data (thegene
spacing, operon length and codon usage features).
Table 2 shows the area under the ROC curves of Bayes net
and naive Bayes models using the different feature groups.
Also shown are thep-values from a test of equal areas.
For all feature groups, the area under the Bayes net curves
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Table 2. Comparison of our Bayes net and naive Bayes models. Results for
models constructed using all features, individual feature groups and those
features derivable from only gene coordinates and sequence (gene spacing,
operon length andcodon usage) are presented. The first column indicates
the features used to construct the model. The second and third columns show
the areas under the ROC curves (AUC) of our Bayes net model and a naive
Bayes model respectively. The fourth column shows thep-values from a test
of the null hypothesis that the AUCs of the two models are the same

Group AUC
Bayes net

AUC
naive Bayes

p-value

all features 0.929 0.911 0.006
spacing 0.915 0.896 0.003
expression 0.831 0.751 0.001
codon usage 0.815 0.662 < 0.001
promoter 0.781 0.715 0.001
operon length 0.778 0.713 < 0.001
terminator 0.739 0.568 < 0.001
length, spacing,
& codon usage

0.924 0.883 < 0.001

are greater than those of the naive Bayes curves and the
differences are statistically significant.

Although the addition of features beyond the easily
obtained operon length, gene spacing and codon
usage features offers at best a slight improvement in
performance, we present results with the other more
complicated features as well for three reasons. First,
on their own, all feature types have predictive value.
Second, the value of the gene expression features may
grow as the number and quality of the experiments grow.
Third, and most importantly, it is not clear how well
the results reported here will transfer to other genomes,
(although there is indication that genome-wide gene
spacing statistics are relatively consistent across a wide
range of prokaryotic genomes Moreno-Hagelsieb and
Collado-Vides (2002)) and having a variety of evidence
sources in these cases may prove useful.

CONCLUSIONS
We have presented a computational method, based on a
Bayesian network, for predicting operons in prokaryotic
genomes. The network structure is manually crafted from
background knowledge and its parameters are set by a ma-
chine learning method. Our method takes advantage of a
variety of data sources including gene coordinates, pre-
dicted transcription signals, gene expression experiment
results and codon usage statistics. We believe this to be
the first use of codon usage statistics for the task of operon
prediction.

From our empirical evaluation we make the following
conclusions:

• The Bayes net model has significant predictive value.

• The Bayes net model significantly outperforms naive
Bayes and Quinlan’s C5.0 algorithm in terms of area
under ROC curves.

• The codon usage features add significant predictive
value, especially in the case of limited data sources.

• Under conditions where the available data sources are
limited, the Bayes net model still has significant pre-
dictive value. In particular, our model is accurate given
only sequence and gene coordinates. The implication
of this result is that our approach is generally applica-
ble to organisms that have not been as heavily studied
asE.coli.

The relative weakness of the features based on transcrip-
tion control signals, especially theterminator feature, in-
dicate an area for improvement. We are currently explor-
ing more appropriate models for these important signals.

Finally, we have used our Bayes net model along with
a dynamic program for combining predictions Cravenet
al. (2000) to construct an operon map forE.coli K-12.
This map can be obtained from http://www.biostat.wisc.
edu/gene-regulation.
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