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Abstract The most difficult—and often most essential—

aspect of many interception and tracking tasks is construct-

ing motion models of the targets. Experts rarely can provide

complete information about a target’s expected motion pat-

tern, and fitting parameters for complex motion patterns can

require large amounts of training data. Specifying how to

parameterize complex motion patterns is in itself a difficult

task.

In contrast, Bayesian nonparametric models of target mo-

tion are very flexible and generalize well with relatively little

training data. We propose modeling target motion patterns

as a mixture of Gaussian processes (GP) with a Dirichlet

process (DP) prior over mixture weights. The GP provides

an adaptive representation for each individual motion pat-

tern, while the DP prior allows us to represent an unknown

number of motion patterns. Both automatically adjust the

complexity of the motion model based on the available data.

Our approach outperforms several parametric models on a

helicopter-based car-tracking task on data collected from the

greater Boston area.
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1 Introduction

The success of interception and tracking tasks often hinges

on the quality of the motion models our agent has for pre-

dicting the target’s future locations. These predictions are

especially important when our agent’s sensor range is lim-

ited. Unfortunately, motion patterns of targets are often dif-

ficult to specify from expert knowledge alone. For example,

suppose that our agent is a helicopter that must intercept and

track a car or several cars in a large region such as a city. A

model of traffic patterns may be hard to specify. Even deter-

mining what parameters are important to model the target’s

behavior—and how they should interact—can be a challeng-

ing task.

A data-driven approach to learning the target’s motion

patterns avoids the need for an expert to fully specify the

model. Instead, the agent simply uses previously observed

trajectories of the target to predict the target’s future loca-

tions, where these predictions may depend on both the tar-

get’s current position and past position history. Using a data-

driven approach also side-steps the need to understand the

target’s motivations, which may appear irrational to an out-

side observer. For example, drivers rarely take the minimum-

time route to a location (Letchner et al, 2006); an expert

model that assumes that optimizing travel time is the driver’s

primary objective will likely make poor predictions about a

car’s future locations. Our approach focuses on the features

our own agent needs to make good predictions of where the

targets will be.

While a data-driven approach reduces the need for ex-

pert knowledge, we still need to specify the class of models

to which we expect the target’s motion patterns to belong.
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For example, we may choose to model the target’s motion

as a series of straight-line segments, higher-order splines, or

even cylindrical trajectories. When considering real-world

data, the correct class of motion models is not always obvi-

ous. One solution is to consider sophisticated model classes

with parameters governing the forms of all the motion pat-

terns we expect to occur. While such a flexible model class

may be able to model any observable motion pattern, large

amounts of data will be needed to train the many param-

eters. Collecting sufficient data to train a large number of

parameters may be prohibitively expensive.

In our previous work (Joseph et al, 2010), reviewed in

section 3, we showed that Bayesian nonparametric approaches

to modeling motion patterns are well-suited for poorly un-

derstood environments because they let the data determine

the sophistication of the model—we no longer need to spec-

ify which parameters are important. Moreover, the Bayesian

aspect helps the model generalize to unseen data and make

inferences from noisy data. Specifically, we can model a tar-

get’s motion patterns with a Dirichlet process mixture model

over Gaussian process target trajectories (DPGP). Using this

nonparametric model boosts learning rates by generalizing

quickly from small amounts of data but continuing to in-

crease in sophistication as more trajectories are observed.

We applied this DPGP model to applications tracking a sin-

gle target whose current position was always observed (imag-

ine having a GPS tracker on the target but not knowing where

the target will go).

In this paper we present two key extensions to that pre-

vious work. First, we no longer assume that the target’s po-

sition is available to the agent. Instead, we consider scenar-

ios in which the agent can only observe the target if it is

nearby; now the agent’s goal is to first intercept and then

track the target. Adapting our approach to make predictions

about unseen targets using only partial information is one

of our main contributions. Second, we also consider scenar-

ios where multiple targets must be intercepted and tracked.

Modeling multiple targets fits seamlessly into our DPGP

model, demonstrating both the quality and versatility of our

approach.

The remainder of this article is organized as follows: sec-

tion 2 has a detailed description our DPGP motion model.

The algorithmic approach to solving the model given data

depends on the whether the target’s position is fully observ-

able. Section 3 reviews the utility of using the DPGP ap-

proach for tracking a single agent whose current position

is always known. We present both the algorithm for model

inference (section 3.2) and results (section 3.3) for this for-

mulation. We then demonstrate our extensions in applying

our approach to multi-agent, partially-observable intercep-

tion and tracking scenarios in section 4. Similar to section

3, section 4 also presents the algorithm for inference (sec-

tion 4.2) and then results (section 4.3) for the multi-agent,

Fig. 1 A small set of the raw GPS data points (red) and a single trajec-

tory (green) used to learn our model.

partially-observable scenarios. Sections 5 and 6 discuss the

scenarios in which we expect the DPGP model to perform

well and place it in the context of prior tracking and inter-

ception literature.

2 Motion Model

We represent a target’s trajectory ti as a set of xy-locations

{(xi
1, y

i
1), (x

i
n, yi

n), . . . , (xi
Li , y

i
Li)}, where Li is the length

of trajectory ti. Depending on how the trajectory data is

collected, these locations may come at irregular intervals:

for example, the distance between (xi
t, y

i
t) and (xi

t+1, y
i
t+1)

may not be the same as the distance between (xi
t+1, y

i
t+1)

and (xi
t+2, y

i
t+2). Trajectories may also be of different lengths

both because some trajectories may be physically longer

than others and because some trajectories may have a larger

number of observed locations along the route.

Throughout the paper we use time-stamped GPS coordi-

nates of greater-Boston taxis from the CarTel project as our

motivating dataset.1 Figure 1 plots some of the trajectories

(red points) on a map of Boston2, emphasizing the discrete

nature of our observations. One sample trajectory is high-

lighted in green, showing how the discrete observations are

irregularly spaced along the trajectory. Working with these

types of trajectories is one of the challenges of this dataset,

which we address by using Gaussian processes to learn a

trajectory model.

The technical details of our motion model are described

in sections 2.1 and 2.2, but we first outline the two key ele-

ments of our motion model and describe how they are com-

bined. Specifically, each motion model is a mixture of mo-

tion patterns. A motion pattern represents a class of similar

trajectories. A mixture model over different motion patterns

defines the probability of each particular motion pattern.

1 CarTel project, http://cartel.csail.mit.edu. The data

was down-sampled to a rate of 1 reading per minute and pre-processed

into trajectories based on if the car had stayed in the same place for five

minutes to indicate the end of a trajectory.
2 http://maps.google.com
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Motion Pattern Many ways exist to describe a class of tra-

jectories: for example, one could use a set of piecewise lin-

ear segments or a spline. We define a motion pattern as a

mapping from locations (x, y) to a distribution over trajec-

tory derivatives (∆x
∆t

, ∆y
∆t

) indicating the agent’s future mo-

tion.3 Thus, a motion pattern is a flow-field of trajectory

derivatives in x-y space. Modeling motion patterns as flow

fields rather than single paths allows us to group target tra-

jectories sharing key characteristics: for example, a single

motion pattern can capture all the paths that a target might

take from different starting points to a single ending loca-

tion. Using trajectory derivatives also makes the representa-

tion blind to the lengths and discretizations of the trajecto-

ries.

We use a Gaussian process (GP) to model the mapping

of positions to velocities. The GP allows us to learn a dis-

tribution over trajectory derivatives (velocities) at each loca-

tion (details in section 2.1). Given the target’s current posi-

tion (xt, yt) and a trajectory derivative (∆xt

∆t
, ∆yt

∆t
), its pre-

dicted next position (xt+1, yt+1) is given by

xt+1 = xt +
∆xt

∆t
∆t, yt+1 = yt +

∆yt

∆t
∆t.

Thus, the trajectories are easily generated by integrating the

trajectory derivatives.

Mixtures of Motion Patterns We expect to encounter trajec-

tories with qualitatively different behaviors and using trajectory-

derivative flow fields as motion patterns helps group together

trajectories with certain characteristics. For example, differ-

ent trajectories may share some segments but then branch off

in different directions. Returning to the CarTel taxi dataset,

we see that scenarios with overlapping paths are common.

Figure 2 shows just one example of two routes that share

a common corridor, but the red trajectory travels east and

the green trajectory travels north. These motion patterns are

not well modeled by traditional techniques such as Markov

chain models that simply try to predict a target’s future lo-

cation based on its current position (and ignore its previ-

ous history), nor can they be modeled by a single trajectory-

derivative flow field. We address this issue by using mixture

models over motion patterns.

Formally, a finite mixture model with M motion pat-

terns {b1, b2, . . . , bM} first assigns a prior probability for

each pattern {p(b1), p(b2), . . . , p(bM )}. Given these prior

probabilities, the probability of the ith observed trajectory

ti under the mixture model4 is

p(ti) =

M
∑

j

p(bj)p(ti|θj) (1)

3 The choice of ∆t determines the scales we can expect to predict

the target’s next position well, making the trajectory derivative more

useful than instantaneous velocity.
4 Note that throughout the paper a t with a superscript, such as ti,

refers to a trajectory and a t without a superscript is a time value.

Fig. 2 An example of two trajectories that share a road segment. The

red trajectory travels east and the green trajectory travels north. The

Markov model cannot distinguish the two trajectories once they cross,

but the DP model classifies them as two different paths.

where θj contains the parameters for motion pattern bj .

The primary complication with a simple finite mixture

model is that M is not known in advance, and may need

to grow as more data is observed. In section 2.2, we detail

how we use a Dirichlet process (DP) mixture model to create

an infinite mixture of motion patterns. An important prop-

erty of the DP model is that it places a prior over an infinite

number of motion patterns such that the prior probabilities

{p(b1), p(b2), p(b3), . . .} still sum to one; the probability of

a trajectory is

p(ti) =

∞
∑

j

p(bj)p(ti|θj). (2)

These probabilities p(bj), and the number of different mo-

tion patterns in a given dataset, are determined during the

inference process.

Complete Motion Model We define the motion model as a

mixture of weighted motion patterns. Each motion pattern is

weighted by its probability (section 2.1) and place a Dirich-

let process prior over mixture weights (section 2.2).5

Under our DPGP model, the prior probability of motion

pattern bj is given by its DP mixture weight p(bj). The pos-

terior probability of bj given a target trajectory ti is propor-

tional to p(bj) · l(bj ; t
i), where l(bj ; t

i) describes the likeli-

5 This model is similar to models described by Rasmussen and

Ghahramani (2002) and Meeds and Osindero (2006); however, un-

like these previous works, our goal is to cluster trajectories of varying

lengths, not just partition single points.
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hood of motion pattern bj under trajectory ti:

l(bj ; t
i) =

Li

∏

t

p

(

∆xt

∆t

∣

∣

∣

∣

xi
1:t, y

i
1:t, {t

k : zk = j}, θGP
x,j

)

·

Li

∏

t

p

(

∆yt

∆t

∣

∣

∣

∣

xi
1:t, y

i
1:t, {t

k : zk = j}, θGP
y,j

)

(3)

where zk indicates the motion pattern to which trajectory tk

is assigned, and θGP
x,j and θGP

y,j are the hyperparameters of

the Gaussian process for motion pattern bj . Equation 3 may

be applied to trajectories with differing numbers of obser-

vations or even trajectories that are only partially complete,

which is particularly important when we wish to determine

a target’s motion pattern given only a few observations.

2.1 Gaussian Process Motion Patterns

Observations from a target’s trajectory represent a continu-

ous path through space. The Gaussian process places a dis-

tribution over functions (Rasmussen and Williams, 2005),

serving as a non-parametric form of interpolation. Gaus-

sian process models are extremely robust to unaligned, noisy

measurements and are well-suited for modeling the continu-

ous paths underlying our non-uniformly sampled time-series

samples of the target’s locations.

The Gaussian process for a motion pattern that models a

trajectory’s derivative is specified by a set of mean and co-

variance functions. Specifically, given an input (x, y) loca-

tion, the GP model for the motion pattern predicts the trajec-

tory derivatives ( ∆x
∆t,

, ∆y
∆t

) at that location. We describe the

mean trajectory-derivative functions as E[∆x
∆t

] = µx(x, y)

and E[∆y
∆t

] = µy(x, y), and implicitly set both of them to

initially be zero everywhere (for all x and y) by our choice

of parameterization of the covariance function. This encodes

the prior bias that, without any additional knowledge, we ex-

pect the target to stay in the same place. Zero-mean GP pri-

ors also simplify computations. The model assumes that tra-

jectory derivatives in the x-direction and y-direction are in-

dependent; while a more sophisticated model could be used

to model these trajectory derivatives jointly (Boyle and Frean,

2005), we found that our simple approach had good empiri-

cal performance and scaled well to larger datasets.

We denote the covariance function in the x-direction as

Kx(x, y, x′, y′), which describes the correlations between

trajectory derivatives at two points (x, y) and (x′, y′). Given

locations (x1, .., xk, y1, .., yk), the corresponding trajectory

derivatives (∆x1

∆t
, .., ∆xk

∆t
) are jointly distributed according

to a Gaussian with mean {µx(x1, y1), .., µx(xk, yk)} and

covariance Σ, where the Σij = K(xi, yi, xj , yj). In this

work, we use the standard squared exponential covariance

function

Kx(x, y, x′, y′) = σ2
x exp

(

−
(x − x′)2

2wx
2

−
(y − y′)2

2wy
2

)

+ σ2
nδ(x, y, x′, y′) (4)

where δ(x, y, x′, y′) = 1 if x = x′ and y = y′ and zero oth-

erwise. The exponential term above encodes that similar tra-

jectories should make similar predictions. The length-scale

parameters wx and wy normalize for the scale of the data.

The σn-term represents within-point variation (e.g., due to

noisy measurements); the ratio of σn and σx weights the

relative effects of noise and influences from nearby points.

We use θGP
x,j to refer to the set of hyperparameters σx, σn,

wx, and wy associated with motion pattern bj (each motion

pattern has a separate set of hyperparameters).6

For a GP over trajectory derivatives trained with tuples

(xk, yk, ∆xk

∆t
), the predictive distribution over the trajectory

derivative ∆x
∆t

∗

for a new point (x∗, y∗) is given by

µ∆x
∆t

∗ = Kx(x∗,y∗,X,Y)Kx(X,Y,X,Y )−1 ∆X

∆t
(5)

σ2
∆x
∆t

∗ = Kx(x∗,y∗,X,Y)Kx(X,Y,X,Y)−1Kx(X,Y,x∗,y∗)

where the expression Kx(X,Y,X, Y ) is shorthand for the

covariance matrix Σ with terms Σij = Kx(xi, yi, xj , yj).

The equations for ∆y
∆t

∗

are equivalent to those above, using

the covariance Ky .

Estimating Future Trajectories As summarized in equation 5,

our Gaussian process motion model places a Gaussian dis-

tribution over trajectory derivatives (∆x
∆t

, ∆y
∆t

) for every lo-

cation (x, y). If the target’s location is always known, we

only need to predict the target’s position one-step into the

future to track it: even if it goes in an unexpected direction,

we will know that a rare event has occurred and can plan

accordingly. However, if the target’s position is not always

known—for example, if it can only be observed within the

agent’s camera radius—then the agent must be able to infer

where the target might be multiple steps into the future to in-

tercept it again from knowledge about where the target was

located in the past.

In our prior work (Joseph et al, 2010), we used a sim-

ple approach to sample a target’s possible trajectory multiple

steps into the future: starting with the target’s current loca-

tion (x1, y1), we sampled a trajectory derivative (∆x1

∆t1
, ∆y1

∆t1
)

to get a next location (x2, y2). Then starting from (x2, y2),

we sampled a trajectory derivative (∆x2

∆t2
, ∆y2

∆t2
) to get a next

location (x3, y3). We repeated this process until we had sam-

pled a trajectory of length L. The entire sampling proce-

dure was repeated from the current location (x1, y1) multi-

ple times to get samples of the target’s future trajectories.

6 We described the kernel for two dimensions, but it can be easily

generalized to more.
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(c) MM Mean Velocity Field

Fig. 3 Velocity fields learned by a GP and a Markov model from three trajectories of an approximately linear motion pattern. The GP generalizes

quickly from the irregularly observed trajectories, whereas the discretization in the Markov model slows down generalization.

While samples drawn from this procedure are an accu-

rate representation of the posterior over trajectories, sam-

pling N trajectories of where the target may be L steps in

the future requires NL queries to the Gaussian process. It

also does not take advantage of the unimodal, Gaussian dis-

tributions being used to model the trajectory derivatives. Key

to efficiently predicting future trajectories in this work is ap-

plying an approximation of Girard et al (2003) and Deisen-

roth et al (2009) that provides a fast, analytic approach of

approximating the output of a Gaussian process given a dis-

tribution over the input distribution. In our case, our Gaus-

sian process motion model over trajectory derivatives gives

us a Gaussian distribution over possible target next-locations

at each time step. The approximation of Girard et al (2003)

and Deisenroth et al (2009) allows us to string these distri-

butions together: we input a distribution of where the target

may be at time t and a distribution of trajectory derivatives to

get a distribution of where the target may be at time t+1. By

being able to estimate the target’s future trajectories analyti-

cally, we reduce the computations required—only L queries

to the Gaussian process are needed to predict the target’s

location L steps into the future—and avoid the variance in-

troduced by sampling future trajectories.

Comparison with a Markov chain model Instead of using a

Gaussian process—which defines a distribution over veloci-

ties in a continuous state space—we could imagine a model

that discretizes the state and velocity space into bins and

learns a transition model between state-velocity bins. We

call this alternative the “Markov model” because predictions

about the target’s next position depend only on the target’s

current position and velocity, not its past history.

A key question when trying to train such a Markov model

is the appropriate level of discretization for the state space.

In figure 3, we consider modeling a motion pattern that con-

sists of approximately linear trajectories observed at irregu-

lar intervals. By modeling the velocity field over the contin-

uous space, the GP is able to quickly generalize the velocity

field over region, whereas the Markov model has gaps in-

duced by its discretization. These gaps could be filled by a

coarser discretization; however, the modeling would also be

coarser. The GP automatically adjusts the generalization as

more data arrive.

2.2 Dirichlet Process Mixture Weights

Although a single Gaussian process can robustly model the

variation within many closely related trajectories, it is not

able to capture differences resulting from targets with dif-

ferent destinations or different preferred routes. To model

qualitatively different motion patterns, we can represent the

distribution over behaviors as a mixture of Gaussian pro-

cesses. However, we do not know ahead of time how many

behaviors are sufficient for the model. We use a Dirichlet

process to allow for new behaviors to be added as they are

observed.

The Dirichlet process is a distribution over discrete dis-

tributions in which the number of motion patterns is poten-

tially unbounded, but with the expectation that there are a

few patterns the target tends to follow most of the time.7 If

zi indicates the motion pattern to which trajectory ti is as-

signed, the prior probability that target trajectory ti belongs

to an existing motion pattern bj is

p(zi =j|z−i,α)=
nj

N−1+α
, (6)

where z−i refers to the motion pattern assignments for the

remaining trajectories, α is the concentration parameter of

the Dirichlet process, nj is the number of trajectories as-

signed to motion pattern bj , and N is the total number of

observed trajectories. The probability that trajectory ti ex-

hibits a new motion pattern is

p(zi = M + 1|z−i, α) =
α

N − 1 + α
. (7)

where M is the number of observed motion patterns.

7 See Teh (2007) for an overview of Dirichlet processes.
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Fig. 4 As expected, the number of motion patterns in the taxi dataset

increases as more trajectories are added.

Equation 7 implies that the number of motion patterns

can grow as more data is obtained. This property is key

to realistically modeling targets: the more interception and

tracking tasks we perform, the more varieties of target mo-

tion patterns we expect to encounter. Figure 4 shows how

the number of motion patterns grows (under our model) as

new trajectories are observed for the actual dataset of greater

Boston taxi routes (described in section 3). We show in sec-

tion 3 that we can efficiently plan even when the number

of actively observed motion patterns is unknown; moreover,

this flexibility yields significantly improved results in the

performance of the planner.

DP Trajectory Classifying Example Just as the Gaussian

process in section 2.1 allows us to model motion patterns

without specifying a discretization, the Dirichlet process mix-

ture model allows us to model mixtures of motion patterns

without specifying the number of motion patterns. One could,

of course, simply search over the number of motion patterns:

we could train models with different numbers of patterns,

examine how well each mixture model explains the data, and

finally choose the best one. However, as we see below, this

search requires much more computation time than using a

Dirichlet process to automatically determine the number of

patterns, with similar performance.

We compare the DPGP to a set of finite mixture models

that also use Gaussian processes to model motion patterns

(that is, the finite mixture model first described in equa-

tion 2). We consider the helicopter-based tracking scenario

for a data set of taxi trajectories. Each model was trained on

a batch of 200 trajectories using five different initializations.

We tested tracking performance on a set of 15 held-out test

trajectories. None of the models were updated during the

testing phase.

The results in figure 5 show that while the finite GP-

based models perform well overall, our DPGP model has

nearly the best performance without having to perform a

search over the finite model space. This last point is im-

portant, not only because a search over finite models would
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Fig. 5 Performance on 15 held-out test trajectories vs. model size for

a variety of finite models (black) and the DPGP (blue) trained on 200

trajectories. The error bars represent the standard deviation of the re-

ward from five runs. Note the inferred DPGP model has model size

error bars also due to variation in the estimated model size for each

run.
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Fig. 6 Run time vs. number of paths for adaptive EM and our DPGP

model.

require more computation but also because the search re-

quires us to choose a regularization criterion to avoid over-

fitting. Standard criteria, such as the Bayesian information

criterion (Raftery, 1986) cannot be applied in this context

because the GP contains an unbounded number of param-

eters; thus we must choose from various cross-validation

or bootstrap procedures. The DPGP provides a principled,

simple-to-use regularization criterion within its model.

3 Application of Tracking with Full Information

Searching in the space of finite models is especially com-

putationally expensive when the data arrives online and the

number of clusters are expected to grow with time. (The DP

can update the number of clusters incrementally.) To gain

insight into the extra computation cost of this search pro-

cess we implemented EM where every 10 paths we search

over models sizes that are within five clusters of the current
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model. Figure 6 shows run time as the number of training

paths increase for our DPGP model and this adaptive EM

technique. The running time grows exponentially longer for

EM with model search compared to the DPGP.

We first consider the case in which our agent has access

to the target’s current position but needs to be able to pre-

dict its future position to track it effectively. We call this the

“full information” case because this scenario implies that the

agent has access to sensors covering the environment such

that the target’s current state is always known (up to time

discretization). For example, we may be given location in-

formation from a dense sensor network. In this section, we

formalize the tracking problem and describe the process of

training a motion model for this full-information tracking

task. We next provide results for our tracking problem ap-

plied to two targets with completely different motion mod-

els, one synthetic and one built from a real-world dataset. In

Section 4, we will relax the assumption of a dense sensor

network, and show how to extend our approach to target in-

terception given information from a sparse sensor network.

3.1 Tracking Problem Formulation

Since the target’s current position is known at every time

step, we can formalize the scenario as a Markov decision

process (MDP), a common tool for autonomous decision

making. An MDP is defined by a set of states, a set of ac-

tions, a transition function, and a reward function. Here,

the state is the joint position of our agent and the target

(xa, ya, xtarget, ytarget). Given an action and our agent’s

current position (xa
t , ya

t ), we assume that our agent’s next

position (xa
t+1, y

a
t+1) is deterministic and known. In con-

trast, the target’s transitions are stochastic over the continu-

ous space; we can only place a distribution over the target’s

next position (xtarget
t+1 , y

target
t+1 ) based on our motion model.

At each step, our agent incurs some small cost for moving,

and receives a large positive reward each time it shares a grid

cell with the target. For this type of interception and tracking

scenario the policy is fairly insensitive to the reward values.

Given an MDP, we can find the optimal policy using stan-

dard forward search techniques (Puterman, 1994).

3.2 Model Inference

Given a set of target trajectories, we can train the DPGP

model from section 2 and use it to make predictions about

future trajectories. Since exact inference over the space of

DPs and GPs is intractable, we describe a process for draw-

ing samples from the posterior over motion models. These

samples are then used by our agent for planning.8

8 The inference approach described here is taken from our previous

work (Joseph et al, 2010).

Algorithm 1 Motion Model Inference

1: for sweep = 1 to # of sweeps do
2: for each motion pattern bj do
3: Draw the GP hyperparameters θGP

x,j , θGP
y,j

4: end for
5: Draw the DP hyperparameter α

6: for each trajectory ti do
7: Draw zi using equations 8 and 9

8: end for
9: end for

3.2.1 Training the Model

Our model contains two sets of parameters—the DP mixture

weights p(bj), the motion pattern assignments zi, and the

DP hyperparameter α—the GP hyperparameters θGP
x,j , θGP

y,j

and the trajectories assigned to each motion pattern cluster.

Following the work of Rasmussen and Ghahramani (2002)

and Rasmussen (2000), learning the model involves Gibbs

sampling the parameters (see algorithm 1).

We first resample each zi in turn, using the exchange-

ability properties of the DP and GP to model the target tra-

jectory ti as the most recently observed target. The proba-

bility that the trajectory ti will be assigned to an instantiated

motion pattern is

p(zi = j|ti, α, θGP
x,j , θGP

y,j ) ∝ l(bj ; t
i)

(

nj

N − 1 + α

)

(8)

where l(bj ; t
i) is the likelihood of motion pattern bj from

equation 3 and nj is the number of trajectories currently as-

signed to motion pattern bj . The probability that the trajec-

tory ti belongs to a new motion pattern is given by

p(zi = M + 1|ti, α) ∝
∫

l(bM+1; t
i)dθGP

x,M+1dθGP
y,M+1

(

α

N − 1 + α

)

, (9)

and we use Monte Carlo integration (Bishop, 2006) to ap-

proximate the integral. The likelihood from equation 8 also

must be approximated for popular motion patterns, as the

computations in equation 5 are cubic in the cluster size nj .

Similar to Rasmussen and Williams (2005), we approximate

the likelihood for these larger clusters using the Nmax tra-

jectories that are closest to the trajectory ti.9

The DP concentration hyperparameter α is resampled

using standard Gibbs sampling techniques (Rasmussen, 2000).

The GP length-scale and variance hyperparameters are more

difficult to resample, so we leverage the fact that their pos-

teriors are extremely peaked and instead always set them

to their maximum likelihood values (using gradient ascent).

In applications where the posteriors are less peaked, hybrid

Monte Carlo techniques may be used (Duane et al, 1987).

9 We tested the validity of this approximation by comparing approx-

imations in which only the nearest points to the true likelihood were

used and found no practical difference when discarding 75% of trajec-

tories for large clusters.
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Fig. 7 Several trajectory samples from the CORRIDOR scenario, where

targets roughly following a straight line

3.2.2 Classification and Prediction with New Trajectories

The motion model from algorithm 1 can now be used to

predict a target’s future locations, given a partial trajectory

ti. We first apply equations 8 and 9 to compute the rela-

tive probability of it belonging to each motion pattern bj .

Equation 3 is used to compute the likelihoods. Just as in sec-

tion 3.2.1 where we trained the model using complete target

trajectories, the partial trajectory may contain any number of

points. We can use the same equations 8 and 9 to determine

the most likely motion patterns for the partial trajectory.

For each likely pattern bj , we first compute the expected

trajectory derivatives (∆x
∆t

, ∆y
∆t

)j conditioned on GP parame-

ters (θGP
x,j , θGP

y,j ) (equation 5). The expected trajectory deriva-

tive is a weighted average over all the conditional deriva-

tives
∑

j p(bj)(
∆x
∆t

, ∆y
∆t

)j .10 We apply this expected trajec-

tory derivative to the target’s most recent location to predict

where it will be in the future.

3.3 Results

In this section we describe our results on two example sce-

narios. The first is a synthetic single-trajectory scenario where

the agent must intercept and track 50 targets, one after the

other. The second scenario is a (simulated) helicopter-based

tracking scenario in which the targets are cars whose paths

are collected from a real dataset. In both cases, we tested

our models in an online fashion: initially our agent had no

experience with the target; after each episode, the target’s

full trajectory was incorporated into the motion model.

10 In practice, we found that the motion pattern likelihoods were

highly peaked. In this situation, it was sufficient to only consider the

maximum likelihood motion pattern when predicting the future loca-

tions in partial trajectories.
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Fig. 8 Sliding window average of per-episode rewards achieved by dif-

ferent models on the CORRIDOR scenario. Error bars show the 95%

confidence interval of the mean from five repeated runs.

We compare our DPGP motion model to a Markov model

that projects positions and velocities to a discretized grid and

uses the trajectory data to learn target transition probabilities

between grid cells. The Markov model predicts a target’s

next grid cell using the transition probabilities stored at the

grid cell closest to the target’s current position and veloc-

ity. In contrast to the Markov model, which ignores trajec-

tory history, the DPGP model considers the entire observed

portion of the trajectory when predicting both the target’s

motion pattern and future trajectory.

3.3.1 Results on a Simple Synthetic Example

We first apply our approach to a simple example involving

a target following a straight line with occasional deviations

(for example, walking along a puddle-covered road). The

agent receives a reward of -10 for every time step until it in-

tercepts the target, whereupon it receives a reward of +100.

The agent’s task involved intercepting and tracking 50 tar-

gets one after the other. We call this the CORRIDOR sce-

nario. Figure 7 shows several trajectories from this example.

Figure 8 shows the results for five repetitions of this set

of tasks. For comparison, we plot the results of both the

Markov model and a naive pursuit approach that moves the

agent to the target’s most recent position. Overall, we see

that while the agent planning with the Markov models with

various initializations eventually reaches the same level of

performance as the agent using the Gaussian process, the

Gaussian process motion model learns faster from the data.

Figure 9 shows an example planning sequence derived us-

ing the Gaussian process motion model in which the agent

intercepts the target.

While this is a simple and easy example, we note that the

DPGP still outperforms the other models. The DPGP learns

the model almost instantaneously, but the Markov model re-

quires approximately 50 trials before matching the perfor-

mance of the DPGP.
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(a) t = 2
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(b) t = 3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Position

Y
 P

o
si

ti
o

n

(c) t = 9

Fig. 9 A planning episode for a single path in the CORRIDOR scenario. Agent positions are shown in blue and untagged target positions are shown

in dashed red (before they are tagged) and dashed green (after they are tagged). The small blue circle around the agent signifies the tagging range.

3.3.2 Results on a Helicopter-based Tracking Scenario

Next, we tested our approach on a helicopter-based target-

tracking scenario.11 To model the helicopter and its rewards,

we place a 20×20 grid over a city (an area of approximately

10 square miles) and represent the helicopter’s state with the

closest grid cell. At each time step, the helicopter can stay in

place, move one cell, or move two cells. These actions result

in rewards of 0, -1, and -2, respectively. The helicopter also

receives a reward of 10 for each time step it shares a grid cell

with the target car. While a real “chase” scenario would have

many more complexities, this simplified tracking task allows

us to show empirically that our model, initially trained on

likelihood-based criteria, also performs well on a planning

problem based on real data.12

We tested both our DPGP and the Markov model on 500

trajectories taken from the CarTel dataset of time-stamped

GPS coordinates of greater Boston area taxis. Training tra-

jectories were randomly drawn from this set of 500 without

replacement until all 500 trajectories were incorporated. The

Markov model was initialized with a uniform prior, and its

transition probabilities were updated as new trajectories ar-

rived. To assess the effect of discretization granularity on the

Markov model, we evaluated Markov models with differ-

ent position and velocity resolutions. The x and y-positions

were discretized on a 20 × 20, 40 × 40, or a 60 × 60 grid

(the helicopter’s discretization never changed). Velocity was

either discretized into four or eight states. The models with

finer discretizations were more expressive but require more

data to train effectively.

After each trajectory was completed, our DPGP driver

model was updated using algorithm 1. Each update was ini-

tialized with the most recently sampled model. Since a full

update required significant computation, new trajectories were

11 Results in this section are also described in our previous

work (Joseph et al, 2010).
12 Likelihood-based methods try to explain the data well, while the

goal of the planning problem is to maximize rewards. A model that best

explains the data is not guaranteed to be the best model for planning.

initially clustered with their most likely motion pattern (which

could have been a new pattern) using equations 8 and 9.

Every 10 new trajectories, a complete set of 5 Gibbs

sweeps (algorithm 1) were run to update the model parame-

ters and trajectory assignments (we found that samples gen-

erally stopped changing after the first 2 sweeps). The noise

parameter σn in equation 4 was fit from the current trajec-

tory set. While the DPGP model required more computation

than the Markov model (about 10 times slower), it could still

incorporate a new set of samples in minutes, an update rate

fast enough for a real scenario where the model may be up-

dated several times a day. The planning time was nearly in-

stantaneous for both the DPGP and the Markov driver mod-

els.

We first carried out a series of experiments to evalu-

ate the quality of our models. Example predictions of the

DPGP and Markov models are seen in figure 10. The solid

circles show a partial trajectory; the open circles show the

true continuation of the trajectory. The cyan, red, and blue

curves show the continuations predicted by the DPGP model

and two Markov models. With only 100 training trajecto-

ries, none of the models predict the full path, but the DPGP

is close while the other models are completely lost. As more

training data is added, the DPGP and the finer-grained Markov

model match the true trajectory, while the simpler Markov

model is not flexible enough to fit the data.

As the goal of our model is to predict the motion of mo-

bile agents within a planner, we compared the performance

of planners using the DPGP and Markov models, as well as

a naive pursuit approach that simply assumed the vehicle’s

position at time t+1 would be the same as its location at time

t. We also evaluated a simple k-nearest neighbor technique

that, given an (x, y) point, simply searched the training set

of trajectories for nearby (x, y) points and interpolated the

trajectory derivatives ∆x
∆t

and ∆y
∆t

from the trajectory deriva-

tives of nearby training points.13 Finally, we evaluated a GP

13 For reasonably dense data, Gaussian process and nearest neighbor

approximations are very close; thus, the k-nearest neighbor technique
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(a) 100 paths
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(b) 300 paths
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(c) 500 paths

Fig. 10 Predictions given a partial path for the DPGP and two Markov models for various amounts of training data. Trajectories were drawn

randomly from the full dataset without replacement.

model that was fit to only the current trajectory and ignored

all past training data. This single GP model ensured that the

previous trajectories were important for making predictions

about the current trajectory, that is, the current trajectory

could not be well-predicted based on its own velocities.

Figure 11 shows the cumulative difference of total re-

ward between all the approaches and naive pursuit method.

The k-nearest neighbor and simple GP rarely out-perform

pursuit. The Markov models initially do worse than pursuit

because they have many parameters (making them vulner-

able to over-fitting) and often make incorrect predictions

when the agent observes a trajectory in a sparse region of

their state space. In contrast, the DPGP starts out similar to

pursuit, since the zero-mean prior on trajectory derivatives

naturally encodes the bias that, in the absence of other data,

the car will likely stay still. The DPGP model quickly gener-

alizes from a few trajectories and thus attains the highest cu-

mulative rewards of the other methods. The Markov models

eventually also exhibit similar performance, but they never

make up for the initial lost reward.

4 Interception and Tracking with Partial Information

We now consider the case in which the agent does not al-

ways have access to the target’s current location. Instead,

we assume that the agent has a sensor that will provide a

perfect measurement of the target’s location if the target is

within some observation radius of the agent, and no mea-

surement otherwise. The agent’s task is to first intercept the

target — maneuver to within some small interception radius

of the target for “inspection” — and then to keep the target

within its larger observation radius.

In many senses, this problem formulation is a more re-

alistic scenario in that we do not assume a sensor network

will always provide the target’s location. However, because

the agent can only observe the target when it is near it, it no

also served as a close approximation of a solution trained on a single

GP for the entire dataset.
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Fig. 11 Cumulative difference in reward from the pursuit approach for

the DPGP model, various Markov models (MM), k-nearest neighbors

(KNN), and a GP fit to the current trajectory (GP) (higher values are

better).

longer has full trajectories to cluster into motion patterns.

Thus, a key additional step in the partially observable case

is that the agent must now infer where the target when it was

not being observed. This information is needed both to de-

termine which motion pattern the target was exhibiting and

to update the characteristics of a motion pattern cluster from

partial trajectories.

We first formalize the model and detail the inference

procedure; we next show how our motion model helps the

agent intercept and track targets in a synthetic domain (sec-

tion 4.3.1) and a helicopter-based search and tracking sce-

nario using the real-world taxi data (section 4.4).

4.1 Interception and Tracking Problem Formulation

Since the target’s current position is now potentially un-

known at every time step, we formalize the interception and

tracking scenario as a partially observable Markov decision
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Algorithm 2 Partially Observable Motion Model Inference

1: for sweep = 1 to # of sweeps do
2: for each trajectory ti do
3: for each time step n do
4: if (xtarget

t , y
target
t ) was not observed then

5: Draw (xtarget
t , y

target
t ) using equation 5

6: if (xtarget
t , y

target
t ) was within robs of (xa

t , ya
t )

then
7: Reject sample, go to 5

8: end if
9: end if

10: end for
11: end for
12: for each motion pattern bj do
13: Draw the GP hyperparameters θGP

x,j , θGP
x,j

14: end for
15: Draw the DP hyperparameter α

16: for each trajectory ti do
17: Draw zi using equations 8 and 9

18: end for
19: end for

process (POMDP). In addition to the states, actions, tran-

sition function, and reward function present in an MDP, a

POMDP also includes a set of observations and an observa-

tion function.

As in the fully observable MDP case (section 3), the

state consists of the joint position of our agent and the target

(xa, ya, xtarget, ytarget). Given an action and our agent’s

current position (xa
t , ya

t ), we assume that our agent’s next

position (xa
t+1, y

a
t+1) is deterministic and known. However,

the target’s position (xtarget, ytarget) may no longer be ob-

served. Instead, our agent receives an (accurate) observation

of the target’s position if the target is within an observation

radius robs of our agent. Otherwise our agent receives no

information about the target’s position. Essentially, we are

relaxing the assumption of the previous section that the tar-

get is tracked by a dense sensor network.

Our agent gets target information at irregular intervals

from a sparse sensor network, and must model the target’s

behavior and plan trajectories to intercept the target given

imperfect information about the current target’s location. As

before, the target’s transitions are stochastic over the contin-

uous space; we can place a distribution over the target’s next

position (xtarget
t+1 , y

target
t+1 ) based on our motion model. The

agent receives a large one-time reward for being within a

small interception radius of the target (which is significantly

smaller than the observation radius and a small tracking re-

ward for every target within its observation radius.

The inference procedure for learning the target motion

models (algorithm 2) is described next in section 4.2; given

this model and the remaining problem parameters, the agent

chooses actions using a standard forward search (Ross et al,

2008).

4.2 Model Inference

Since our agent sees a target’s location only when the tar-

get is within a given observation radius, the target trajec-

tory that the agent observes will often be disjoint sections of

the target’s full trajectory. Fortunately, the Gaussian process

does not require continuous trajectories to be trained, and

the Dirichlet process mixture model can be used to classify

partial paths that contain gaps during which the vehicle was

not in sight. In this sense, the inference approach for the full

information case (section 3.2) also applies to the partial in-

formation case. However, using only the observed locations

ignores a key piece of information: whenever the agent does

not see the target, it knows that the target is not nearby. In

this way, the lack of observations actually provides (nega-

tive) information about the target’s location.

To leverage this information, we use Gibbs sampling to

sample the unobserved target locations as well as the trajec-

tory clusterings. Once the partially observed trajectories are

completed, inference proceeds exactly as in the full infor-

mation case. Specifically, we alternate resampling the clus-

ter parameters (section 3.2) with resampling the unobserved

parts of each target’s trajectory. Given all of the other tra-

jectories in an incomplete trajectory’s cluster, we can sam-

ple the missing sections using the prediction approach in

section 3.2.2; this approach also ensures that the filled in

trajectories connect to observed segments smoothly. If the

sampled trajectory crosses a region where the agent could

have observed it—but did not—then that sample is rejected,

and we sample a new trajectory completion. This rejection-

sampling approach ensures that we draw motion patterns

consistent with all of the available information (see algo-

rithm 2).

To predict future target positions, several of the sam-

pled trajectory completions are retained and averaged to pro-

duce a final prediction. Each trajectory completion suggests

a different Gaussian process motion model, and is weighted

using Bayesian model-averaging. Using the final velocity

prediction, computed as the weighted average of individ-

ual model predictions, we can then apply the prediction and

classification approach in section 3.2.2 for intercepting and

tracking new targets.

4.3 Results

In this section, we apply our DPGP model to two partially

observable interception and tracking problems. The first is a

synthetic example designed to show the basic qualities of the

DPGP in the partially observable case. In the second prob-

lem, we return to a more challenging, partially observable

version of the taxi tracking scenario from section 3. As in

the fully observable case, we tested each model in an online
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Fig. 12 Search and tracking task in the synthetic BLOCKS scenario.

fashion: initially the agent had no experience with the tar-

get; after each episode, any information it received about the

target was incorporated into the motion model. Specifically,

if the agent only observed the target at certain times, only

those locations were used to update the motion model. The

agent does not receive any additional information about the

missed observations of a target’s trajectory after an episode.

In all of the scenarios, we compared our DPGP algo-

rithm to a pursuit forward search algorithm and a Markov

model. The pursuit algorithm goes to the target’s last ob-

served location but uses forward search to plan about how

best to intercept and track all three targets. The Markov mod-

els use a position discretization equal to the interception re-

gion with x and y velocity each discretized into two bins.

The transition matrix is initialized with a small probability

mass on self transitions to encode the bias that in the absence

of data the target will tend to stay in the same location. With-

out this bias the model performs extremely poorly initially

and would be an unfair comparison to our model which has a

similar prior bias (section 2.1). The Markov model also uses

forward search to plan for the helicopter. While we could

have used other Markov models with more bins, the results

from section 3.3 show us that these Markov models may

perform better in the limit of infinite data but with the small

data set here a Markov model with a small number of bins

will perform the best.

4.3.1 Results on a Synthetic Multi-Target Scenario

We first illustrate our approach on a synthetic interception

and tracking problem based on Roy and Earnest (2006). In

this problem, illustrated in figure 12, the agent starts near the

opening on the far right and must track three targets which

start from the right side of the region and simultaneously

move to three different target locations on the left wall. Tar-

gets have 0.75 probability of going above the central ob-

stacle and 0.25 probability of going below it. The agent re-
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Fig. 13 Sliding window average of per-episode rewards achieved by

different models on the BLOCKS scenario. Error bars show the 95%

confidence interval of the mean from five repeated runs.

ceives a reward of -10 for every time step until it intercepts

the target, whereupon it receives a reward of +100. Addi-

tionally, it receives a reward of +1 for every target within its

observation radius. We call this the BLOCKS scenario.

Figure 13 shows the performance of each approach over

five runs, where each run consists of 100 episodes. The er-

ror bars show the 95% confidence interval of the mean from

the five runs. In the figure, not only are the means of the

DPGP approach higher than the other approaches, but in

practice it scores significantly better on each individual run.

The Markov models, despite requiring a fair amount of data

to start making relatively good predictions, do outperform

the simpler strategy. Figure 14 shows parts of a single plan-

ning episode, where the helicopter initially intercepts one

target going below the obstacle before pursuing the last two

above the obstacle.

Since this is a synthetic example, we can also compare

the motion patterns found to the true underlying patterns in

the model. The model has six patterns: the target can go ei-

ther above or below the obstacle to reach one of the three

final locations on the left wall. The number of clusters found

by our DPGP approach as a function of training paths is

shown in figure 15. In the beginning, when the agent has

seen relatively little data, it maintains a smaller number of

motion patterns. As the agent observes more trajectories, we

see that the number of motion patterns settles around the

true number (the error bars show 95% confidence intervals

of the mean). By the end of the 100 trials, if two trajecto-

ries belonged to the same true cluster, then our DPGP model

placed them in different clusters with probability 0.2625; if

two trajectories actually belonged to separate clusters, then

our DPGP model placed them in the same cluster with prob-

ability 0.1567. Some of this clustering error is due to our

agent being out of range of the target resulting in some tra-

jectories not containing the full location history. In fact, ap-

proximately 20% of the data points were not observed dur-

ing the trails. These statistics, consistent over five runs of the

100 episodes, strongly suggest that our DPGP model was
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Position

Y
 P

o
si

ti
o

n

(b) t = 6
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(c) t = 9

Fig. 14 A planning episode in the BLOCKS scenario. Agent positions are shown in blue and target positions are shown in red before they are

intercepted and green after. The small blue circle and the large cyan circle around the agent signify the interception region and observation radius,

respectively. Target locations that were within the agent’s sensor range are marked by × symbols, and target locations beyond the agent’s sensor

range are marked with ◦ symbols.
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Fig. 15 Number of discovered target motion patterns in the BLOCKS

scenario.

learning key clustering characteristics of the target motion

patterns.

4.4 Results on a Helicopter-based Multi-Target Scenario

We next applied our approach to a helicopter-based search

and tracking scenario that used the same taxi dataset de-

scribed in section 3.3. We assume that the agent was given

the targets’ true initial locations and velocities from a ground-

based alert network. After being given this initial piece of

information about the targets, the target states are no longer

directly accessible, and the helicopter receives information

about a target’s location only if the target is within about 1.5

miles (a quarter the map area) of the helicopter. The inter-

ception radius is 0.25 miles (a twenty-fifth the map area).

The reward function is identical to the one described in sec-

tion 4.3.1.
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Fig. 16 Sliding window average of per-episode rewards achieved by

different models on the taxi multi-target interception and tracking task.

Error bars show the 95% confidence interval of the mean from five

repeated runs.

The results comparing our DPGP approach to the same

control strategies from section 4.3.1 are shown in figure 16

and figure 17, with the error bars showing the 95% confi-

dence interval of the mean for the five runs of 150 tasks.

Using our DPGP approach for modeling the targets results

in much better interception and tracking performance from

the start. Unlike the simpler BLOCKS scenario, the Markov

models do no better than simple pursuit after 150 episodes.

Figure 18 shows the number of clusters found by the DPGP

approach as a function of training paths. As expected from

a real-world dataset, the number of motion patterns grows

with the number of episodes as new motion patterns ob-

served in new trajectories. Finally, figure 19 shows an ex-

ample episode where the helicopter first intercepts each tar-

get and then finds a location where it can observe multiple

targets to keep them localized.
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Fig. 17 Results from the taxi multi-target interception and tracking

task showing cumulative reward achieved by different models on the

BLOCKS scenario. Error bars show the 95% confidence interval of the

mean from five repeated runs.
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Fig. 18 Number of discovered motion patterns for the taxi dataset

search and tracking task.

5 Discussion

Using our Bayesian nonparametric DPGP approach for mod-

eling target motion patterns improved our agent’s ability to

predict a target’s future locations from relatively few exam-

ples. A key advantage of the DPGP model is that it provides

a way of scaling the sophistication of its predictions given

the complexity of the observed target trajectories: we could

model motion patterns directly over a continuous space with-

out needing to specify discretization levels or expected curves.

In contrast, the Markov models suffered because even at a

“reasonable” discretization, these models needed to train the

motion model for every grid cell—which required observing

many more trajectories.

One way to think about the DPGP is as a type of hidden

Markov model (HMM), where the future trajectories of the

agent are Markov conditioned on some hidden (instead of

observed) state. Indeed, introducing a hidden variable to de-

scribe a trajectory type or movement mode is a standard way

to avoid issues such as the Markov model’s confusion over

crossing paths (figure 2). However, standard HMM-based

approaches would still typically need to define the number

of trajectory types a priori and commit to a level of dis-

cretization. The DPGP can be viewed as an HMM model in

a continuous space with an unknown number of trajectory

types.

While we focused on the motion patterns of taxis in the

Boston area, as seen in our synthetic example, the DPGP

approach is not limited to modeling motion patterns of cars.

It is meant as a far more general mobile agent model, which

models a wide variety of trajectories over a continuous space

as long as the targets motions obey local smoothness and

continuity constraints—as seen in section 4.4, paths and tra-

jectory types can be inferred from even sparsely observed

targets if the smoothness assumptions imposed by the GP

model are true. We would expect the DPGP model to have

difficulty modeling trajectories where smoothness assump-

tions about the trajectory derivatives could not be charac-

terized by the single distance parameter in the GP covari-

ance kernel: for example, if trajectories tended to have tight

curves or kinks. Nonstationary GPs could be used in these

situations (Meiring et al, 1997; Paciorek and Schervish, 2000).

In environments where movement in x and y directions is

tightly coupled, GP models with multiple outputs may be

more appropriate (Boyle and Frean, 2005).

The stationary, single-valued aspects of the GP motion

model also make it in appropriate for modeling trajectories

that loop onto themselves—that is, do different things at the

same location based on some other context—and for adver-

sarial situations. In these cases, additional information, such

as the agent’s location relative to the target, would need to

be incorporated into the GP inputs. Thus, the DPGP model

is best suited for situations where complex, non-overlapping

dynamics and clusterings must be learned from relatively lit-

tle data—as we saw in the results sections, the Markov mod-

els do catch up in performance once sufficient data is avail-

able; however, the DPGP makes significantly better predic-

tions from only a few trajectories. In situations where the

number of trajectory types is known and large batches of

data exist, the DPGP will likely add little over a finite HMM-

based model trained on the same large dataset. The Bayesian

nature of our approach does allow available expert knowl-

edge about target motion patterns to be given in the form of

additional example trajectories without any need to adjust

the rest of the inference process.

Finally, it is well-known that standard GPs require O(N3)

computation to perform inference, where N is the number

of data points. In our work, we were still able to process

all of the data using the approximations described in sec-

tion 3.2.1; for larger datasets, there are fairly standard ap-

proximation algorithms with O(N) running times (Csat and

Opper, 2001; Snelson and Ghahramani, 2006).
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(a) t = 3 (b) t = 7

(c) t = 11 (d) t = 13

Fig. 19 A planning episode from the taxi data set. Helicopter positions are shown in blue. Car positions are shown in red before interception

and green after. The small blue circle and the large cyan circle around the helicopter signify the tagging and observation range, respectively. Car

locations are marked with a × symbol when observed by the helicopter, and a ◦ symbol when beyond the helicopter’s sensor range.

6 Related Work

Much of the past work in modeling mobile agents has fo-

cused on two problems: expert systems (which require spe-

cialized data) and modeling a single agent (requiring data

generated by the single agent). Letchner et al (2006) built a

model that predicted trajectories based on the optimal path

between two locations (given factors such as the time of day)

and the amount of “wasted time” a driver was willing to ac-

cept. Dia (2002) used a survey to classify drivers into differ-

ent profiles to enable better prediction. Both of these works

note that it is difficult to specify a model for human motion

patterns based on logical reasoning. For example, Letchner

et al (2006) note only 34.5% of drivers choose the fastest

route between two locations.
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Whether these statistics are a result of driver ignorance

or another factor (e.g., avoiding a stressful route) is highly

debatable and difficult to incorporate into expert models of

human motion patterns. Without access to similar data for

the greater Boston area or having similar time-stamped GPS

data for their models, we were unable to compare them to

our approach; however, it would be interesting to see if in-

corporating expert features related to human psychology into

the priors of our model could improve predictions.

Another body of literature has trained Markov models

(generally using data from only one person) in which each

road segment is a state and transition probabilities encode

the probabilities of moving from one segment to another. For

example, Patterson et al (2003) treated the true driver state

as hidden by GPS sensor noise and a hidden driver mode.

Ashbrook and Starner (2003) model the end position and

transition probabilities explicitly, but doing so prevents the

method from updating the probabilities based on a partially

observed trajectory. Using a hierarchy of Markov models,

Liao et al (2007) were able to make both local and destina-

tion predictions but still had difficulty in regions of sparse

training data. Taking a machine learning approach, Ziebart

et al (2008) used inverse reinforcement learning with good

results when the target’s destination is known in advance.

Recently, Gaussian processes have been successfully ap-

plied to modeling and prediction in robotics tasks. Tay and

Laugier (2007) used a finite mixture of Gaussian processes

to model multiple moving targets in a small simulation en-

vironment. In the context of controlling a single vehicle, Ko

and Fox (2009) demonstrated that Gaussian processes im-

proved the model of a vehicle’s dynamics.

Fox et al (2007) took a related approach to ours and

modeled the number of motion patterns with a Dirichlet pro-

cess prior, with each motion pattern governed by a linear-

Gaussian state space model. Unlike our approach, agents

could switch between motion patterns using an underlying

hidden Markov model. In our specific dataset and applica-

tion, the agents usually know their start and end destina-

tions from the very beginning; not allowing motion pattern

changes helped predict a car’s path on roadways that were

common to many motion patterns. However, our framework

could certainly be extended to allow agents to change mo-

tion patterns. Future work could also incorporate additional

information—such as inputs of the road network—to further

constrain the trajectories.

The target-tracking problem under partial observability

conditions has a natural formulation as a POMDP, since the

agent must make decisions with incomplete knowledge of

the targets. Pineau et al (2003) first applied the PBVI point-

based solver to a small target-tracking problem, and more

recent approximate point-based techniques, for example by

Hsu et al (2008) and Kurniawati et al (2009), have expanded

the applicability of general POMDP solvers to the target-

tracking domain by rapidly exploring the reachable and high-

value regions of the belief space.

Despite these advances, point-based POMDP methods

still have limited utility in this domain. These methods typ-

ically discretize the agent and target state spaces to obtain

a finite-dimensional belief space, and are unable to adapt to

changing motion patterns due to substantial offline require-

ments.

One approach to avoiding state space discretization is to

represent beliefs using Gaussian distributions, as applied by

Miller et al (2009) to target tracking, or by He et al (2010)

with Gaussian mixture models. An advantage of these rep-

resentations is the ability to analytically and exactly manip-

ulate the belief state. However, these approaches focus on

planning with accurate models, and do not address model

learning or acquisition.

7 Conclusion

Accurate agent modeling in large domains often breaks down

from over-fitting or under-fitting the training data. We used

a Bayesian nonparametric approach to motion-pattern mod-

eling to circumvent these issues. This approach allows us

to build flexible models that generalize sensibly with sparse

data and add structure as more data is added. The reward

models, the dynamics model of the agent, and the form of

the agent’s planner can all be adapted to the task at hand

with few adjustments to the DPGP model or inference pro-

cedure.

We demonstrated our motion model on a set of helicopter-

based interception and tracking tasks trained and tested on

a real dataset of complex car trajectories. The results sug-

gest that our approach will be useful in a variety of agent-

modeling situations. Since the underlying structure of our

model is based on a Gaussian process framework, our ap-

proach could easily be applied to beyond car domains to

generic metric spaces. Finally, although we focused our ap-

proach on a set of interception and tracking tasks, we note

that the DPGP motion model can be applied to any task

where predictions about a target’s future location are needed.
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