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Abstract

The placebo effect is a component of any response to a treatment (effective or inert), but we

still ignore why it exists. We propose that placebo analgesia is a facet of pain perception,

others being the modulating effects of emotions, cognition and past experience, and we

suggest that a computational understanding of pain may provide a unifying explanation of

these phenomena. Here we show how Bayesian decision theory can account for such fea-

tures and we describe a model of pain that we tested against experimental data. Our model

not only agrees with placebo analgesia, but also predicts that learning can affect pain per-

ception in other unexpected ways, which experimental evidence supports. Finally, the

model can also reflect the strategies used by pain perception, showing that modulation by

disparate factors is intrinsic to the pain process.

Introduction

How can an inert treatment cause a response? Although a growing number of studies have ad-

dressed the placebo effect, which is the response following an inert treatment administered as if

it were real, an explanation of its basic functioning is far from complete. Various hypotheses at-

tribute the effect to the expectation of the subject and/or to implicit conditioning toward the

context associated with the treatment, while experimental evidences show that this effect also

contributes to the response to active treatments [1–4]. Recent research has identified some of

the neurobiology underlying the placebo effect [1, 5–8], such as the role of antinociceptive de-

scending pathways and endogenous opioids in placebo analgesia [9, 10]. Despite these ad-

vancements, some fundamental questions remain [2]. For example we still do not know why

the placebo effect exists, or why a person has to trust that a treatment is going to work to recruit

this endogenous antinociceptive capability.

Here we suggest that a better understanding of placebo analgesia requires a deeper theoreti-

cal comprehension of pain perception. We show that the question can be addressed by a Bayes-

ian model of pain that considers the general properties of perception and those specific to pain
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and its modulation, as they emerged from electrophysiological and psychophysical

experiments.

A first aspect is that pain perception depends not only on features of noxious stimuli, such

as the severity of tissue damage, but is modulated by many psychological and cognitive factors,

like motivational states, attention, emotions, expectation, memories and beliefs [11]. The ef-

fects of these factors are related to the complex role of pain, which is part of a response system

that alerts and prepares the organism to face harmful situations [12]. Further, as for any senso-

ry modality, pain is never a direct mapping from a physical space to a perceptive space [13, 14].

It only has to be effective for subsequent behavioral responses. For example, in particular cir-

cumstances no pain is felt in the presence of a lesion, while in other cases pain is perceived de-

spite the absence of peripheral damage [15, 16]. At the same time, perception has to be reliable

in spite of the uncertain information that sensory signals provide about the world, and this re-

lates to probability theory [17, 18].

Probabilities may represent degrees of plausibility and probability rules are an effective way

of reasoning under uncertainty. In particular, Bayes’ theorem was developed to calculate trans-

posed conditional probabilities, for example the probability of an event (or a cause) E given

some observations (or outcomes) O, Pr(EjO), when we know its transposed conditional proba-

bility, that is the probability of O given E, Pr(OjE). Bayes’ Theorem says that Pr(EjO) is propor-
tional to Pr(OjE) (the likelihood), but also to Pr(E) (the prior probability, that is the probability
of E beyond any knowledge about O, e.g. due to previous experience) and it is written:

PrðE j OÞ ¼
PrðEÞ � PrðO j EÞ

PrðOÞ
; ð1Þ

where Pr(O) is the probability of O regardless of E.
To deal with uncertainty we can use Bayesian decision analysis to identify, in the presence

of uncertainty, the best choice: the one that minimizes the expected loss. We can accomplish

this with a two stage process by first combining, together with past experience, multiple sources

of information—Bayesian inference—and then using the resulting probabilities to weight the

possible outcomes of alternatives—decision [19].

Interestingly, living organisms and their perceptive systems deal with uncertainty and face

transposed conditional probability problems: they have to infer the features of activating sti-

muli (related to the state of the world) from nervous signals elicited by those stimuli, and come

to a reliable perception (i.e., make an effective decision) in spite of the noisy and incomplete in-

formation that sensory signals provide about the world [20–22]. Considering Eq. 1 for the pur-

pose of perceptual tasks, Pr(EjO) provides the degree of plausibility of an event E (caused by a

stimulus) given observations O (e.g., sensory signals) coded by nervous activity. Observations,

and other information, may be collected from different sources. Indeed, experimental and the-

oretical work showed that perception is a multisensory task [23, 24], and support the hypothe-

sis that, in perception, different pieces of information are near optimally combined in a

Bayesian way [25, 26]. Models based on Bayesian decision theory [17, 27–29], developed main-

ly in research on vision, can account for relevant features of perception, including multi-modal

integration [30, 31] and optic illusions [26, 32, 33], and have also been proposed for placebo

analgesia [34–36].

In this study we focused on the placebo effect because it is one of the best examples of exper-

imentally controllable modulation of pain experience, and has been extensively investigated in

recent decades [2, 37]. In many studies about placebo, subjects were repeatedly stimulated

under two conditions: treatment and no treatment, each paired with an unambiguous symbolic

cue [8, 38, 39]. These experiments began with a conditioning stage, in which subjects
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experienced the analgesic efficacy of the treatment condition but, for ethical and practical rea-

sons, in place of a real analgesic treatment stimuli cued for treatment were surreptitiously low-

ered. To test for the placebo effect, in a subsequent stage all the stimuli were delivered at the

same intensity irrespective of the cue. Reconsidering this procedure in Bayesian terms, we as-

sumed that the experience acquired through the training phase affects the prior probabilities

and likelihoods for the stimulus perception. That is, at the end of the conditioning stage the

system comes up with a probabilistic knowledge about the possible pain intensities in the spe-

cific context of the experimental session and learns, in terms of conditional probability distri-

butions, the relationship between cues and pain intensities [34–36].

A main consideration in favor of the use of probability distributions comes from neurophys-

iological and psychophysical experiments, which showed a certain degree of variability, de-

scribed by Gaussian distributions, in the relationship between stimulus intensity and both

nociceptor activation and the perceived pain level [40–42].

Our aim was to develop a Bayesian framework which could describe and explain pain per-

ception and its modulation. We can equate the task of perceiving pain to deciding which pain

level should be perceived, given the information at hand. The decision should be related to the

effect E of the stimulus on the tissue (e.g., the severity of the lesion), which cannot, however, be

directly known. The nociceptive system must make an estimate through an inference process

that it accomplishes using signals from nociceptors. As we argue here, the nociceptive signals

are not the only source of information used to compute the inference: past experience and cog-

nitive information also play a role.

An unexpected finding was that, besides the placebo effect, the Bayesian model made novel

predictions about how previous experience can influence the perception of unexpected stimuli.

This was a relevant aspect to test the model, and our experiments focused not only on the pla-

cebo effect but, more importantly, on a condition the model predicted and never reported.

Materials and Methods

Ethics Statement

This study was approved by the ethics committee of Azienda Ospedaliero Universitaria Santa

Maria della Misericordia di Udine, Udine, Italy. All the experimental procedures were con-

ducted in accordance with the policies and principles contained in the Declaration of Helsinki,

and all subjects gave their informed consent in writing to take part in the study.

Subjects

A total of 55 healthy human volunteers (mean age ± s.d.: 21.40 ± 1.03; 29 females) were re-

cruited by advertising at the University of Udine (Italy) and randomly divided into two groups:

Experiment 1 (n = 24); and Experiment 2 (n = 31). Prior to the experiment, each subject was in-

formed in detail on the procedure to be used, and specifically that the study would asses a new

protocol for Transcutaneous Electrical Nerve Stimulation (TENS—a technique able to induce

analgesia by means of electric stimulation of afferent nerves).

Experimental procedure

Subjects in both groups underwent a conditioning protocol, followed by a placebo test block

(Experiment 1) or by a test block with no cue and a placebo test block (Experiment 2). We

placed two electrodes for the sham analgesic treatment on the right or left ankle—chosen at

random within the group—and a further two on the back of the same foot for painful

electrical stimulation.
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To select the intensities applied throughout all the experiment, we began the session by

measuring the subject’s pain threshold and sensitivity according to the method of the limits

[43]. During this stage, in agreement with the subject, we selected a high stimulus intensity; we

then set a low intensity and, in Experiment 2 only, an intermediate one (at the midpoint be-

tween the high and low). Every subject should feel comfortable with the high intensity stimuli.

The experimental procedure was similar to that described by Colloca and Benedetti [39]

and was subdivided into two stages (training and test). We told subjects they would receive

painful electrical stimuli, and that TENS would be applied as an analgesic treatment paired

with half of the stimuli. Subjects were instructed that the presence and absence of the analgesic

treatment would be signaled on a PC screen, turning green or red respectively. The color choice

and its association to the stimulus intensity was deliberate, as it is known that colors influence

the placebo response (see the Limits and perspectives section in Results and discussion). In re-

ality, for ethical and practical reasons, we applied no TENS, but surreptitiously lowered the

painful stimulus paired with the green cue during the training stage in order to make the sub-

jects experience the putative analgesia. On the contrary, during the test of the placebo effect, we

always delivered high intensity stimuli, even when the green cue was presented. Subjects under-

went a total of 3 (Experiment 1) or 4 (Experiment 2) blocks of stimulation and were not aware

of any change of the stimulation protocol between blocks. Experiment 1 was aimed at testing

the placebo effect and, in order to keep at minimum the possible extinction of the effect, we de-

livered 12 stimuli in each block. On the other hand, in Experiment 2 we were more focused on

the responses to stimuli paired with no cue (third block), a condition, we predicted, with more

dispersed rating. In this experiment we delivered 16 stimuli per block, with half of the stimuli

of the third block used as reinforcers (see below).

The conditioning stimuli were delivered in the first two blocks, half at the high intensity,

paired with red cues, and the others at the low intensity, paired with green cues, delivered in

random order. After each stimulation, the subjects rated the perceived pain intensity through a

Visual Analog Scale (VAS), presented on the PC screen after the visual cue. The aim of the con-

ditioning was to make the subjects experience the effectiveness of the analgesic procedure and

the magnitude of the analgesia.

The testing stage followed. As in training, visual cues were presented on the PC screen and

subjects rated the perceived pain intensity through the VAS. The third block in Experiment 1

(first test block) and the fourth in Experiment 2 (second test block) tested for the placebo effect

and were similar to the training session, however only the high intensity was used: stimuli were

delivered randomly paired with the red or green cues, in equal proportion. In Experiment 2,

the third block (first test block) aimed at testing the predictions of the theoretical model about

subjects’ pain rating with no clue to the stimulus intensity. Unlike conditioning, during the

first test block stimuli were paired with a neutral blue cue; three levels of intensity were chosen

for the test: 4 high-intensity stimuli, 4 low-intensity stimuli and 8 intermediate-intensity sti-

muli (midblue stimuli), delivered in random order.

Painful electrical stimuli

The electrical stimuli were square pulses delivered by a constant current high voltage stimula-

tor (DS7A model, Digitimer Ltd, Welwyn Garden City, England), with intensities in the range

14–170 mA and a duration of 200 μs. Two Ag/AgCl electrodes with foam and solid gel (ARBO,

Germany; stimulation area = 2 cm2) were placed on the back of the foot. Stimuli were delivered

at the end of either a red or green visual cue presented on a PC screen. We used an in-house

MATLAB routine (MATLAB 7.1-R14, The MathWorks Inc., Natick, Massachusetts, USA) to

present the visual cues and the VAS bar on the PC screen, and to collect the pain ratings of the
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subjects. Specifically, the subjects were instructed to use a computer mouse to change the

length of a bar, according to the intensity of perceived pain. All the data were stored on a com-

puter for the subsequent analyses.

Modeling

In line with Bayesian Decision Theory we developed a two-stage model (full Bayesian decision

model—fBD), which first estimates the severity of the tissue lesion (inference) and then

chooses the optimal pain intensity to be perceived (decision).

Perceptual inference

Applying Bayes’ Theorem (Eq. 1) it is possible to update the prior probability given new obser-

vations (O). In a nociceptive context, Omay be the nociceptor spiking activity (N), but may

also include additional information. In particular, to model the placebo effect—hence the effect

of expectation of analgesia and/or conditioning toward the context, shaped through the train-

ing stage—we explicitly considered the additional information provided through symbolic

cues (C), e.g. red and green visual cues. To calculate the predictions of the model in the placebo

test stage, we combined the expected effect of the stimulus (prior probability Pr(E)) with
sensory inputs (nociceptor activity) and contextual information (through the paired cue)

which both enter the Bayes’ rule through likelihood functions so that, if N and C are indepen-

dent, Pr(OjE) = Pr(N, CjE) = Pr(NjE) × Pr(CjE). Using the Bayes’ rule we calculated the poste-
rior probability distribution of E, Pr(EjO), considering the nociceptor spiking activity either
alone (O = N):

PrðE j NÞ / PrðEÞ � PrðN j EÞ ð2Þ

or jointly with the cue (O = N, C):

PrðE j N;CÞ/ PrðEÞ � PrðC j EÞ � PrðN j EÞ

¼ PrðE j CÞ � PrðN j EÞ;
ð3Þ

where we omitted the denominator in Eq. 1 and replaced the equality with proportionality, the

denominator being a constant needed to make the posterior probabilities sum to one (see the

Placebo section in Result and discussion for further considerations on Eq. 3).

We assumed that the prior probability distribution of E (the effect of the stimulus on the tis-

sue) after conditioning is a mixture of distributions:

PrðEÞ ¼ Norm
1
� w=2þ Norm

2
� w=2þ Unif � ð1� wÞ; ð4Þ

that is, two normal distributions—one for each stimulus used in conditioning—and a uniform

one whose contribution (1—w) is smaller the stronger the effectiveness of conditioning and the

contribution of expectation (w). We assumed that the two normal distributions have equal

weights (w/2) when the two stimuli are delivered in equal proportions during training, and that

they had the same dispersion and a mean proportional to the stimulus intensity used in condi-

tioning:

Normi � N ðm / si; sÞ; ð5Þ

with si and μ in the range 0–100 (arbitrary units). We chose the value σ fitting this parameter

on the VAS ratings obtained in Experiment 1. Instead, any value of wmay be used to explore

the behavior of the model. However, to predict single subject ratings we needed to estimate the

effectiveness of conditioning and the contribution of expectation (parameter w in Eq. 4) for

each subject. In that case we fitted w on single subjects’ data.

Bayesian Integration in Pain and Placebo
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We also assumed that, on the basis of electrophysiological data [41, 42], the response of no-

ciceptors to stimuli—expressed by the likelihood function Pr(NjE)—has a normal distribution

and that it is not affected by the experimental procedure, being a relation between the effect of

the stimulus on the tissue and the evoked nociceptor activity. For any ej 2 E we attributed it as

follows:

PrðN j ej;XÞ � N ðm / ej; s:d: ¼ 0:75Þ; ð6Þ

where the values for μ and σ are expressed in arbitrary units but broadly consistent with so-

matosensory neuronal responses [41, 42].

Decision and pain rating

Inference, formalized by Eqs. 2 and 3, provides probability distributions, but when we feel pain

we do not perceive a spectrum of possible pain intensities, nor do we have a probabilistic repre-

sentation of them: we perceive a specific pain intensity. We can achieve this collapsing the
whole distribution to a point estimate—a single representative value; such a synthesis is operat-

ed through a decision rule. Indeed, in Bayesian decision theory the inference outcome is the

basis of decision, which is performed by applying a cost function to the results of the inference

and then choosing according to a rule [19, 44, 45]. In nociception this means that, even if ev-

erything else is the same, pain may change with different cost functions or decision rules. This

also makes sense in behavioral terms, as different tasks or situations may require different re-

sponses to equally severe lesions [15, 16]. Assuming that the cost function is uniform, i.e. each
unfit decision entails the same cost, the Bayesian decision criterion that minimize the expected

loss is to choose the most probable intensity. To make a decision about E, that is to estimate the

magnitude of E (Ê), we used the posterior distribution Pr(EjN, C) (Eq. 3) and chose the ej 2 E
with the maximum posterior probability [46], that is:

Ê ¼ ej if Prðej j N;CÞ > Prðek j N;CÞ for all k 6¼ j: ð7Þ

In a natural environment this is not necessarily true. However, in the experimental set of the

placebo conditioning, a uniform cost function is likely to be a good approximation. In fact, sub-

jects only have to rate their pain with maximal accuracy, with no advantage to one choice over

the other. Moreover, subjects know and agree with the stimulus intensity and feel comfortable

with it, as it is selected with them at the beginning of the experimental session according to

their susceptibility and pain acceptance. Under such assumptions, which we accepted for the

following modeling, the perceived pain intensity is directly proportional to the most probable

effect on the tissue.

Finally, our aim was to model the pain rating (R) as a probabilistic function of the stimulus

intensity (S) and of the expectation driven by the context (signaled by the cue): Pr(RjS, C). In
fact, as observers, we neither know the actual effect on the tissue (E) eliciting transduction at

the nociceptor level nor the actual perception of the subject. Although decision generates a

point estimate, multiple ratings of pain induced by the same stimulus intensity follow a Gauss-

ian distribution [40]. To esteem subjects’ rating given stimuli and cue we combined Ê with the

probability distributions of two sources of uncertainty, which are the variability associated to

coding Ê into a score and the variability of N given a stimulus S:

PrðR j S;CÞ ¼ PrðR j ÊÞ � PrðN j SÞ; ð8Þ

where we considered Pr(RjÊ) and Pr(NjS) normally distributed [40–42]. According to electro-

physiological studies [41, 42] we set the standard deviation of the distribution of Pr(NjS) = 0.75

Bayesian Integration in Pain and Placebo
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(and the mean proportional to the stimulus intensity), while we estimated the standard devia-

tion of Pr(RjÊ) fitting the model to individual subjects’ data.

Data analysis

We used the ‘R’ statistical environment (R Foundation for Statistical Computing, Vienna, Aus-

tria) [47] to implement the Bayesian model, for statistical computing and to generate graphics.

To allow comparisons between subjects, all the VAS scores were scaled relative to the mean

response to the high stimuli intra-condition; in the placebo condition the scores were scaled

relative to the mean VAS rating of the high stimuli paired with the red cue.

Since the model predicts that posterior distributions are not Gaussian, we performed statis-

tical comparisons of the experimental data by means of the Wilcoxon signed-rank test and the

Mann-Whitney rank-sum test (accepting a probability value of 0.05 (one tail) as the level of

statistical significance in all the tests performed).

We clustered the data with the Hartigan and Wong K-meansmethod [48]. As a measure of

clustering we chose the distance between the centers of the clusters and a separation index, cal-

culated as the ratio of the between clusters sum of squares and the total sum of squares, where

the between clusters sum of squares was calculated as the difference between the total sum of

squares and the sum of the within clusters sum of squares.

We estimated correlations by means of the Pearson’s product-moment correlation coeffi-

cient (accepting a probability value of 0.05 (one tail) as the level of statistical significance in all

the tests performed).

Model comparison

To test how the responses to midblue stimuli (Experiment 2) were distributed and to compare

our model with possible alternatives we followed a Bayesian approach. We assigned equal pri-

ors for the competing hypotheses or models and computed posterior probabilities; we then

compared the alternatives by means of the Bayes Factor [49].

To test if, as the model predicted (see Results and Discussion), after conditioning the sub-

jects had a greater probability to feel low or high pain in response to midblue stimuli, we tested

the hypothesis of bimodal distribution against the hypothesis of unimodal distribution. First

we used the data (VAS scores for intermediate intensity stimuli in the third block of Experi-

ment 2) to define the two alternative distributions, then we calculated the posterior probabili-

ties, and the Bayes Factor, for the two hypotheses given the data. The unimodal distribution

was a Gaussian one with mean and standard deviation equaled to those of the VAS scores con-

sidered all together. The bimodal distribution was a mixture of two Gaussians whose means

and SDs equaled those of the two clusters identified by the Hartigan andWong algorithm. A

further comparison, in which the two distributions were built from a different data set, is pro-

vided by the model comparison described below.

For model comparison we used data of Experiment 2, scaled intra-block (see above). First,

we considered each subject’s high and low stimuli scores (from the two conditioning blocks) as

the reference intensities for modeling: the mean VAS rating for high stimuli and that for low

stimuli were set as the means (parameter μ) for Norm1 and Norm2 in Eqs. 4 and 5, while their

standard deviations were used to express the variability of Pr(RjÊ) in Eq. 8; then, we fitted the

model on a first set of data (the placebo data collected in the fourth block) and so quantified

the effectiveness of conditioning and expectation—parameter w in Eq. 4—for each subject; fi-

nally, we compared the models using a second set of data (the VAS scores obtained in the third

block with the intermediate intensity stimuli and no-cue). Estimating the parameters of the

model on one data set and comparing the model by means of a different one avoided the use of
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the same data twice, and the need of correcting strategies (such as the Bayesian Information

Criterion, BIC, or of the Deviance Information Criterion, DIC). This approach also overcomes

a drawback which, as stated by Maloney and Zhang [29], is common in Bayesian modeling of

perception: “After the data are collected it is not very difficult to develop a Bayesian model that
accounts for it. Indeed, almost many applications of Bayesian methods to perception and action
are post hoc fitting exercises. If Bayesian models are to be judged useful, then, they must also per-
mit prediction of experimental outcomes, quantitatively as well as qualitatively”.

We compared the full Bayesian decision model with two alternatives: a no-learn and a sim-
ple Bayesian model. In the no-learn model the conditioning stage does not affect pain percep-

tion. This model predicts that, when a subject receives midblue stimuli, pain ratings follow a

unimodal distribution, with the mean at midpoint between the pain levels reported during con-

ditioning (with the low and high stimuli). The simple Bayesian model integrates, in a Bayesian

way, the expectation of the pain intensity (prior) with the sensory input due to the stimulus

(likelihood). In the case of midblue stimuli this model integrates the expectation of high and low

pain intensities experienced in the conditioning stage with the sensory input due to intermedi-

ate stimuli. Like the one we propose, the simple Bayesian model predicts a bimodal distribution

of pain ratings.

Results and Discussion

In the following, we first deal with parameter selection for the model and then with the evi-

dence that, through model comparison, supports the full Bayesian decision model (fBD). Only

after that we deal with the predictions of the model and the insights it provides into pain per-

ception and its modulation.

Parameter estimation

We built the full Bayesian decision model (fBD) with the goal of optimally integrating past ex-

perience and incoming information about the stimulus (provided by nociceptor activity) and

about the surrounding context (provided by the cue). The parameters of the model were de-

fined to reflect the knowledge available to the system either before or at the end of the condi-

tioning phase, and to mirror neurophysiological and psychophysical evidences. We fitted the

model to Experiment 1 data and found that the standard deviation of the effects induced by the

stimulus (parameter σ in Eq. 5) was 5.7 ± 3.1 (mean ± s.d.).

We also estimated, separately on placebo scores of Experiment 1 and 2, the effectiveness of

conditioning and expectation (parameter w in Eq. 4) in each subject. As expected, w positively

correlated with the magnitude of the placebo effect (Fig. 1; Pearsons’ correlation coefficient r =
0.84, P = 2.07 × 10−7 (Experiment 1); r = 0.71, P = 3.54 × 10−6 (Experiment 2)), however other

sources of individual variability still remain, as w can explain a relevant part, but not all, of the

variance of the placebo effect (in Experiment 1, where we fitted the parameters σ (Eq. 5) and w
on single subjects’ data, the residual variance was 28.6%; in Experiment 2, where for modeling

we used the parameter σ calculated from Experiment 1 data, the residual variance was 49.3%).

Model comparison

We compared the fBD model with two alternative ones (see Methods) calculating the posterior

probabilities for the models given the data collected in the third block of Experiment 2 (that is

pain induced, after the conditioning stage, by midblue stimuli; see the No cue section below for a

description of the outcomes). In the comparison, the data supported the fBD model: it had the

greatest posterior probability and, according to Jeffreys’ Bayes Factor scale of evidence [49], it

is favored by substantial evidence (Fig. 2).
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Figure 1. Correlation between subjects’ expectation of analgesia and placebo analgesia ratings. The
expectation of analgesia / effectiveness of conditioning (parameterw) was estimated fitting the model on
individual subjects’ placebo data. For Experiment 1 (A) we fitted also, on subjects’ data, the dispersion of the
prior distribution of the effect of the stimuli (Eq. 5), while for Experiment 2 (B) the dispersion entered in the
model was the one estimated on Experiment 1 data. The plots show a positive correlation between
expectation/conditioning and the size of the placebo effect. r: Pearson’s product moment correlation
coefficient, tested for positive correlation. Varres = residual variance. (n = 24, Experiment 1; n = 31,
Experiment 2).

doi:10.1371/journal.pone.0117270.g001

Figure 2. Model comparison. (A) Posterior probability and (B) Bayes factors for the three models we
compared, showing a substantial evidence in favour of the full Bayesian decision model we developed. (C)
Posterior probability of the three models in each subject (n = 31), showing that in most of the subjects the data
support the fBD model. Models are identified by the same colors in (A) and (C). nL = no learn model; sB =
simple Bayesian model; fBD = full Bayesian decision model.

doi:10.1371/journal.pone.0117270.g002
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Note that in choosing the alternative models for comparison we aligned with the principle

of avoiding post hoc fitting of the data: although a number of models may be conceived to fit

the data, the two we chose are the most straightforward, the others being built with the princi-

pal aim to fit the data but with poor theoretical justification. Also, such an exercise would be a

complex one if aimed at fitting both the placebo response and the rating of the pain induced by

the midblue stimuli. For example, we discarded the model recently proposed by Yoshida et al.

[36] as we could not match their findings. This is likely due to the different protocols: the un-

certainty in conditioning, experienced by a subject (which we can model), carries a different

meaning than the uncertainty in expected pain due to ratings reported to the subject by other

people (the condition tested by Yoshida et al.). A second reason is that attempting and tuning

their model to our placebo data, resulted in no usable predictions for the midblue condition.

The two other models included in the comparison were (1) a model which assumed there

was no learning in conditioning, which performed poorly compared with the others, and (2) a

model which uses data from the conditioning stage to infer a Bayesian (posterior) estimate of

pain in the placebo condition and with midblue stimuli, which performed slightly better (Fig. 2).

When looking at single subject’s responses to midblue stimuli (after the conditioning stage),

the fBD model agreed with pain experienced by most subjects (Fig. 2C).

Model predictions

The full set of posterior probability distributions of pain rating, calculated for any stimulus in-

tensity and with w (the effectiveness of conditioning/expectation, see Eq. 4) set to 0.9, is shown

in Fig. 3. The first thing to note is that the relationship between the stimulus intensity and the

most probable pain rating changes significantly as a consequence of the conditioning stage

(Fig. 3A and B). Prior to conditioning this relationship is almost linear (as in the case of ther-

mal pain [50]), but after conditioning it becomes non linear, in a way specific to the paired cue

or its absence (Fig. 3A and B).

It is important to note that, for model predictions, we calculated the effect of the first stimu-

lus after conditioning; that is, we did not model the possible extinction of the response. A fur-

ther development of the model would also include the ongoing learning of the system after

each stimulus. This will provide insights both in the shaping of the posterior probability distri-

bution during conditioning and in the evolving of the response, stimulus after stimulus, during

the testing stage.

Placebo

When a stimulus is paired with a deceptive cue the model predicts pain ratings that correspond

to the placebo effect (Figs. 3 and 4)—or to its reversal, the nocebo effect [51–53] (Fig. 3B). As

an example, in Fig. 4 we report a comparison between the model outcomes and actual placebo

effect from the two experiments we performed on healthy human volunteers.

The fBD model shows that when independent channels carry congruent information, they

have the potential to make the esteem more accurate: notice the narrower distribution in

Fig. 3A. But in the placebo condition, when the stimulation is manipulated so that information

is deceptively discordant, the green cue, which retains its learned meaning, biases the esteem

toward the lower stimulus. In fact, notice that the knowledge about the cue affects the shape

and peak position of the probability distributions (Fig. 3A and C, and Fig. 4C) and, as a conse-

quence, the perceived pain to the same stimulus (Fig. 3B and 4C).

Studies on the placebo effect found that it can be due to expectation or conditioning [1–4].

Hence, in models of pain inference cues should be considered, respectively, as contextual infor-

mation shaping expectation and so prior probability, or as additional information which, as
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Figure 4. Placebo effect. (A, B) Experimental placebo effect after conditioning, observed in the two samples of participants recruited for Experiment 1 (left
columns) and Experiment 2 (right columns). (A) Mean pain scoring, rated through a visual analogical scale (VAS), for high electrical stimuli paired with red
(CrSh, overt no-treatment) or green (CgSh, placebo condition) cues. (B) Mean placebo analgesic effect, as percent difference relative to pain rating with overt
no-treatment. (C) Model predictions: box-plot and 100 random draws (top) from the posterior probability distributions (bottom) for high stimuli paired with red
(CrSh, no-treatment) or green (CgSh, placebo) cues. The posterior probability distribution for the low stimulus paired with the green cue is also plotted (CgSl,

overt treatment). Δ = observed placebo analgesia; D̂ = predicted placebo analgesia (difference between the means (^) of the no-treatment and placebo
samples). ***P< 0.001 (Experiment 1: P = 5.96 × 10−8, n = 24; Experiment 2: P = 2.00 × 10−8, n = 31; (one tail Wilcoxon signed-rank test); all error bars
represent s.d.

doi:10.1371/journal.pone.0117270.g004

Figure 3. Model predictions of pain rating. Probability distributions before (A, B) and after (A, B, C) conditioning. (A) Posterior probability distributions of
pain rating given the stimulus intensity. The color scale codes for relative probabilities (scaled so the maximum equals 1). Orange curves indicate maxima
(most probable pain rating), also reported in (B). Vertical lines highlight some of the distributions shown, with same colors and line types, in (C) and in Figs.
4C and 5A. (B) Most probable rating given a stimulus, for each possible stimulus: before training (pre), and after training. Values after training are shown for
stimuli paired with a cue (Cg: green cue; Cr: red cue) or not (noCue). Horizontal lines indicate the estimated pain rating for high stimuli paired with red (red
dotted line, overt no-treatment) and green (green dashed line, placebo condition) cues, and for low stimuli paired with green (green dotted line, overt
treatment) and red (brown dashed line, nocebo condition) cues. (C) Prior probability distribution (prior), and posterior probability distributions conditioned on
the high stimulus (Sh), on the green cue (Cg), and on both the high stimulus and the green cue together (CgSh, placebo).

doi:10.1371/journal.pone.0117270.g003
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sensory information, is integrated through a likelihood function. Although biologically differ-

ent, in Bayesian inference these two procedures produce the same result and, in Eq. 3, we wrote

the two equivalent forms. In Bayesian inference, in fact, the posterior probability may be calcu-

lated combining each piece of information in subsequent steps, where the posterior probability

which results from one step provides the prior probability for the next step, or combining mul-

tiple pieces of information at the same time, through their respective likelihood functions.

No cue

The main findings of this study concern not only the placebo effect but a wider range of effects

also due to past experience. To test these predictions, in our study we focused on the pain rat-

ing for stimuli of intensity at midpoint between those used in conditioning and delivered in the

absence of a visual cue (midblue stimuli; Fig. 3A, upper right panel; Fig. 3B, blue dotted curve;

and Fig. 5). The fBD model predicts that, with a uniform loss function, the probabilities of the

perceived pain would follow a bimodal distribution, with pain ratings more likely to be clus-

tered around the two peaks of highest probability (Fig. 5A), and that the degree of clustering is

positively correlated with the effectiveness of conditioning/expectation (Fig. 5B). These out-

comes were unexpected, but the experimental results supported them. In fact, the subjects’ re-

sponses to intermediate-intensity stimuli were mostly clustered toward the two levels perceived

within the conditioning stage, as the model predicts, and only in some cases to the midpoint, as

one would otherwise expect (Fig. 6A).

The first formal evidence that the ratings followed a bimodal distributions is provided by

the model comparison described above: the bimodal models were more probable then the

unimodal one (Fig. 2).

For a further comparison between unimodality and bimodality we used Bayesian hypothesis

testing. Again, the hypothesis of bimodality resulted to be the most probable, favoured by sub-

stantial evidence (posterior probability = 0.77; Bayes Factor = 3.85).

Finally, we tested the predicted relationship between clustering and subjects’ expectation/

conditioning (Fig. 5B). In agreement with the model, we found that the greater the placebo

Figure 5. Model predictions of pain rating with and without cues, after conditioning. (A) 100 random
draws (top) from posterior probability distributions (bottom) for high (noCSh), low (noCSl) and intermediate
(noCSm) stimulus intensities, paired with no cue. (B) Probability distributions of pain rating obtained with
different effectiveness of conditioning (w = weight factor attributed to conditioning), and 20 random draws
from each probability distribution. Predictions for intermediate stimuli paired with no cue (midblue stimuli, left)
are displayed aside those for high stimuli (right) paired with green (green circles and curves, placebo
condition) and red (red circles and curves, overt no-treatment condition) cues. ^ = means of each sample.

doi:10.1371/journal.pone.0117270.g005
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Figure 6. Ratings of pain induced by intermediate intensity electrical stimuli paired with no cue. (A) 31 subjects’ pain rating (y axis) scaled, for each
subject, to the mean of pain ratings for high intensity stimuli in the same stimulation block); subjects are ordered according to the magnitude of the placebo
effect (x axis, the magnitude is relative to the mean of pain ratings for high intensity stimuli paired with red cues). Each subject rated 8 stimuli and is
represented with a different color and symbol. The square box delimits subjects with no significant placebo effect (tested at P< 0.05; n = 8; one tail Mann-
Whitney rank-sum test). (B) Correlation between individual clustering measures of pain rating (cluster distance, first column; cluster separation index,
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effect in a subject, the more evident and pronounced the clustering was (Fig. 6), suggesting that

the heterogeneity of results among subjects may be due to differences in the effectiveness of the

conditioning procedure. Indeed, both the size of the placebo effect and the subjects’ expectan-

cy/conditioning (parameter w, estimated by the model on the placebo data) positively correlat-

ed with the measures of clustering (the distance of the cluster centers and the index of cluster

separation) and with the probability that the data followed a bimodal distribution (Fig. 6B and

Table 1).

We know that past experience affects both perception [27, 54, 55] and the placebo effect

[39, 56]. Our findings show that experience shapes not only the relevance of additional infor-

mation—as in the case of the placebo effect, in which elements of the context (here the cues)

become more likely associated with specific pain intensities—but also the expected pain levels

independent of the cue. In Bayesian terms, the former means that past experience changes the

likelihoods related to additional informative symbolic cues, while the latter means that

experiencing which pain levels are possible within the experimental session affects also the pri-

ors for perception in that context (Fig. 3A and C).

Limits and perspectives

The Bayesian decision model we developed comprises three key elements: the prior probability,

which conveys previous experiences and expectancy (e.g. through information derived from

the context); the likelihood function, which implements the sensory inputs and also informa-

tion from multiple sources (whether sensory, cognitive or psychological); and the decision pro-

cess, which eventually determines if and to what extent pain is perceived.

In this work we mainly investigated the inference process, however decision making is a com-

plex and essential part of perception, which involves many neural subsystems, including sensory

and cognitive networks [57], and is likely to be of great relevance in describing many significant

conditions of pain modulation, such as the analgesia observed in life-threatening situations, or

during high motivation states: perception involves the evaluation not only of the severity of the

lesion, but also of the consequences of the behavioral choices based on that perception. Although

our model includes a cost function (for simplicity we assumed a uniform one) and although we

repeatedly discussed its role and the effects of different cost functions on pain perception, we

have not explored the decision side of the model. For a deeper understanding of pain and its

second column; probability that the data followed a bimodal distribution, third column) and the magnitude of the placebo effect (first row); or the expectation
of analgesia (parameterw) estimated by the model on placebo data (second row). Cluster analysis: K-meansmethod for 2 clusters; test of bimodal
distribution vs unimodal: Bayesian hypothesis comparison; correlation analysis: Pearson’s product moment correlation coefficient, tested for positive
correlation. (n = 31). (See also Table 1).

doi:10.1371/journal.pone.0117270.g006

Table 1. Cluster correlation.

Cluster distance Separation index Prob. bimodality

Placebo analgesia size r = 0.51 (P = 0.0017) r = 0.35 (P = 0.026) r = 0.46 (P = 0.0050)

Expectation (w) r = 0.41 (P = 0.010) r = 0.30 (P = 0.049) r = 0.50 (P = 0.0023)

Correlation between individual clustering measures of pain rating and the magnitude of the placebo analgesia, or the expectation of analgesia (parameter

w) estimated by the model on placebo data. Subjects’ pain ratings were clustered with the K-means method for 2 clusters, whereas bimodal vs unimodal

distribution was assessed with Bayesian hypothesis comparison. Cluster distance: distance of the cluster centers; Separation index: cluster separation

index; Prob. bimodality: probability that the data follow a bimodal distribution; r: Pearson’s product moment correlation coefficient, tested for positive

correlation. (n = 31). (See also Fig. 6B).

doi:10.1371/journal.pone.0117270.t001
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modulation, further studies have to consider the effects of additional variables (e.g., related to
emotional states, attention, motivation, etc.) both on inference (through likelihoods) and on the

decision process. A work which focused on the relevance of decision process in pain is the recent

study [58] in whichWiech et al. stated that “decision-making is pivotal to the modulation of pain”
and that “cognitive pain modulation can also be rooted in altered decision-making”. We agree with

those assertions but not with their conclusions: their results did not necessarily demonstrate that

prior information directly biased decision-making. They found that prior knowledge altered deci-

sion-making (with effects on accuracy and response time) but not the sensory processing. In our

framework expectation affects inference and, through that, decision. When we implemented in

our model the experimental design ofWiech et al. (data not shown) we found that, due to the ef-

fect of expectation on inference, decision-making faces a greater or smaller uncertainty about the

effect of the stimulus (wider or narrower posterior distribution), with consequences (on accuracy

and, possibly, response time) consistent with their data. However, the insights provided by the

two models are so different that a detailed comparison is not straightforward and would require

further work. For example, a point to consider is if the bias on classification due to prior knowl-

edge found byWiech et al. is part of pain modulation or, instead, it affects a subsequent

cognitive process.

Note that the fBD model does not specify the regions of the nervous system where the prob-

abilistic integration of information and the decision making processes take place, nor the neu-

ronal networks or molecular systems involved. In fact the model is concerned with the

computational strategies and not with the neurobiological implementation of those strategies.

However, recent studies have shown that signal integration at the neuronal level may behave

according to Bayesian decision theory [59–61], and identified the neural substrates of Bayesian

integration in some multisensory perceptual tasks [31, 62].

The conditioning protocol deserves some considerations. In this work we often refer to con-
ditioning in a broad sense, meaning the processes which results in the placebo response and

due to different elements of the experimental procedure. These elements include the implicit

conditioning and the explicit learning obtained through the training stage, but also the changes

induced by others factors, such as the operator’s description of the expected analgesic effect of

the treatment. Indeed, to maximize the expectancy driven by the cue we relied on the contribu-

tions of different strategies. (1) Verbal instructions: we explained to the subjects the analgesic

effect of the treatment and the association of red and green cues with intense and mild pain, as

expectation of benefit is a component in the placebo response [63, 64]. (2) Non verbal sugges-

tion: different studies have shown that context, environment, operator’s behavior and attitude,

protocol and treatment procedures not only act to elicit a conditioned response [63] but also

affect trust and credibility, which have a relevant role in the placebo effect [65, 66]. (3) Learn-

ing: before testing, the subjects underwent a conditioning stage, in which they experienced the

association of the cues with pain intensity; in fact many studies demonstrated that learning

strongly enhances the placebo effect [6, 39, 56, 63]. (4) Intrinsic expectancy: we paired red and

green with high and low intensities respectively because the color may affect the placebo re-

sponse (as it has been demonstrated for the color of medication [67, 68]): red is linked to dan-

ger, hazard and harm [69] so that red may carry an intrinsic expectancy of higher pain.

A caution about the pain felt by the subjects: the large electrodes we used (2 cm2) may acti-

vate many non-nociceptive fibers. Although previous research on pain and placebo analgesia

have used such electrodes (e.g. Colloca and Benedetti [39]), and although our subjects de-

scribed the stimuli as painful, we can not rule out the possibility that, at least in part, the place-

bo effect was not on pain but on discomfort.

As shown in Fig. 6A (x axis), subjects’ responses to placebo varied from almost 70% of

analgesia to no response at all. Different studies investigated why healthy subjects in the same
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conditions may have different responses. What emerged is that different variables (related to

cognitive and emotional factors and to personality traits) may account for the differences, and

also that the same individual may show a placebo effect in some circumstances or with particu-

lar procedures and not with others [70–72]. We found that the individual expectation/condi-

tioning (captured by the parameter w) accounted for a relevant part of the variability (50 to
70%), but a significant amount remained unexplained. According to our framework, differ-

ences between subjects may happen not only because subjects may have different priors (as in

the case of expectation due to past experience), but also because they may consider different

likelihood functions (that is, they may integrate different pieces of information and/or may

give a different weight to the same information), or different cost functions. The model we ex-

plored suggests that the effects originating at these different levels may leave their own signa-

ture, which might be detected by proper psychophysical tests. For example, a weak expectation

of analgesia as well as the hyperalgesia due to anxiety [73–75] may both result in a weak place-

bo response, but we expect they will differ in other responses and that specific tests may be con-

ceived to detect them. An example is the response to midblue stimuli: as we have shown, in this

condition a weak expectation corresponds to less or no clustering of the pain ratings—which

would tend toward an intermediate level. On the other hand, with high expectation but a cost

function which favors hyperalgesia we would expect either two clusters, but pushed to the

right, or only one cluster corresponding to the rightmost peak of the distribution.

We believe that using a theoretical model—and the predictions it makes—to investigate and

manipulate psychophysical behaviors may help to explore the interplay of factors modulating

pain and to design tests to identify them not only in experimental protocols but even in clinical

situations. Indeed we think that the modular structure of the model provides a conceptual

framework which can also guide the investigation of pathological pain, as the underlying al-

tered states may be due to specific modifications at one or more of the levels outlined. To adapt

the model to pathological conditions may be challenging and will require further investiga-

tions, but its framework may already provide some hints. For instance, deficits in neuronal

transmission (e.g., in injured nerves) or plastic circuitry changes can be considered when calcu-

lating the likelihood function; altered networks may also be modeled through the prior proba-

bility; the role of cognitive factors can be reflected by the prior probability or adding further

likelihood functions; behavioral and motivational aspects of pain could be considered in the

cost function and/or the decision rule.

Conclusions

The model we developed shows how the placebo effect results from the evaluation and integra-

tion of nociceptive stimuli with context information, and how the relevance of the context

(through expectation/conditioning) comes, at least in part, from past experience. The process

of information integration would be at the very base of pain perception, and would lead to the

placebo effect and to other phenomena such as those predicted by the fBD model.

Overall, our findings support the hypothesis that pain perception can be described accord-

ing to the rules of Bayesian probabilistic reasoning. Emotions, memories, expectations and be-

liefs, together with sensory inputs, reflect the interplay of the system with the environment, its

present state and its past experience. On the basis of these considerations and of our findings,

we claim that these non-sensory components, far from being events that interfere with the pain

perceptive process, are all evidences that the system uses—along with nociceptor spiking

activity—to decide what is useful to perceive. In this way the system can end up with a more ef-

fective perception than using nociceptor signals alone, as suggested for other perceptive

modalities [24]

Bayesian Integration in Pain and Placebo

PLOS ONE | DOI:10.1371/journal.pone.0117270 February 9, 2015 16 / 20



We also argue that to fully understand the placebo effect we should consider it in the

broader context of the general strategies that the system follows to bring forth pain perception.

In the placebo effect, perception is biased by the cue. But what we call bias is the result of the

integration of additional information, and the placebo effect would result from stimuli that are

unlikely given the context. This differs from the conclusions of Morton et al. [71]. They too

believe that pain perception may be considered probabilistic and described in a Bayesian

framework, however they suggest that the placebo effect results from an ambiguity caused by

prior expectation for analgesia. Instead, we consider the ambiguity intrinsic to sensory signals,

and we show that expectation elicited by the cue may increase the probability of what, in its

absence, would be less probable.

Finally, we think that the theoretical framework we explored may also provide an answer to

the question about why the placebo effect exists. Not because it is useful by itself: what is useful

is the logic underlying it. The placebo effect would be a perceptive illusion and, like other illu-

sions, results not from a malfunction of the system but is a byproduct of computational strate-

gies pursuing optimal integration of information [26, 33, 76]. The model we developed is an

attempt to describe such a logic.

Acknowledgments

We thank Andrea Posocco for helping in carrying out Experiment 1, Corrado Lagazio for criti-

cal discussion of an early version of the Bayesian model, Candace Beisel and Paolo Rigiroli for

comments on, and proof reading of, the manuscript, Gaetano Vitale for suggestions on a previ-

ous version of it and Silvestro Roatta for the electrical stimulator.

Author Contributions

Conceived and designed the experiments: DAMZ. Performed the experiments: DAMZ. Ana-

lyzed the data: DAMZ. Wrote the paper: DAMZ.

References
1. Price DD, Finniss DG, Benedetti F (2008) A comprehensive review of the placebo effect: recent ad-

vances and current thought. Annu Rev Psychol 59: 565–590. doi: 10.1146/annurev.psych.59.113006.
095941 PMID: 17550344

2. Enck P, Benedetti F, Schedlowski M (2008) New insights into the placebo and nocebo responses.
Neuron 59: 195–206. doi: 10.1016/j.neuron.2008.06.030 PMID: 18667148

3. Finniss DG, Kaptchuk TJ, Miller F, Benedetti F (2010) Biological, clinical, and ethical advances of
placebo effects. Lancet 375: 686–695. doi: 10.1016/S0140-6736(09)61706-2 PMID: 20171404

4. Peciña M, Stohler CS, Zubieta JK (2014) Neurobiology of placebo effects: expectations or learning?
Soc Cogn Affect Neurosci 9: 1013–1021. doi: 10.1093/scan/nst079 PMID: 23887819

5. Benedetti F, Mayberg HS, Wager TD, Stohler CS, Zubieta JK (2005) Neurobiological mechanisms of
the placebo effect. J Neurosci 25: 10390–10402. doi: 10.1523/JNEUROSCI.3458-05.2005 PMID:
16280578

6. Pacheco-López G, Engler H, Niemi MB, Schedlowski M (2006) Expectations and associations that
heal: Immunomodulatory placebo effects and its neurobiology. Brain Behav Immun 20: 430–446. doi:
10.1016/j.bbi.2006.05.003 PMID: 16887325

7. Zubieta JK, Stohler CS (2009) Neurobiological mechanisms of placebo responses. Ann N Y Acad Sci
1156: 198–210. doi: 10.1111/j.1749-6632.2009.04424.x PMID: 19338509

8. Lui F, Colloca L, Duzzi D, Anchisi D, Benedetti F, et al. (2010) Neural bases of conditioned placebo an-
algesia. Pain 151: 816–824. doi: 10.1016/j.pain.2010.09.021 PMID: 20943318

9. Levine J, Gordon N, Fields H (1978) The mechanism of placebo analgesia. Lancet 2: 654–657. doi: 10.
1016/S0140-6736(78)92762-9 PMID: 80579

10. Eippert F, Bingel U, Schoell E, Yacubian J, Klinger R, et al. (2009) Activation of the opioidergic de-
scending pain control system underlies placebo analgesia. Neuron 63: 533–543. doi: 10.1016/j.
neuron.2009.07.014 PMID: 19709634

Bayesian Integration in Pain and Placebo

PLOS ONE | DOI:10.1371/journal.pone.0117270 February 9, 2015 17 / 20

http://dx.doi.org/10.1146/annurev.psych.59.113006.095941
http://dx.doi.org/10.1146/annurev.psych.59.113006.095941
http://www.ncbi.nlm.nih.gov/pubmed/17550344
http://dx.doi.org/10.1016/j.neuron.2008.06.030
http://www.ncbi.nlm.nih.gov/pubmed/18667148
http://dx.doi.org/10.1016/S0140-6736(09)61706-2
http://www.ncbi.nlm.nih.gov/pubmed/20171404
http://dx.doi.org/10.1093/scan/nst079
http://www.ncbi.nlm.nih.gov/pubmed/23887819
http://dx.doi.org/10.1523/JNEUROSCI.3458-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16280578
http://dx.doi.org/10.1016/j.bbi.2006.05.003
http://www.ncbi.nlm.nih.gov/pubmed/16887325
http://dx.doi.org/10.1111/j.1749-6632.2009.04424.x
http://www.ncbi.nlm.nih.gov/pubmed/19338509
http://dx.doi.org/10.1016/j.pain.2010.09.021
http://www.ncbi.nlm.nih.gov/pubmed/20943318
http://dx.doi.org/10.1016/S0140-6736(78)92762-9
http://dx.doi.org/10.1016/S0140-6736(78)92762-9
http://www.ncbi.nlm.nih.gov/pubmed/80579
http://dx.doi.org/10.1016/j.neuron.2009.07.014
http://dx.doi.org/10.1016/j.neuron.2009.07.014
http://www.ncbi.nlm.nih.gov/pubmed/19709634


11. Tracey I, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron 55:
377–391. doi: 10.1016/j.neuron.2007.07.012 PMID: 17678852

12. Craig A (2003) A new view of pain as a homeostatic emotion. Trends Neurosci 26: 303–307. doi: 10.
1016/S0166-2236(03)00123-1 PMID: 12798599

13. Berkeley G (1709) An Essay Towards a New Theory of Vision. London: J. M. Dent—Everyman’s
Library.

14. Merleau-Ponty M (1945) Phénoménologie de la Perception. Paris: Gallimard.

15. Beecher H (1956) Relationship of significance of wound to pain experienced. J AmMed Assoc 161:
1609–1613. doi: 10.1001/jama.1956.02970170005002 PMID: 13345630

16. Melzack R, Wall P, Ty T (1982) Acute pain in an emergency clinic: latency of onset and descriptor pat-
terns related to different injuries. Pain 14: 33–43. doi: 10.1016/0304-3959(82)90078-1 PMID: 7145438

17. Knill DC, RichardsW (1996) Perception as Bayesian Inference. Cambridge, UK: Cambridge University
Press.

18. Purves D, Lotto RB, Williams SM, Nundy S, Yang Z (2001) Why we see things the way we do: evidence
for a wholly empirical strategy of vision. Philos Trans R Soc Lond B Biol Sci 356: 285–297. doi: 10.
1098/rstb.2000.0772 PMID: 11316481

19. Jaynes ET (2003) Probability Theory: The Logic of Science. Cambridge, UK: Cambridge University
Press.

20. Tomko GJ, Crapper DR (1974) Neuronal variability: non-stationary responses to identical visual stimuli.
Brain Res 79: 405–418. doi: 10.1016/0006-8993(74)90438-7 PMID: 4422918

21. Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons in cat
and monkey visual cortex. Vision Res 23: 775–785. doi: 10.1016/0042-6989(83)90200-6 PMID:
6623937

22. Faisal AA, Selen LPJ, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9: 292–303.
doi: 10.1038/nrn2258 PMID: 18319728

23. Shimojo S, Shams L (2001) Sensory modalities are not separate modalities: plasticity and interactions.
Curr Opin Neurobiol 11: 505–509. doi: 10.1016/S0959-4388(00)00241-5 PMID: 11502399

24. Green AM, Angelaki DE (2010) Multisensory integration: resolving sensory ambiguities to build novel
representations. Curr Opin Neurobiol 20: 353–360. doi: 10.1016/j.conb.2010.04.009 PMID: 20471245

25. Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal
fashion. Nature 415: 429–433. doi: 10.1038/415429a PMID: 11807554

26. Weiss Y, Simoncelli EP, Adelson EH (2002) Motion illusions as optimal percepts. Nat Neurosci 5: 598–
604. doi: 10.1038/nn0602-858 PMID: 12021763

27. Rao RPN (1999) An optimal estimation approach to visual perception and learning. Vision Res 39:
1963–1989. doi: 10.1016/S0042-6989(98)00279-X PMID: 10343783

28. Friston K (2003) Learning and inference in the brain. Neural Netw 16: 1325–52. doi: 10.1016/j.neunet.
2003.06.005 PMID: 14622888

29. Maloney LT, Zhang H (2010) Decision-theoretic models of visual perception and action. Vision Res 50:
2362–2374. doi: 10.1016/j.visres.2010.09.031 PMID: 20932856

30. Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8: 162–169.
doi: 10.1016/j.tics.2004.02.002 PMID: 15050512

31. Angelaki DE, Gu Y, DeAngelis GC (2009) Multisensory integration: psychophysics, neurophysiology,
and computation. Curr Opin Neurobiol 19: 452–458. doi: 10.1016/j.conb.2009.06.008 PMID:
19616425

32. Purves D, Shimpi A, Lotto RB (1999) An empirical explanation of the cornsweet effect. J Neurosci 19:
8542–8551. PMID: 10493754

33. Geisler WS, Kersten D (2002) Illusions, perception and bayes. Nat Neurosci 5: 508–510. doi: 10.1038/
nn0602-508 PMID: 12037517

34. Jones A, Brown C, El-DeredyW (2013) How does {EEG} contribute to our understanding of the placebo
response?: Insights from the perspective of bayesian inference. In: Colloca L, Flaten MA, Meissner K,
editors, Placebo and Pain, San Diego, USA: Academic Press, chapter 5. pp. 37–43.

35. Seymour B, Dolan RJ (2013) Emotion, motivation, and pain. In: McMahon S, Koltzenburg M, Tracey I,
Turk DC, editors, Wall and Melzack’s Textbook of Pain, Philadelphia, USA: Saunders, chapter 17.
6th edition, pp. 248–255.

36. YoshidaW, Seymour B, Koltzenburg M, Dolan RJ (2013) Uncertainty increases pain: evidence for a
novel mechanism of pain modulation involving the periaqueductal gray. J Neurosci 33: 5638–5646.
doi: 10.1523/JNEUROSCI.4984-12.2013 PMID: 23536078

Bayesian Integration in Pain and Placebo

PLOS ONE | DOI:10.1371/journal.pone.0117270 February 9, 2015 18 / 20

http://dx.doi.org/10.1016/j.neuron.2007.07.012
http://www.ncbi.nlm.nih.gov/pubmed/17678852
http://dx.doi.org/10.1016/S0166-2236(03)00123-1
http://dx.doi.org/10.1016/S0166-2236(03)00123-1
http://www.ncbi.nlm.nih.gov/pubmed/12798599
http://dx.doi.org/10.1001/jama.1956.02970170005002
http://www.ncbi.nlm.nih.gov/pubmed/13345630
http://dx.doi.org/10.1016/0304-3959(82)90078-1
http://www.ncbi.nlm.nih.gov/pubmed/7145438
http://dx.doi.org/10.1098/rstb.2000.0772
http://dx.doi.org/10.1098/rstb.2000.0772
http://www.ncbi.nlm.nih.gov/pubmed/11316481
http://dx.doi.org/10.1016/0006-8993(74)90438-7
http://www.ncbi.nlm.nih.gov/pubmed/4422918
http://dx.doi.org/10.1016/0042-6989(83)90200-6
http://www.ncbi.nlm.nih.gov/pubmed/6623937
http://dx.doi.org/10.1038/nrn2258
http://www.ncbi.nlm.nih.gov/pubmed/18319728
http://dx.doi.org/10.1016/S0959-4388(00)00241-5
http://www.ncbi.nlm.nih.gov/pubmed/11502399
http://dx.doi.org/10.1016/j.conb.2010.04.009
http://www.ncbi.nlm.nih.gov/pubmed/20471245
http://dx.doi.org/10.1038/415429a
http://www.ncbi.nlm.nih.gov/pubmed/11807554
http://dx.doi.org/10.1038/nn0602-858
http://www.ncbi.nlm.nih.gov/pubmed/12021763
http://dx.doi.org/10.1016/S0042-6989(98)00279-X
http://www.ncbi.nlm.nih.gov/pubmed/10343783
http://dx.doi.org/10.1016/j.neunet.2003.06.005
http://dx.doi.org/10.1016/j.neunet.2003.06.005
http://www.ncbi.nlm.nih.gov/pubmed/14622888
http://dx.doi.org/10.1016/j.visres.2010.09.031
http://www.ncbi.nlm.nih.gov/pubmed/20932856
http://dx.doi.org/10.1016/j.tics.2004.02.002
http://www.ncbi.nlm.nih.gov/pubmed/15050512
http://dx.doi.org/10.1016/j.conb.2009.06.008
http://www.ncbi.nlm.nih.gov/pubmed/19616425
http://www.ncbi.nlm.nih.gov/pubmed/10493754
http://dx.doi.org/10.1038/nn0602-508
http://dx.doi.org/10.1038/nn0602-508
http://www.ncbi.nlm.nih.gov/pubmed/12037517
http://dx.doi.org/10.1523/JNEUROSCI.4984-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23536078


37. Colloca L, Benedetti F, Porro CA (2008) Experimental designs and brain mapping approaches for
studying the placebo analgesic effect. Eur J Appl Physiol 102: 371–380. doi: 10.1007/s00421-007-
0593-6 PMID: 17960416

38. Montgomery GH, Kirsch I (1996) Mechanisms of placebo pain reduction: an empirical investigation.
Psych Sci 7: 174–176. doi: 10.1111/j.1467-9280.1996.tb00352.x

39. Colloca L, Benedetti F (2006) How prior experience shapes placebo analgesia. Pain 124: 126–133.
doi: 10.1016/j.pain.2006.04.005 PMID: 16701952

40. LaMotte RH, Campbell JN (1978) Comparison of responses of warm and nociceptive c-fiber afferents
in monkey with human judgments of thermal pain. J Neurophysiol 41: 509–28. PMID: 418156

41. Darian-Smith I, Johnson KO, LaMotte C, Shigenaga Y, Kenins P, et al. (1979) Warm fibers innervating
palmar and digital skin of the monkey: responses to thermal stimuli. J Neurophysiol 42: 1297–1315.
PMID: 114608

42. Koltzenburg M, Handwerker HO (1994) Differential ability of human cutaneous nociceptors to signal
mechanical pain and to produce vasodilatation. J Neurosci 14: 1756–1765. PMID: 8126568

43. Gracely RN (1994) Studies of pain in normal man. In: Wall P, Melzack R, editors, The textbook of pain.,
New York: Churchill-Livingstone. 3rd edition, pp. 315–336.

44. Berger JO (1985) Statistical Decision Theory and Bayesian Analysis. New York: Springer-Verlag.

45. Wolpert DM (2007) Probabilistic models in human sensorimotor control. HumMov Sci 26: 511–24. doi:
10.1016/j.humov.2007.05.005 PMID: 17628731

46. Duda RO, Hart PE, Stork DG (2001) Pattern Classification, New York, USA: JohnWiley & Sons Inc.,
chapter 2. pp. 20–83.

47. R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Sta-
tistical Computing, Vienna. http://www.R-project.org. Accessed 5 December 2014.

48. Hartigan JA, WongMA (1979) A k-means clustering algorithm. Applied Statistics 28: 100–108. doi: 10.
2307/2346830

49. Jeffreys H (1939) Theory of probability. Oxford, UK: Oxford University Press.

50. Zwislocki JJ (2008) Sensory Neuroscience: Four Laws of Psychophysics. New York: Springer.

51. KennedyWP (1961) The nocebo reaction. MedWorld 95: 203–205. PMID: 13752532

52. Hahn RA (1997) The nocebo phenomenon: concept, evidence, and implications for public health. Prev
Med 26: 607–611. doi: 10.1006/pmed.1996.0124 PMID: 9327466

53. Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, et al. (2008) Placebo and nocebo effects are
defined by opposite opioid and dopaminergic responses. Arch Gen Psychiatry 65: 220–231. doi: 10.
1001/archgenpsychiatry.2007.34 PMID: 18250260

54. Sinha P, Poggio T (1996) Role of learning in three-dimensional form perception. Nature 384: 460–463.
doi: 10.1038/384460a0 PMID: 8945472

55. Ryan JD, Moses SN, Ostreicher ML, Bardouille T, Herdman AT, et al. (2008) Seeing sounds and hear-
ing sights: the influence of prior learning on current perception. J Cogn Neurosci 20: 1030–1042. doi:
10.1162/jocn.2008.20075 PMID: 18211239

56. Colloca L, Tinazzi M, Recchia S, Le Pera D, Fiaschi A, et al. (2008) Learning potentiates neurophysio-
logical and behavioral placebo analgesic responses. Pain 139: 306–314. doi: 10.1016/j.pain.2008.04.
021 PMID: 18538928

57. Rahnev D, Lau H, de Lange FP (2011) Prior expectation modulates the interaction between sensory
and prefrontal regions in the human brain. J Neurosci 31: 10741–10748. doi: 10.1523/JNEUROSCI.
1478-11.2011 PMID: 21775617

58. Wiech K, Vandekerckhove J, Zaman J, Tuerlinckx F, Vlaeyen JWS, et al. (2014) Influence of prior infor-
mation on pain involves biased perceptual decision-making. Curr Biol 24: R679–R681. doi: 10.1016/j.
cub.2014.06.022 PMID: 25093555

59. Rao RPN (2004) Bayesian computation in recurrent neural circuits. Neural Comput 16: 1–38. doi: 10.
1162/08997660460733976 PMID: 15006021

60. Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond, B, Biol Sci 360: 815–36. doi:
10.1098/rstb.2005.1622 PMID: 15937014

61. MaWJ, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with probabilistic population codes.
Nat Neurosci 9: 1432–1438. doi: 10.1038/nn1790 PMID: 17057707

62. Fischer BJ, Peña JL (2011) Owl’s behavior and neural representation predicted by bayesian inference.
Nat Neurosci 14: 1061–1066. doi: 10.1038/nn.2872 PMID: 21725311

63. Montgomery GH, Kirsch I (1997) Classical conditioning and the placebo effect. Pain 72: 107–113. doi:
10.1016/S0304-3959(97)00016-X PMID: 9272794

Bayesian Integration in Pain and Placebo

PLOS ONE | DOI:10.1371/journal.pone.0117270 February 9, 2015 19 / 20

http://dx.doi.org/10.1007/s00421-007-0593-6
http://dx.doi.org/10.1007/s00421-007-0593-6
http://www.ncbi.nlm.nih.gov/pubmed/17960416
http://dx.doi.org/10.1111/j.1467-9280.1996.tb00352.x
http://dx.doi.org/10.1016/j.pain.2006.04.005
http://www.ncbi.nlm.nih.gov/pubmed/16701952
http://www.ncbi.nlm.nih.gov/pubmed/418156
http://www.ncbi.nlm.nih.gov/pubmed/114608
http://www.ncbi.nlm.nih.gov/pubmed/8126568
http://dx.doi.org/10.1016/j.humov.2007.05.005
http://www.ncbi.nlm.nih.gov/pubmed/17628731
http://dx.doi.org/10.2307/2346830
http://dx.doi.org/10.2307/2346830
http://www.ncbi.nlm.nih.gov/pubmed/13752532
http://dx.doi.org/10.1006/pmed.1996.0124
http://www.ncbi.nlm.nih.gov/pubmed/9327466
http://dx.doi.org/10.1001/archgenpsychiatry.2007.34
http://dx.doi.org/10.1001/archgenpsychiatry.2007.34
http://www.ncbi.nlm.nih.gov/pubmed/18250260
http://dx.doi.org/10.1038/384460a0
http://www.ncbi.nlm.nih.gov/pubmed/8945472
http://dx.doi.org/10.1162/jocn.2008.20075
http://www.ncbi.nlm.nih.gov/pubmed/18211239
http://dx.doi.org/10.1016/j.pain.2008.04.021
http://dx.doi.org/10.1016/j.pain.2008.04.021
http://www.ncbi.nlm.nih.gov/pubmed/18538928
http://dx.doi.org/10.1523/JNEUROSCI.1478-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.1478-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21775617
http://dx.doi.org/10.1016/j.cub.2014.06.022
http://dx.doi.org/10.1016/j.cub.2014.06.022
http://www.ncbi.nlm.nih.gov/pubmed/25093555
http://dx.doi.org/10.1162/08997660460733976
http://dx.doi.org/10.1162/08997660460733976
http://www.ncbi.nlm.nih.gov/pubmed/15006021
http://dx.doi.org/10.1098/rstb.2005.1622
http://www.ncbi.nlm.nih.gov/pubmed/15937014
http://dx.doi.org/10.1038/nn1790
http://www.ncbi.nlm.nih.gov/pubmed/17057707
http://dx.doi.org/10.1038/nn.2872
http://www.ncbi.nlm.nih.gov/pubmed/21725311
http://dx.doi.org/10.1016/S0304-3959(97)00016-X
http://www.ncbi.nlm.nih.gov/pubmed/9272794


64. Pollo A, Amanzio M, Arslanian A, Casadio C, Maggi G, et al. (2001) Response expectancies in placebo
analgesia and their clinical relevance. Pain 93: 77–84. doi: 10.1016/S0304-3959(01)00296-2 PMID:
11406341

65. Kaptchuk TJ, Goldman P, Stone DA, StasonWB (2000) Do medical devices have enhanced placebo
effects? J Clin Epidemiol 53: 786–792. doi: 10.1016/S0895-4356(00)00206-7 PMID: 10942860

66. Kaptchuk TJ (2002) The placebo effect in alternative medicine: can the performance of a healing ritual
have clinical significance? Ann Intern Med 136: 817–825. doi: 10.7326/0003-4819-136-11-
200206040-00011 PMID: 12044130

67. Buckalew LW, Coffield KE (1982) An investigation of drug expectancy as a function of capsule color
and size and preparation form. J Clin Psychopharmacol 2: 245–248. PMID: 7119132

68. Sallis RE, Buckalew LW (1984) Relation of capsule color and perceived potency. Percept Mot Skills
58: 897–898. doi: 10.2466/pms.1984.58.3.897 PMID: 6473037

69. Mehta R, Zhu RJ (2009) Blue or red? exploring the effect of color on cognitive task performances. Sci-
ence 323: 1226–1229. doi: 10.1126/science.1169144 PMID: 19197022

70. Kaptchuk TJ, Kelley JM, Deykin A, Wayne PM, Lasagna LC, et al. (2008) Do “placebo responders”
exist? Contemp Clin Trials 29: 587–595. doi: 10.1016/j.cct.2008.02.002 PMID: 18378192

71. Morton DL, El-DeredyW, Watson A, Jones AKP (2010) Placebo analgesia as a case of a cognitive
style driven by prior expectation. Brain Res 1359: 137–141. doi: 10.1016/j.brainres.2010.08.046 PMID:
20735999

72. Kong J, Spaeth R, Cook A, Kirsch I, Claggett B, et al. (2013) Are all placebo effects equal? placebo
pills, sham acupuncture, cue conditioning and their association. PLoS One 8: e67485. doi: 10.1371/
journal.pone.0067485 PMID: 23935833

73. Flor Grüsser (1999) Conditioned stress-induced analgesia in humans. Eur J Pain 3: 317–324. doi: 10.
1016/S1090-3801(99)90013-7 PMID: 10700359

74. Rhudy JL, Meagher MW (2000) Fear and anxiety: divergent effects on human pain thresholds. Pain
84: 65–75. doi: 10.1016/S0304-3959(99)00183-9 PMID: 10601674

75. Wunsch A, Philippot P, Plaghki L (2003) Affective associative learning modifies the sensory perception
of nociceptive stimuli without participant’s awareness. Pain 102: 27–38. doi: 10.1016/s0304-3959(02)
00331-7 PMID: 12620594

76. Brown H, Friston KJ (2012) Free-energy and illusions: the cornsweet effect. Front Psychol 3: 43. doi:
10.3389/fpsyg.2012.00043 PMID: 22393327

Bayesian Integration in Pain and Placebo

PLOS ONE | DOI:10.1371/journal.pone.0117270 February 9, 2015 20 / 20

http://dx.doi.org/10.1016/S0304-3959(01)00296-2
http://www.ncbi.nlm.nih.gov/pubmed/11406341
http://dx.doi.org/10.1016/S0895-4356(00)00206-7
http://www.ncbi.nlm.nih.gov/pubmed/10942860
http://dx.doi.org/10.7326/0003-4819-136-11-200206040-00011
http://dx.doi.org/10.7326/0003-4819-136-11-200206040-00011
http://www.ncbi.nlm.nih.gov/pubmed/12044130
http://www.ncbi.nlm.nih.gov/pubmed/7119132
http://dx.doi.org/10.2466/pms.1984.58.3.897
http://www.ncbi.nlm.nih.gov/pubmed/6473037
http://dx.doi.org/10.1126/science.1169144
http://www.ncbi.nlm.nih.gov/pubmed/19197022
http://dx.doi.org/10.1016/j.cct.2008.02.002
http://www.ncbi.nlm.nih.gov/pubmed/18378192
http://dx.doi.org/10.1016/j.brainres.2010.08.046
http://www.ncbi.nlm.nih.gov/pubmed/20735999
http://dx.doi.org/10.1371/journal.pone.0067485
http://dx.doi.org/10.1371/journal.pone.0067485
http://www.ncbi.nlm.nih.gov/pubmed/23935833
http://dx.doi.org/10.1016/S1090-3801(99)90013-7
http://dx.doi.org/10.1016/S1090-3801(99)90013-7
http://www.ncbi.nlm.nih.gov/pubmed/10700359
http://dx.doi.org/10.1016/S0304-3959(99)00183-9
http://www.ncbi.nlm.nih.gov/pubmed/10601674
http://dx.doi.org/10.1016/s0304-3959(02)00331-7
http://dx.doi.org/10.1016/s0304-3959(02)00331-7
http://www.ncbi.nlm.nih.gov/pubmed/12620594
http://dx.doi.org/10.3389/fpsyg.2012.00043
http://www.ncbi.nlm.nih.gov/pubmed/22393327

