
A Bayesian prediction of four-look
recognition performance from one-look data

MICHAEL E. DOHERTY1 AND STUART M. KEELEY
BOWLING GREEN UNIVERSITY

The hypothesis that a human D's [S's} performance in a
visual recognition task can be modelled by Bayes' theorem was
investigated. Two Ss were run for 40 experimental sessions
each. Their task was to specify the direction of the gap of
tachistoscopically presented Landolt rings (Cs). There were
four possible gap directions, and two experimental conditions.
In one condition, S responded after each stimulus
presentation. In the other, a fixed-observation condition, Ss
responded after four consecutive presentations of a C.
Exposure durations were such that performance under both
conditions was greater than chance, but less than unity.
Predictions of four-look performance from one-look data were
made. Overall hit rates were predicted closely. The entire
pattern of each S's four-look data was also predicted
reasonably well. Further tests of the model are currently under
way.

Keeley and Doherty (1968) tested three models which
describe how an 0 (S) combines independent pieces of
evidence about some state of the world in arriving at some
decision about that state. The models are Eriksen's (1966)
clearest state model, and an integration model and
decision-threshold model as discussed in Green and Swets
(1966). Using briefly presented visual inputs, the Es made
predictions of repeated observation hit rates (HRs) from single
observation HRs. None of the models described Ss'
performance adequately, especially in Experiment I which
employed unidimensional stimuli.

The basic datum which enters into the predictions of all
three models is the single observation HR. In other words, the
models as we tested them are sensitive to neither differential
HRs on the several stimuli nor to nonrandom patterns of
errors. In effect, the models assume that perceptual errors are
random. This is most clearly seen in the decision threshold
model, which explicitly states that on those trials on which S
is incorrect, the visual input has been "subthreshold."

If one wishes to predict S's multiple-observation decision
behavior, there arc compelling reasons for using the entire
pattern of single observation responding. Consider an
experiment in which S's task is to identify which one of the
three graphemes A, 0, or U has been briefly presented. The
latter two forms appear to be more "confusable" with each
other than either of them is with the former. Suppose that a
given S tended to "see" Os as Us more often than the reverse.
If we now give that S n looks before he must respond, it is
very unlikely that his multiple observation performance would
be predicted closely by any model using only his overall HR.
Furthermore, even a model which takes into account
differential HRs on different stimuli would likely be
inadequate, unless it also had built into it a means of using the
information about the kinds of errors S was expected to make
on any given single observation. Putting the same argument
into another context, S's probability (P) of a response given n
observations is a function of the single observation Ps of all
available responses conditional upon the various stimuli. While
the argument is clear with the stimuli selected for illustration
above, it applies generally to any multiple-observation
prediction situations. A model which would describe an S's

performance in the sort of situation outlined would likely be
appropriate in a situation in which errors are random as well.

The emphasis on S's errors reflects the assumption that Sis
not responding on the basis of subthreshold (or unavailable)
inputs when he makes errors, but is responding frequently on
the basis of erroneous information. In other words, he is
making "confusion errors." If the latter is the case, Ss would
sometime respond erroneously with certainty, which they did
in Keeley and Doherty (1968). If the stimuli employed were
not all equally identifiable, the Ss would have different HRs to
the different stimuli. And if the stimuli were differentially
confusable with one another, the Ss would have more or less
marked departures from randomness in their distributions of
errors. While there were insufficient trials in Keeley and
Doherty (1968) to support these latter two suppositions, the
available data led us to believe that such was indeed the case.
Models which take errors into account allow for a suppression
in predicted HR which would reflect the behavior one would
expect if an S has a high P of making a particular confusion
error. Conversely, if our reasoning is correct, models
disregarding errors should overpredict. In Keeley and Doherty
(1968, Experiment 1) both the Integration and Decision
threshold models overpredicted, the latter for every S.

These considerations led Es to look at a model
incorporating considerably more of the single-observation data
into the multiple-observation prediction, that model being
Bayes' rule. In order to obtain enough data to make estimates
of the values of the required conditional Ps, two Ss from
Experiment I were continued for many more trials in the
single and successive observation conditions.

METHOD
Subjects

Two males from Experiment I of Keeley and Doherty
(1968) served as Ss.

Apparatus
The apparatus and stimuli are described fully in Keeley and

Doherty (1968). Briefly, a Scientific Prototype Model GB
tachistoscope, with a handswitch permitting S to initiate
stimulus presentations, was used. The stimuli were Landolt
rings (Cs) with the gaps either right, left, up, or down (R, L, U,
or D). A given stimulus would have one C on a comer of an
imaginary square centered on a fixation point which was on at
all times.

Procedure
Two of the conditions described in the 1968 Experiment I

were used. In the single observation condition (lC) the Ss were
presented with one stimulus and responded with the perceived
direction of gap (r, I, u, or d). In the successive condition
(I C4), Ss were presented with four successive stimuli with the
gaps in the same direction, but with the locus of the C varying
randomly. The Ss responded only after the fourth stimulus,
qualifying this condition as an instance of what Green and
Swets (1966) call the "fixed observation procedure."
Exposure durations were such that Ss' HRs exceeded chance
but were less than unity in both conditions.
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There were 40 test observations per experimental session,
either 40 IC trials or 10 IC4 trials. Each S ran 40 experimental
sessions, 12 IC and 28 IC4. Thus there were 480 IC responses
available for purposes of prediction, and 280 IC4 responses
for comparison with the predicted frequencies. (Due to an
omission, only 478 IC trials were recorded for one S.) Since
the Ss were becoming highly practiced, the restriction that an
equal number of each of the four gap directions occur five
times in each block of 20 trials was no longer observed. The
only other procedural difference was that confidence
judgments were no longer required of the Ss.

A Bayesian Model
It was assumed that S made an implicit response of r, I, u, or

d to each of the four observations on a I C4 trial, and that the
P of an implicit response could be estimated by relative
frequencies of the IC condition. It was further assumed that S
would, at the conclusion of the fourth observation of a I C4
trial, be in a perceptual state determined by some combination
of the available implicit responses, and that his decision would
be determined by that perceptual state. It follows that there is
a finite set of possible perceptual states (Bi), consisting of the
44 combinations which may result from four presentations of
one of four stimuli (Aj ).

Briefly, the prediction of the IC4 results from the IC data
matrix can be considered as involving four steps: 0) The 256
potential perceptual states are listed. (2) The probability of
each of these states contingent on each of the four possible
stimulus states, P(Bi I AD, is determined. (3) The most
probable state of the world given each particular perceptual
state, P(Aj I Bi), is determined by the use of Bayes' theorem.
(4) The P(Bi I Aj) values are summed separately for each S for
each of the four predictions for each of the four actual
stimululus states, which summations yield a matrix of
predicted decisions.

Let us consider Steps 2 through 4 in more detail:
In Step 2, there are 1024 separate P(Bi I ADs to estimate,

256 for each of the four stimulus states. The calculations
employ the relative frequencies from the IC condition (see
Table I). Each P(Bi I Aj) value is the product of four
conditional P values estimated from these relative frequencies.
For example, if the B state under consideration is the set of
four implicit responses rrlu, the P of occurrence of that
perceptual state given the stimulus state of four right gaps is
given by:

P(rrlu I RRRR) = Per I R)2 . PO I R) . P(u I R)

Table 2
Empirical and Predicted (r', I', u', d') Frequencies of Each Response

to Each Stimulus State for the IC4 Condition

Stimulus State
Subject I Subject 2

Response R L U D R L U D

r 49 8 8 13 52 6 6 I
r
,

43 6 7 8 54 4 2 5

I 5 52 8 9 II 52 4 14
I' 6 53 8 10 8 57 6 6

u 5 13 49 3 7 7 52 9
u
,

8 10 53 7 4 3 51 8

d 3 5 8 42 2 5 7 45
d' 5 9 5 42 6 6 10 50

the P of each of the four stimulus states was calculated
according to Bayes' theorem (e.g., Hayes, 1963, p. 116, Eq.
4.5.2):

(1)

but since the particular experimental conditions are such that
the a priori P(Aj) values are all .25, Eq. I simplifies to:

P(Aj IBJ =

(2)

The decision rule which seems most reasonable is that the
stimulus with the greatest a posteriori probability would be
selected as the response, or decision, in light of the available
evidence (i.e., Bj). Therefore, the Aj corresponding to the
highest of the four values of P(Aj I Bj) was S's predicted
response. In those few circumstances in which P(Aj I Bj) values
were equal, the predictions were divided among the states
accordingly.

In Step 4, the predicted response probabilities for the
four-look condition were obtained separately for each S by
summing the appropriate P values:
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for each j = I, ••. 4. The predicted frequencies of Table 2
were obtained by multiplying the actual frequencies of the
four stimulus states by the calculated P(Aj I Bj ) values.

RESULTS
The overall HRs were predicted remarkably well for S I

with the actual HR being .686 and the predicted .682, and
rather well for S 2, the HRs being.718 and.757, respectively.
These predictions compare favorably with those of the

(3)

(4)LP(Aj I Bk ) = 1.0, k = I, ••• 4,

where the summation is taken, separately for each j, over those
perceptual states for which the decision rule defined above
leads to a given outcome. The subscript k indexes the four
response outcomes possible for each j. This procedure yields a
j by k (in this case 4 by 4) matrix of conditional P values, for
which

Subject 1 Subject 2

Response R L U D R L U D

64 14 21 17 65 12 10 12
18 63 18 25 25 79 16 21

u 20 25 69 21 18 15 76 24
d 16 17 14 56 13 13 18 63
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P(rrlu I LLLL) =Per I L)2 . P(l I L) . P(u IL)

etc. These calculations are obviously predicated upon the
assumption that the four implicit responses are independent.
Under this assumption, which renders order irrelevant, there
are actually only 35 different values of P(Bi I Aj) for each of
the four Aj.

In Step 3, for each of the 256 potential perceptual states,

Table 1
Frequency of Each Response to Each Stimulus for the IC Conditions

Stimuli

and, given four left gaps:



Decision-Threshold model, .882 and .932, which are, as
expected, radical overpredictions. The results of primary
interest, however, are the predictions of each S's total pattern
of results. An inspection of Table 2 reveals that these
predictions are reasonably close to the empirical frequencies.
The major exception is the model's failure to predict the
disproportionate number of left responses given by S 2 to the
down stimuli.

DISCUSSION
The closeness of the predictions to the empirical frequencies

is remarkable when one considers that the data are based on a
procedure which was neither originally designed to test the
Bayesian model, nor is an optimal procedure to do so. The
very least that can be said for the results is that they are very
encouraging. They have prompted Es to commence an
experiment which employs the major operation lacking in the
present research which makes Bayesian analysis conceptually
much more appropriate. That operation is knowledge of
results in the IC condition. While the Es did not provide
trial-by-trial feedback in the present experiment, the Ss had
considerable inferential knowledge of the veridicality of their
perceptions due to the nature of the IC4 condition, and some
direct knowledge due to the procedure of informing Ss of their
overall performance at the termination of each block of 10
trials. The accuracy of S's assessments of the P(Bi I Aj) values
is open to question. Clearly this is a variable which ought to be
under E's control if he wishes to perform an optimal test of a
model which assumes that Ss are combining these conditional
probabilities. Furthermore, a much more refined prediction of
S's multiple-observation performance could be made if
confidence judgments were recorded and taken into account.
They would enter into the prediction by considering different
confidence ratings as different responses. Since this would
increase the size of the data matrices by a factor equal to the
number of levels of confidence permitted, a very large number
of trials would be necessary.

The usual assumptions which must be considered before
applying Bayes' theorem seem to Es to be fully met. The P
values all admit of relative frequency interpretations, and the a
priori probabilities are not only known, they are under

364

experimental control. This particular application of the rule is
predicated upon another assumption, however, concerning
which we have no information. That assumption is that Ss'
decision criteria are either constant over time over the course
of the experiment, or vary randomly about some constant
value. When using stimuli in the visual mode in appropriate HR
ranges, at least with the kind of experimental conditions in
this study, the attentional demands upon S are so severe that
relatively little data can be collected in a session. Change over
sessions is thus relatively difficult to detect.

Green and Swets (1966) dichotomize decision models in
terms of whether the Ss are postulated to be accumulating and
combining information (the "integration" models) or are
somehow basing an ultimate "decision" on the basis of other
decisions (the "decision-threshold" models). It does not seem
necessary at this time to the present authors to choose
between these categories of decision rules. That question
concerns the nature of the coding and storage mechanisms,
and S may encode and store information or he may encode
and store a set of decisions about an input. Either process can
be represented equally well by conditional probabilities; S's
performance may well be modelled by Bayes' rule, whichever
he is doing.

REFERENCES
ERIKSEN, C. W. Independence of successive inputs and uncorrelated

error in visual form perception. Journal of Experimental Psychology,
1966, 72, 26-35.

GREEN, D. M., & SWETS, J. A. Signal detection theory and
psychophysics. New York: Wiley, 1966.

KEELEY, S. M., & DOHERTY, M. E. Simultaneous and successive
presentations of single-featured and multi-featured visual forms:
Implications for the parallel processing hypothesis. Perception &
Psychophysics, 1968,4, 296-298.

SWETS, J. A., & BIRDSALL, T. G. Deferred decision in human signal
detection: A preliminary experiment. Perception & Psychophysics,
1967,2, 15-28.

NOTE
1. Address: Department of Psychology, Bowling Green State

University, Bowling Green, Ohio 43402.

(Accepted for publication January 6, 1969.)

Perception & Psychophysics, 1969, Vol. 5 (6)


