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Abstract

A Bayesian probit model with individual effects that exhibit spatial
dependencies is set forth. Since probit models are often used to explain
variation in individual choices, these models may well exhibit spatial
interaction effects due to the varying spatial location of the decision
makers. That is, individuals located at similar points in space may
tend to exhibit similar choice behavior. The model proposed here
allows for a parameter vector of spatial interaction effects that takes
the form of a spatial autoregression. This model extends the class of
Bayesian spatial logit/probit models presented in LeSage (2000) and
relies on a hierachical construct that we estimate via Markov Chain
Monte Carlo methods. We illustrate the model by applying it to the
1996 presidential election results for 3,110 US counties.
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1 Introduction

Probit models with spatial dependencies were first studied by McMillen
(1992), where an EM algorithm was developed to produce consistent (max-
imum likelihood) estimates for these models. As noted by McMillen, such
estimation procedures tend to rely on asymptotic properties, and hence re-
quire large sample sizes for validity. An alternative hierarchical Bayesian
approach to non-spatial probit models was introduced by Albert and Chib
(1993) which is more computationally demanding, but provides a flexible
framework for modeling with small sample sizes. LeSage (2000) first pro-
posed extending Albert and Chib’s approach to models involving spatial de-
pendencies, and this work extends the class of models that can be analyzed
in this framework. Our extension relies on an error structure that involves
an additive error specification first introduced by Besag, et al. (1991) and
subsequently employed by many authors (as for example in Gelman, et al.
1998). As will be shown, this approach allows both spatial dependencies
and general spatial heteroscedasticity to be treated simultaneously.

The paper begins by motivating the basic probit model in terms of an
explicit choice-theoretic context involving individual behavioral units. Since
probit models are often used to explain variation in individual choices, these
models may well exhibit spatial interaction effects due to the varying spatial
location of the decision makers. That is, individuals located at similar points
in space may tend to exhibit similar choice behavior. A key element in this
context is the spatial grouping of individuals by region. Here we assume
that individuals within each region are homogeneous, suggesting that all
spatial dependencies and heteroscedastic effects occur at the regional level.
We also show that the case of spatial dependencies between individuals can
be handled by treating individuals as separate ‘regions’.

The model proposed here is set forth in section 2. This model allows
for a parameter vector of spatial interaction effects that takes the form of a
spatial autoregression. It extends the class of Bayesian spatial logit/probit
models presented in LeSage (2000) and relies on a hierachical construct
also presented in this section. We estimate the model using Markov Chain
Monte Carlo (MCMC) methods to derive estimates by simulating draws from
the complete set of conditional distributions for parameters in the model.
Section 3 sets forth these conditional distributions for our model.

Section 4 provides illustrations based on generated data sets as well as
an application of the method to the voting decisions from 3,110 US counties
in the 1996 presidential election. Conclusions are contained in section 5.

2



2 A Spatial Probit Model

For the sake of concreteness, we motivate the model in terms of an explicit
choice-model formulation detailed in Amemiya (1985, section 9.2) in sec-
tion 2.1. Section 2.2 sets forth the Bayesian hierarchical structure that we
use.

2.1 Choices involving spatial agents

Suppose there exists data on the observed choices for a set of individuals
distributed within a system of spatial regions (or zones), i = 1, . . . ,m. In
particular, suppose that the relevant choice context involves two (mutually
exclusive and collectively exhaustive) alternatives, which we label ‘0’, and
‘1’. Examples might be a voting decision or specific type of purchase de-
cision. The observed choice for each individual k = 1, . . . , ni in region i is
treated as the realization of a random choice variable, Yik, where Yik = 1 if
individual k chooses alternative 1 and Yik = 0 otherwise. In addition, it is
postulated that choices are based on utility maximizing behavior, where k’s
utility for each of these alternatives is assumed to be of the form:

Uik0 = γ′ωik0 + α′
0sik + θi0 + εik0

Uik1 = γ′ωik1 + α′
1sik + θi1 + εik1 (1)

Here ωika is a ω-dimensional vector of observed attributes of alternative
a(= 0, 1) taken to be relevant for k (possibly differing in value among in-
dividuals), and sik is an s−dimensional vector of observed attributes of
individual k. It is convenient to assume that k’s region of occupancy is
always included as an observed attribute of k. To formalize this, we let
δi(k) = 1 if k is in region i and δi(k) = 0 otherwise, and henceforth assume
that sikj = δj(k) for j = 1, . . . ,m (so that by assumption s ≥ m). The
terms θia + εika, represent the contribution to utility of all other relevant
unobserved properties of both i, k and a. These are separated into a regional
effect, θia, representing the unobserved utility components of alternative a
common to all individuals in region i, and an individualistic effect, εika, rep-
resenting all other unobserved components. In particular, the individualistic
components (εika : k = 1, . . . , ni) are taken to be conditionally independent
given θia, so that all unobserved dependencies between individual utilities
for a within region i are assumed to be captured by θia. If we let the utility
difference for individual k be denoted by
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zik = Uik1 − Uik0

= γ′(ωik1 − ωik0) + (α1 − α0)′sik + (θi1 − θi0) + (εik1 − εik0)
= x′ikβ + θi + εik (2)

with parameter vector, β = (γ′, α′
1−α′

0)
′, and attribute vector, xik = (ω′

ik1−
ω′

ik0, s
′
ik)

′, and with θi = θi1− θi0 and εi = εi1− εi0, then it follows from the
utility-maximization hypothesis that

Pr(Yik = 1) = Pr(Uik1 > Uik0) = Pr(zik > 0) (3)

At this point it should be emphasized that model [(2), (3)] has many alterna-
tive interpretations. Perhaps the most general interpretation is in terms of
linear models with limited information: if the elements xikj , j = 1, . . . , q[=
(ω + s)], are regarded as general explanatory variables, then model [(2), (3)]
can be interpreted as a standard linear model with ‘grouped observations’
in which only the events ‘zik > 0’ and ‘zik ≤ 0’ are observed [as in Albert
and Chib, 1993 for example]. However, we shall continue to appeal to the
above choice-theoretic interpretation in motivating subsequent details of the
model.

Turning next to the unobserved components of the model, it is postu-
lated that all unobserved dependencies between the utility differences for
individuals in separate regions are captured by dependencies between the
regional effects (θi : i = 1, . . . ,m). In particular, the unobserved utility-
difference aspects common to individuals in a given region i may be similar
to those for individuals in neighboring regions. This is operationalized by
assuming that the interaction-effects vector, θ, exhibits the following spatial
autoregressive structure1

θi = ρ
m∑

j=1

wijθj + ui, i = 1, . . . ,m (4)

where nonnegative elements of the weights, wij are taken to reflect the degree
of ‘closeness’ between regions i and j. In addition, it is assumed that wii ≡ 0
and row sums,

∑m
j=1 wij are normalized to one2, so that ρ can be taken to

1This simultaneous autoregressive specification of regional dependencies follows the
spatial econometrics tradition [as for example in Anselin (1988) and McMillen (1992)].
An alternative specification is the conditional autoregressive scheme employed by Besag
(1974,1991).

2Note that if a given region i is isolated (with no neighbors) then wij = 0 for all
j = 1, . . . , m. In this case, the ‘normalized’ weights are also zero.
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reflect the overall degree of spatial influence (usually nonnegative). Finally,
the residuals, ui are assumed to be iid normal variates, with zero means and
common variances σ2. Now, if we let θ = (θi : i = 1, . . . ,m) denote the
regional effects vector, and similarly let u = (ui : i = 1, . . . ,m), then these
assumptions can be summarized in vector form as

θ = ρWθ + u, u ∼ N(0, σ2Im) (5)

where W = (wij : i, j = 1, . . . ,m) and where Im denotes the m−square
identity matrix for each integer m > 0. It is convenient to solve for θ in
terms of u which we will rely on in the sequel. Let

Bρ = Im − ρW (6)

and assume that Bρ is nonsingular, then from (5):

θ = B−1
ρ u ⇒ θ|(ρ, σ2) ∼ N [0, σ2(B′

ρBρ)−1] (7)

Turning next to the individualistic components, εik, observe that without
further evidence about specific individuals in a given region i, it is reasonable
to treat these components as exchangeable and hence to model the εik as
conditionally iid normal variates with zero means3 and common variance
vi, given θi. In particular, regional differences in the vi’s allow for possible
heteroscedasticity effects in the model.4 Hence, if we now denote the vector
of individualistic effects of region i by εi = (εik : k = 1, . . . , ni)′, then our
assumptions imply that εi|θi ∼ N(0, viIni).

We can express the full individualistic effects vector ε = (ε′i : i =
1, . . . ,m)′ as

ε|θ ∼ N(0, V ) (8)

where the full covariance matrix V is shown in (9).

V =

 v1In1

. . .
vmInm

 (9)

3This zero-mean convention allows one to interpret the beta coefficient corresponding
to the regional fixed-effect column, δi(·) as the implicit mean of each εik.

4It should be noted that the presence of regional dependencies (i.e., nonzero off-
diagonal elements in Bρ also generates heteroscedasticity effects (as discussed for example
in McMillen, 1992). Hence the variances, vi are implicitly taken to reflect regional het-
eroscedasticity effects other than spatial dependencies.
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We emphasize here that as motivated earlier, all components of ε are
assumed to be conditionally independent given θ.

Expression (2) can also be written in vector form by setting zi = (Zik :
k = 1, . . . , ni)′ and Xi = (xik : k = 1, . . . , ni)′, so the utility differences for
each region i take the form:

zi = Xiβ + θi1i + εi, i = 1, . . . ,m (10)

where 1i = (1, . . . , 1)′ denotes the ni-dimensional unit vector. Then by
setting n =

∑
i ni and defining the n−vectors z = (z′i : i = 1, . . . ,m)′ and

X = (X ′
i : i = 1, . . . ,m)′,5 we can reduce (10) to the single vector equation,

z = Xβ + ∆θ + ε (11)

where

∆ =

 11

. . .
1m

 (12)

If the vector of regional variances is denoted by v = (vi : i = 1, . . . ,m), then
the covariance matrix V in (8) can be written using this notation as

V = diag(∆v) (13)

Finally, if δ(A) denotes the indicator function for each event A (in the
appropriate underlying probability space), so that δ(A) = 1 for all outcomes
in which A occurs and δ(A) = 0 otherwise, then by definition

Pr(Yik = 1|zik) = δ(zik > 0) (14)
Pr(Yik = 0|zik) = δ(zik ≤ 0)

If the outcome value Y = (Yik ∈ 0, 1), then [following Albert and Chib
(1993)] these relations may be combined as follows:

Pr(Yik = yik) = δ(yik = 1)δ(zik > 0) + δ(yik = 0)δ(zik ≤ 0) (15)

Hence, letting Y = (Yik : k = . . . , ni, i = 1, . . . ,m), it follows that for
each possible observed set of choice outcomes, y ∈ {0, 1}n,

5Note again that by assumption X always contains m columns corresponding to the
indicator functions, δ(·), i = 1, . . . , m.
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Pr(Y = y|z) =
m∏

i=1

ni∏
k=1

{δ(yik = 1)δ(zik > 0) + δ(yik = 0)δ(zik ≤ 0)} (16)

2.2 Hierarchical Bayesian Extension

While this model could in principle be estimated using EM methods sim-
ilar to McMillen (1992), the following Bayesian approach is more robust
with respect to small sample sizes, and allows detailed analysis of parame-
ter distributions obtained by simulating from the posterior distribution of
the model. As with all Bayesian models, one begins by postulating suitable
prior distributions for all parameters (β, v, σ2, ρ), and then derives the corre-
sponding conditional posterior distributions given the observed data. In the
analysis to follow it is convenient to represent v equivalently using the co-
variance matrix V and to write the relevant parameter vector as (β, V, σ2, ρ).
The prior distributions employed for these parameters are taken to be dif-
fuse priors wherever possible, and conjugate priors elsewhere. As is well
known (see for example Gelman, et al. 1995), this choice of priors yields
simple intuitive interpretations of the posterior means as weighted averages
of standard maximum-likelihood estimators and prior mean values (devel-
oped in more detail below). The following prior distribution hypotheses are
standard for linear models such as (12) [see for example Geweke, (1993) and
LeSage, (1999)]:

β ∼ N(c, T ) (17)
r/vi ∼ IDχ2(r) (18)
1/σ2 ∼ Γ(α, ν) (19)

ρ ∼ U [(λ−1
min, λ

−1
max] (20)

Here β is assigned a normal conjugate prior, which can be made ‘almost
diffuse’ by centering at c = 0 and setting T = tIq, for some sufficiently large
t. More generally, the mean vector, c and covariance matrix T are used by
the investigator to reflect subjective prior information assigned as part of
the model specification. The variances, σ2 together with (vi : i = 1, . . . ,m),
are given (conjugate) inverse gamma priors. A diffuse prior for σ2 would
involve setting the parameters (α = ν = 0).

The prior distribution for each vi is the inverse chi-square distribution,
which is a special case of the inverse gamma. This choice has the practical
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advantage of yielding a simple t−distribution for each component of ε (as
discussed in Geweke, 1993). Here the choice of values for the hyperparameter
r is more critical in that this value plays a key role in the posterior estimates
of heteroscedasticity among regions, which we discuss below.

We employ a uniform prior on ρ that is diffuse over the relevant range
of ρ values for the model in (5). In particular, if λmin and λmax denote the
minimum and maximum eigenvalues of W , then (under our assumptions on
W ) it is well known that λmin < 0, λmax > 0, and that ρ must lie in the
interval [λ−1

min, λ
−1
max] (see for example Lemma 2 in Sun et al., 1999). The

densities corresponding to (17), (19), and (20) are given respectively by:

π(β) ∝ exp[−1
2
(β − c)′T−1(β − c)] (21)

π(σ2) ∝ (σ2)−(α+1)exp
(
− ν

σ2

)
(22)

π(ρ) ∝ 1 (23)

where the inverse gamma density in (22) can be found in standard Bayesian
tests such as Gelman et al. (1995, p. 474). Note also that the diffuse
density for σ2 with α = ν = 0 is of the form π(σ2) ∝ 1/σ2. Finally, the
prior density of each vi, i = 1, . . . ,m, can be obtained by observing from (8)
that the variate, λ = λ(vi) = r/vi, has chi-square density

f(λ) ∝ λ
r
2
−1exp

(
−λ

2

)
(24)

This together with the Jacobian expression, |dλ/dvi| = r/(v2
i ), then implies

that

π(vi) = f [λ(vi)] ·
∣∣∣∣ dλ

dvi

∣∣∣∣
=

(
r

vi

) r
2
−1

exp
(
−r/vi

2

)
· r

v2
i

∝ v
−( r

2
+1)

i exp
(
− r

2vi

)
(25)

which is seen from (8) to be an inverse gamma distribution with parameters
α = ν = r/2, [as in expression (6) of Geweke (1993)].

These prior parameter densities imply corresponding prior conditional
densities for θ, ε, and z. To begin with observe from (7) that the prior
conditional density of θ given (ρ, σ2) is of the form
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π(θ|ρ, σ2) ∼ (σ2)−m/2|Bρ|exp
(
− 1

2σ2
θ′B′

ρBρθ

)
(26)

and similarly (8) implies that the conditional prior density of ε given (θ, V )
is

π(ε|V ) ∼ |V |−1/2exp
(
−1

2
ε′V −1ε

)
(27)

This in turn implies that the conditional prior density of z given (β, σ2, θ)
has the form

π(z|β, θ, V ) ∝ |V |−1/2exp
{
−1

2
(z −Xβ −∆θ)′V −1(z −Xβ −∆θ)

}
=

m∏
i=1

ni∏
k=1

{
v
−1/2
i exp

[
− 1

2vi
(zik − x′ikβ − θi)2

]}
(28)

3 Estimating the model

Estimation will be achieved via Markov Chain Monte Carlo methods that
sample sequentially from the complete set of conditional distributions for the
parameters. To implement the MCMC sampling approach we need to derive
the complete conditional distributions for all parameters in the model. Given
these, we proceed to sample sequential draws from these distributions for
the parameter values. Gelfand and Smith (1990) demonstrate that MCMC
sampling from the sequence of complete conditional distributions for all
parameters in the model produces a set of estimates that converge in the
limit to the true (joint) posterior distribution of the parameters.

To derive the conditional posterior distributions, we use the basic Bayesian
identity and the the prior densities from section 2,

p(β, θ, ρ, σ2, V, z|y) · p(y) = p(y|β, θ, ρ, σ2, V, z) · π(β, θ, ρ, σ2, V, z) (29)

where p(·) indicates posterior densities (i.e., involving the y observations).
This identity together with the assumed prior independence of β, ρ, σ2, and
V implies that the posterior joint density p(β, θ, ρ, σ2, V, z|y) is given up to
a constant of proportionality by

p(β, θ, ρ, σ2, V, z|y) ∝ p(y|z) · π(z|β, θ, V ) · π(θ|ρ, σ2)
· π(β) · π(ρ) · π(σ2) · π(V ) (30)
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Using this relation, we establish the appropriate conditional posterior dis-
tributions for each parameter in the model in sections 3.1 through 3.6.

3.1 The Conditional Posterior Distribution of β

From (30) it follows that

p(β|?) =
p(β, θ, ρ, σ2, V, z|y)
p(θ, ρ, σ2, V, z|y)

∝ p(β, θ, ρ, σ2, V, z|y)

∝ π(z|β, θ, V ) · π(β) (31)

where we use ? to denote the conditioning arguments: θ, ρ, σ2, V, z, y. This
together with (28) and (21) implies that

p(β|?) ∝ exp
{
−1

2
(z −Xβ −∆θ)′V −1(z −Xβ −∆θ)

}
·exp

{
−1

2
(β − c)′T−1(β − c)

}
(32)

But since

− 1
2
(z −Xβ −∆θ)′V −1(z −Xβ −∆θ)− 1

2
(β − c)′T−1(β − c) (33)

= −1
2
[β′X ′V −1Xβ − 2(z −∆θ)′V −1Xβ + β′T−1β − 2c′T−1β + C]

= −1
2

{
β′(X ′V −1X + T−1)β − 2[X ′V −1(z −∆θ) + T−1c]β

}
+ C

where C includes all quantities not depending on β. It follows that if we
now set

A = (X ′V −1X + T−1) (34)

and

b = X ′V −1(z −∆θ) + T−1c (35)

and observe that both A and b are independent of β, then expression (32)
can be rewritten as
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p(β|?) ∝ exp[−1
2
(β′Aβ − 2b′β)]

∝ exp[−1
2
(β′Aβ − 2b′β + b′A−1b)]

∝ exp[−1
2
(β −A−1b)′A(β −A−1b)] (36)

Therefore, the conditional posterior density of β is proportional to a
multinormal density with mean vector A−1b, and covariance matrix, A−1,
which we express as:

β|(θ, ρ, σ2, V, z, y) ∼ N(A−1b, A−1) (37)

This can be viewed as an instance of the more general posterior in expression
(13) of Geweke (1993) where his G, Ω−1, y and g are here given by I, V −1, z−
θ, and c respectively.

As is well known (see for example the discussion in Gelman, et al. 1995,
p. 79), this posterior distribution can be viewed as a weighted average
of prior and sample data information in the following sense. If one treats
z −∆θ in (11) as ‘data’ and defines the corresponding maximum-likelihood
estimator of β for this linear model by

β̂ = (X ′V −1X)−1X ′V −1(z −∆θ) (38)

then it follows from (34) and (35) that the posterior mean of β takes the
form

E(β|θ, ρ, σ2, V, z, y) = (X ′V −1X + T−1)−1[X ′V −1(z −∆θ) + T−1c]
= (X ′V −1X + T−1)−1[X ′V −1β̂ + T−1c] (39)

For the case of a single explanatory variable in X where q = 1, the right
hand side of (39) represents a simple convex combination of c and β̂. More
generally, this posterior mean represents a matrix-weighted average of the
prior mean c, and the maximum-likelihood estimate, β̂. Note that as the
quality of sample data information increases (i.e., the variances vi become
smaller) or the quantity of sample information increases (i.e., sample sizes
ni become larger) the weight placed on β̂ increases.
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3.2 The Conditional Posterior Distribution of θ

As will become clear below, the conditional posterior for θ is in many ways
similar to that for β. Here we let ? represent the conditioning arguments
β, ρ, σ2, V, z, y. First, note that using the same argument as in (30) and (31),
together with (26) and (28) we can write

p(θ|?) ∝ π(z|β, θ, V ) · π(θ|ρ, σ2)

∝ exp
{
−1

2
[∆θ − (z −Xβ)]′V −1[∆θ − (z −Xβ)]

}
·

exp
{
− 1

2σ
θ′B′

ρBρθ

}
= exp

{
−1

2
[θ′∆′V −1∆θ − 2(z −Xβ)′V −1∆θ + θ′(σ−2B′

ρBρ)θ]
}

= exp
{
−1

2
[θ′(σ−2B′

ρBρ + ∆′V −1∆)θ − 2(z −Xβ)′V −1∆θ]
}

(40)

A comparison of (40) with (33) shows that by setting A0 = σ−2B′
ρBρ +

∆′V −1∆ and b0 = ∆′V −1(z −Xβ), the conditional posterior density for θ
must be proportional to a multinormal distribution

p(θ|β, ρ, σ2, V, z, y) ∼ N(A−1
0 b0, A

−1
0 ) (41)

where the mean vector is A−1
0 b0 and the covariance matrix is A−1

0 . Unlike
the case of β however, the mean and covariance matrix of θ involve the
inverse of the mxm matrix A0 which depends on ρ. This implies that this
matrix inverse must be computed on each MCMC draw during the estima-
tion procedure. Typically thousands of draws will be needed to produce a
posterior estimate of the parameter distribution for θ, suggesting that this
approach to sampling from the conditional distribution of θ may be costly
in terms of time if m is large. In our illustration in section 5 we rely on a
sample of 3,110 US counties and the 48 contiguous states, so that m = 48.
In this case, computing the inverse was relatively fast allowing us to pro-
duce 2,500 draws in 37 seconds using a compiled c-language program on an
Anthalon 1200 MHz. processor.

In the Appendix we provide an alternative approach that involves only
univariate normal distributions for each element θi conditional on all other
elements of θ excluding the ith element. This approach is amenable to com-
putation for much larger sizes for m, but suffers from the need to evaluation
m univariate conditional distributions to obtain the vector of θ parameter
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estimates on each pass through the MCMC sampler. This slows down the
computations, but it does not suffer from the need to manipulate or invert
large matrices.

3.3 Conditional Posterior Distribution for ρ

To determine the conditional posterior for ρ, observe that using (30) we
have:

p(ρ|β, θ, σ2, V, z, y) ∝ p(ρ, β, θ, σ2, V, z|y)
p(β, θ, σ2, V, z|y)

∝ p(ρ, β, θ, σ2, V, z|y)

∝ π(θ|ρ, σ2) · π(ρ) (42)

which together with (26) and (23) implies that

p(ρ|β, θ, σ2, V, z, y) ∝ |Bρ|exp
(
− 1

2σ2
θ′B′

ρBρθ

)
(43)

where ρ ∈ [λ−1
min, λ

−1
max]. As noted in LeSage (2000) this is not reducible

to a standard distribution, so we might adopt a Metropolis-Hastings step
during the MCMC sampling procedures. LeSage (1999) suggests a normal
or t− distribution be used as a transition kernel in the Metropolis-Hastings
step. Additionally, the restriction of ρ to the interval [λ−1

min, λ
−1
max] can be

implemented using a rejection-sampling step during the MCMC sampling.
Another approach that is feasible for this model is to rely on univariate

numerical integration to obtain the the conditional posterior density of ρ.
The size of Bρ will be based on the number of regions, which is typically
much smaller than the number of observations, making it computationally
simple to carry out univariate numerical integration on each pass through
the MCMC sampler. Specifically, we can use the properties of the inverted
gamma distribution to integrate out the nuisance parameter σ obtaining:

p(ρ|β, θ, V, z, y) ∝ |Bρ|
[
(m)−1θ′B′

ρBρθ
]−m/2

π(ρ) (44)

The conditional posterior distribution over a grid of ρ values can be
obtained numerically using univariate integration, to find the normalizing
constant, where the limits of integration extend over ρ ∈ [λ−1

min, λ
−1
max]. Hav-

ing achieved a grid approximation to the conditional posterior for ρ, we
then draw from this using inversion. An advantage of this approach over the
Metropolis-Hastings method is that each pass through the sampler produces
a draw for ρ, whereas acceptance rates in the Metropolis-Hastings method
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are usually around 50 percent requiring twice as many passes through the
sampler to produce the same number of draws for ρ.

Note that we can construct a vector of log determinant values for log|Bρ|
based on a grid of values for ρ ∈ [λ−1

min, λ
−1
max] prior to beginning our MCMC

sampler. On each pass through the sampler we then need only compute the
quantity (m)−1θ′B′

ρBρθ, over this grid of ρ values, which can be done rapidly
for a small spatial matrix W reflecting connectivity relations between the
regions in our model.

For our applications presented in section 4, the number of observations
was based on n = 3, 110 US counties and the regions m = 48, based on
US states. An MCMC sampler implemented in the c-language produced
2,500 draws in 30 seconds on a 1200 MHz. Anthalon desktop computer.
Using the interpreted MATLAB language, the MCMC sampler produced
the same 2,500 draws in 107 seconds. In a typical application 2,500 draws
would suffice for convergence of the sampler to produce adequate posterior
inferences.

3.4 The Conditional Posterior Distribution of σ2

To determine the conditional posterior of σ2, the same argument as in (42)
along with (26) and (22) implies that

p(σ2|β, θ, ρ, V, z, y) ∝ π(θ|ρ, σ2) · π(σ2)

∝ (σ2)−m/2exp
(
− 1

2σ2
θ′B′

ρBρθ

)
·

(σ2)−(α+1)exp
(
− ν

σ2

)
(45)

Hence, we have

p(σ2|β, θ, ρ, V, z, y) ∝ (σ2)−(m
2

+α+1)exp
[
−θ′B′

ρBρθ +
2ν

2σ2

]
(46)

which is seen from (22) to be proportional to an inverse gamma distribution
with parameters (m/2) + α and θ′B′

ρBρθ + 2ν. Following Geweke (1993),
we may also express this posterior in terms of the chi-square distribution as
follows. Let λ = [θ′B′

ρBρθ + 2ν]/σ2, so that σ2 = [θ′B′
ρBρθ + 2ν]/λ implies

|dσ2/dλ| = [θ′B′
ρBρθ + 2ν]/(λ2), then it follows that

f(λ) = π[σ2(λ)] ·
∣∣∣∣∣dσ2

dλ

∣∣∣∣∣
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=

(
θ′B′

ρBρθ + 2ν

λ

)−(m
2

+α+1)

exp
(
−λ

2

)
·
θ′B′

ρBρθ + 2ν

λ2

∝ λ
m
2

+α+1−2exp
(
−λ

2

)
= λ(m+2α

2 )−1exp
(
−λ

2

)
(47)

Hence the density of λ is proportional to a chi-square density with m + 2α
degrees of freedom, and we may also express the conditional posterior of σ2

as

θ′B′
ρBρθ + 2ν

σ2
|(β, θ, ρ, V, z, y) ∼ χ2(m + 2α) (48)

3.5 The Conditional Posterior Distribution of v

To determine the conditional posterior distribution of v = (vi : i = 1 . . . , m),
we observe that from the same argument as in (30) and (31), together with
(28), (18), and (25) that if we let v−i = (v1, . . . , vi−1, vi+1, . . . , vm) for each
i, let e = z −Xβ −∆θ and also let ? represent the conditioning arguments
(in this case: β, θ, ρ, σ2, v−i, z, y), then

p(vi|?) ∝ π(z|β, θ, V ) ·
m∏

i=1

π(vi)

∝ |V |−1/2exp
(
−1

2
e′V −1e

)
· π(vi)

∝ |V |−1/2exp
(
−1

2
e′V −1e

)
· v−( r

2
+1)

i exp
(
− r

2vi

)
(49)

But since V = diag(∆v) → |V |−1/2 =
∏m

i=1(v
−ni/2
i ) and e′V −1e =

∑m
i=1

∑ni
k=1 e2

ik/vi =∑m
i=1 e′iei/vi, where ei = (eik : k = 1, . . . , ni) we have

p(vi|?) ∝
m∏

j=1

(v−nj/2
j ) ·

m∏
j=1

exp

(
−

e′jej

2vj

)
· v−( r

2
+1)

j exp

(
− r

2vj

)

∝ v
−ni/2
i exp

(
−e′iei

2vi

)
· v−( r

2
+1)

i exp
(
− r

2vi

)
= v

−
(

r+ni
2

+1
)

i exp
(
−e′iei + r

2vi

)
(50)
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and may conclude from (22) that the conditional posterior distribution of
each vi is proportional to an inverse gamma distribution with parameters
(r +ni)/2 and (e′iei + r)/2. As with σ2, this may also be expressed in terms
of the chi-square distribution as follows. If we let λ = (e′iei + r)/vi, so that
vi(λ) = (e′iei + r)/λi implies |dvi/dλi| = (e′iei + r)/λ2

i , then it follows that

f(λi) = π[vi(λi)] ·
∣∣∣∣ dvi

dλi

∣∣∣∣
=

[
e′iei + r

λi

]−( r+ni
2

+1
)
exp

(
−λi

2

)
· e′iei + r

λ2
i

= λ

(
r+ni

2

)
−1

i exp
(
−λi

2

)
(51)

which is proportional to a chi-square density with r +ni degrees of freedom.
Hence in a manner similar to (48) we may express the conditional posterior
of each vi as

e′iei + r

vi
|(β, θ, ρ, σ2, v−i, z, y) ∼ χ2(r + ni) (52)

In this form, it is instructive to notice that the posterior mean of vi

has a ‘weighted average’ interpretation similar to that of β discussed above.
To see this, note first that from (18) vi/r has an inverse chi-squared prior
distribution with r degrees of freedom, and the mean of the inverse chi-square
with ν degrees of freedom is given by 1/(ν−2), it follows that the prior mean
of vi is µi = E(vi) = rE(vi/r) = r/(r − 2) for r > 2. Next observe from
(52) that the random variable vi/(e′iei + r) is also conditionally distributed
as inverse chi-square with r + ni degrees of freedom, so that

1
e′iei + r

E(vi|β, θ, ρ, σ2, v−i, z, y) = E(
vi

e′iei + r
|β, θ, ρ, σ2, v−i, z, y)

=
1

(ni + r)− 2
(53)

But if the maximum-likelihood estimator for vi given the ‘residual’ vector
ei is denoted by v̂i = (1/ni)e′iei, then it follows from (53) that

E(vi|β, θ, ρ, σ2, v−i, z, y) =
e′iei + r

(ni + r)− 2

=
niv̂i + (r − 2)µi

ni + (r − 2)
(54)
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From this we see that the posterior mean of vi is a weighted average of the
maximum-likelihood estimator, v̂i, and the prior mean, µi of vi. Moreover,
we have the case where more weight is given to the sample information
embodied in v̂i as the sample size, ni increases. Even for relatively small
sample sizes in each region, these posterior means may be expected to cap-
ture possible heteroscedasticity effects between regions. Note also that the
value of the hyperparameter, r is critical here. In particular large values of
r would result in the heteroscedasticity effects being overwhelmed. LeSage
(1999) suggests that the range of values 2 < r ≤ 7 is appropriate for most
purposes and recommends a value r = 4 as a rule-of-thumb.

3.6 The Conditional Posterior Distribution of z

Finally, we construct a key posterior distribution for this model, namely
that of the utility-difference vector z. By the same argument as in (30) and
(31) now taken together with (16) and (28), we see that

p(z|β, θ, ρ, σ2, V, y) ∝ p(y|z) · π(z|β, θ, V )

∝
m∏

i=1

ni∏
k=1

{δ(yik = 1)δ(zik > 0) + δ(yik = 0)δ(zik ≤ 0)}

m∏
i=1

ni∏
k=1

{
v
−1/2
ik exp

[
− 1

2vi
(zik − x′ikβ − θi)2

]}
(55)

Hence by letting z−ik = (z11, . . . , zi,k−1, zi,k+1, . . . , zmnm) for each individual
k in region i, it follows at once from (55) that

p(zik|?) ∝ v
−1/2
i exp

[
− 1

2vi
(zik − x′ikβ − θi)2

]
·

{δ(yik = 1)δ(zik > 0) + δ(yik = 0)δ(zik ≤ 0)} (56)

Thus we see that for each ik, the conditional posterior of zik is a truncated
normal distribution, which can be expressed as follows:

zik|? ∼
{

N(x′iβ + θi, vi) left-truncated at 0, if yi = 1
N(x′iβ + θi, vi) right-truncated at 0, if yi = 0

(57)

where ? denotes the conditioning arguments, (β, θ, ρ, σ2, V, z−ik, y).
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3.7 The MCMC sampler

By way of summary, the MCMC estimation scheme involves starting with
arbitrary initial values for the parameters which we denote β0, θ0, ρ0, σ0, V 0

and the latent variable z0. We then sample sequentially from the following
set of conditional distributions for the parameters in our model.

1. p(β|θ0, ρ0, σ0, V 0, y0, z), which is a multinormal distribution with mean
and variance defined in (37). This updated value for the parameter
vector β we label β1.

2. p(θ|β1, ρ0, σ0, V 0, y0, z), which we sample from a multinormal distri-
bution in (41) (or the set of n univariate normal distributions with
means and variances presented in (75) of the Appendix.) These up-
dated parameters we label θ1. Note that we employ the updated value
β1 when evaluating this conditional distribution.

3. p(σ2|β1, θ1, ρ0, V 0, y0, z), which is chi-squared distributed n + 2α de-
grees of freedom as shown in (48). Label this updated parameter σ1

and note that we will continue to employ updated values of previously
sampled parameters when evaluating these conditional densities.

4. p(ρ|β1, θ1, σ1, V 0, y0, z), which can be obtained using a Metropolis-
Hastings approach described in LeSage (2000) based on a normal can-
didate density along with rejection sampling to constrain ρ to the
desired interval. One can also rely on univariate numerical integration
to find the conditional posterior on each pass through the sampler.
This was the approach we took to produce the estimates reported in
section 5.

5. p(vi|β1, θ1, ρ1, σ1, v−i, y
0, z) which can be obtained from the chi-squared

distribution shown in (52).

6. p(y|β1, θ1, ρ1, σ1, V 1, z), which requires draws from left- or right-truncated
normal distributions based on (57).

We now return to step 1) employing the updated parameter values in
place of the initial values β0, θ0, ρ0, σ0, V 0 and the updated latent variable
y1 in place of the initial y0. On each pass through the sequence we collect
the parameter draws which are used to construct a posterior distribution for
the parameters in our model.

In the case of θ and V , the parameters take the form of an mnm−vector,
which is also true of the draws for the latent variable vector y. Storing
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these values over a sampling run involving thousands of draws when m is
large would require large amounts of computer memory. One option is to
simply compute a mean vector which doesn’t require storage of the draws
for these vectors. The posterior mean may often provide an adequate basis
for posterior inferences regarding parameters like vi and the latent variable
y. Another option is to write these values to a disk file during the sampling
process, which might tend to slow down the algorithm slightly.

4 Some special cases

In this section we set forth distributional results for two cases which might
be of special interest. First, we consider the case in which all individuals are
interchangeable, i.e., in which homoscedasticity is postulated to hold among
regions. We then consider a case where spatial dependencies are presumed
to occur among individuals themselves, so that each individual is treated as
a region.

4.1 The homoscedastic case

This represents a situation where individual variances are assumed equal
across all regions, so the regional variance vector, v reduces to a scalar
producing the simple form of covariance matrix shown in (58).

V = vIn (58)

With this version of the model, the conditional posterior densities for β, θ, ρ,
and σ2 remain the same. The only change worthy of mention occurs in the
conditional posterior density for v. Here it can be readily verified by using
the same definitions, e = z −Xβ −∆θ and n =

∑
i ni, that the conditional

posterior density for v given (β, θ, ρ, σ2, z, y) is identical to (52) with all
subscripts i removed, i.e.,

e′e + r

v
|(β, θ, ρ, σ2, z, y) ∼ χ2(r + n) (59)

In addition, the conditional posterior density for each zik given (β, θ, ρ, σ2, v, z−ik, y)
is identical to (57) with vi replaced by v. Of course, for large n relative to
r this approaches the usual χ2(n) distribution for σ2 in the homoscedastic
Bayesian linear model.
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4.2 The individual spatial-dependency case

Another special case is where individuals are treated as ‘regions’ denoted
by the index i.. In this case we are essentially setting m = n and ni = 1
for all i = 1, . . . ,m. Note that although one could in principle consider het-
eroscedastic effects among individuals, the existence of a single observation
per individual renders estimation of such variances problematic at best. In
this case, one might adopt a homoscedasticity hypothesis described in sec-
tion 4.2 and use v to denote the common individual variance.6 Here it can
be verified that by simply replacing all occurences of (ik,Xi, θi1i,∆θ, ∆v)
with (i, x′i, θi, θ, v) respectively, and again using the definition of V in (58),
the basic model in (2) through (16), together with the conditional posterior
densities for β, ρ, and σ2 continue to hold. In this homoscedastic context,
the appropriate conditional posterior density for each θi, i = 1, . . . , n(= m),
again has the form (75), where the definitions of ai and bi are now modified
by setting vi = v, ni = 1, and φi = (zi − x′iβ)/v.

5 Applications of the model

We first illustrate the spatial probit model with interaction effects using a
generated data set. The advantage of this approach is that we know the true
parameter magnitudes as well as the generated spatial interaction effects.
This allows us to examine the ability of the model to accurately estimate
the parameters and interaction effects. We provide an applied illustration
in section 5.2 using the 1996 presidential election results that involves 3,110
US counties and the 48 contiguous states.

5.1 A generated data example

This experiment used the latitude-longitude centroids of n = 3, 110 US
counties to generate a set of data. The m = 48 contiguous states were
used as regions. A continuous dependent variable was generated using the
following procedure. First, the spatial interaction effects were generated
using:

θ = (Im − ρW )−1ε

ε ∼ N(0, σ2) (60)
6An alternative (not examined here) would be to consider regional groupings of in-

dividuals with possible heteroscedasticity effects between regions, while allowing spatial
dependencies to occur at the individual rather than regional level.
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where ρ was set equal to 0.7 in one experiment and 0.6 in another. In (60),
W represents the 48x48 standardized spatial weight matrix based on the
centroids of the states.

Six explanatory variables which we label X were created using county-
level census information on: the percentage of population in each county
that held high school, college, or graduate degrees, the percentage of non-
white population, the median household income (divided by 10,000) and the
percent of population living in urban areas. These are the same explanatory
variables we use in our application to the 1996 presidential election pre-
sented in section 5.2, which should provide some insight into how the model
operates in a generated data setting.

The data matrix X formed using these six explanatory variables was
centered using the studentize transformation that subtracts means and di-
vides by the standard deviations. Use of a centered data matrix X along
with negative and positive values for β ensures that the generated y values
have a mean close to zero. Since we will convert the generated continuous
y magnitudes to 0,1 z values using the rule in (62), this should produce a
fairly equal sample of 0,1 values.

z = 0 if y <= 0 (61)
z = 1 if y > 0

The vector of ∆θ along with the matrix X and parameters for β =
(3, −1.5, −3, 2, −1, 1)′ were used to generate a continuous y vector using:

y = Xβ + ∆θ + u

u ∼ N(0, V )
V = Im (62)

Generating a continuous y allows us to compare the posterior mean of the
draws from the truncated normal distribution which would serve as the basis
for inference about the unobserved y values in an applied setting. Another
focus of inference for this type of model would be the estimated values for
the m-vector of parameters θ.

A set of 100 data samples were generated and used to produce estimates
whose mean and standard deviations are shown in Table 1, alongside the
true parameter values used to generate the sample data. In addition to the
spatial probit model estimates, we also estimated a least-squares model, a
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non-spatial probit model and the spatial individual effects model based on
the continuous y values. This was done using the generated continuous y
vector and a minor change in the MCMC sampling scheme that ignored the
update step for the latent variable y in step 6) of the sampler. Instead, we
rely on the actual values of y, allowing us to see how inferences regarding
the parameters are affected by the presence of binary versus continuous y
values. Ideally, we would produce similar estimates from these two models,
indicating that the latent draws for y work effectively to replace the unknown
values.

Given the studentized matrix X the variance of each column, σ2
x = 1,

and we set σ2 = 2 to create a situation where the relative importance or
signal strength of X in generation of y was one-half that of the strength of
the individual effects θ. A second experiment with another 100 samples was
based on σ2

x = 1 and σ2 = 0.5 which creates a situation where the relative
importance or signal strength of θ in generation of y is one-half that of X.
This experiment used a value of ρ = 0.6 rather than the 0.7 value to examine
sensitivity to this parameter. Both experiments relied on a homoscedastic
prior setting r = 60 to reflect the homoscedasticity in the generating process.
In applied practice, it is important to note that one can encounter situations
where an inference is drawn suggesting the individual effects are not spatially
distributed, that is ρ = 0. This might be due to a large amount of noise,
represented by σ2 in the generating process used here. It might also be due
to a very strong signal in X relative to the signal in the individual effects,
resulting in the influence of individual effects begin masked in the estimated
outcomes. This situation would be represented by a large σ2

x relative to σ2

in our generating process. Of course, these two influences also depend on
the inherent observation noise reflected in u ∼ N(0, V ), which we controlled
by setting V = Im in our experiments.

Estimation results for these two illustrations are shown in Table 1 based
on 1,500 draws with the first 500 omitted for ‘burn-in’ of the sampler.

Turning attention to the experimental results for the case where σ2 = 2
shown in the table, we see that least-squares and probit estimates for β are
inaccurate as we would expect. The spatial probit estimates were on average
very close to those from the spatial regression model based on non-binary
y-values, suggesting that sampling for the latent y works well. It should
come as no surprise that estimates for β based on the non-binary depen-
dent variable y are more precise than those from the spatial probit model
based on binary z values. From the standard deviations of the estimates
over the 100 samples, we see that use of binary dependent variables results
in a larger standard deviation in the outcomes, reflecting less precision in
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the β and σ estimates. This seems intuitively correct, since these estimates
are constructed during MCMC sampling based on draws for the latent y
values. A graphical depiction of these draws from a single estimation run
are shown in Figure 1, where we see that they are centered on the true
y, but exhibit dispersion. The R−squared between the posterior mean of
the latent y draws and the actual y (which we know here) was around 0.9
for this single estimation run. In summary, additional uncertainty arising
from the presence of binary dependent variables z that must be sampled to
produce latent y during estimation result in increased dispersion or uncer-
tainty regarding the β estimates for the spatial probit model, relative to the
non-binary spatial regression model.

The experimental results for the case where σ2 = 0.5 show roughly the
same pattern in outcomes. This suggests that the estimation procedure will
work well for cases where the relative signal strength of X versus θ varies
within a reasonable range.

An important use for this type of model would be inferences regarding
the character of the spatial interaction effects. Since these were generated
here, we can compare the mean of the posterior distribution for these values
with the actual magnitudes. Figure 2 shows this comparison, where the
average θ estimates from both the spatial probit and spatial regression model
are plotted against the average of the true θ values generated during the
experiment. In the figure, the individual effect estimates were sorted by
magnitude of the average actual θ values for presentation purposes. We
see from the figure that the estimates were on average close to the true
values and one standard deviation of these estimates were also close to one
standard deviation of the actual θ values. The spatial regression estimates
were slightly more accurate as we would expect, exhibiting a correlation of
0.97 with the actual θ, whereas the spatial probit estimates had a correlation
of 0.91

Figure 3 shows the actual θ values plotted versus the posterior mean of
these estimates from a single estimation. Estimates from both the spatial
probit model and the spatial regression model are presented and we see that
accurate inferences regarding the individual effects could be drawn. The
correlation between the actual individual effects used to generate the data
and the predictions is over 0.9 for both models.

By way of summary, the spatial probit model performed well in this
generated data experiment to detect the pattern of spatial interaction effects
and to produce accurate parameter estimates.
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5.2 An application to the 1996 presidential election

To illustrate the model in an applied setting we used data on the 1996
presidential voting decisions in each of 3,110 US counties in the 48 contiguous
states. The dependent variable was set to 1 for counties where Clinton won
the majority of votes and 0 for those where Dole won the majority.7 To
illustrate individual versus regional spatial interaction effects we treat the
counties as individuals and the states as regions where the spatial interaction
effects occur.

As explanatory variables we used: the proportion of county population
with high school degrees, college degrees, and graduate or professional de-
grees, the percent of the county population that was non-white, the median
county income (divided by 10,000) and the percentage of the population
living in urban areas. These were the same variables used in the generated
data experiments, and we applied the same studentize transformation here
as well. Of course, our application is illustrative rather than substantive.

We compare estimates from a least-squares and traditional non-spatial
probit model to those from the spatial probit model with a homogeneity
assumption and a heteroscedastic assumption regarding the disturbances.
The spatial probit model estimates are based on 6,000 draws with the first
1,000 omitted to allow the sampler to achieve a steady-state.8 Diffuse or
conjugate priors were employed for all of the parameters β, σ2 and ρ in the
Bayesian spatial probit models. A hyperparameter value of r = 4 was used
for the heteroscedastic spatial probit model, and a value of r = 40 was
employed for the homoscedastic prior. The heteroscedastic value of r = 4
implies a prior mean for r equal to r/(r − 2) = 2 [see discussion surround-
ing (53)] and a prior standard deviation equal to

√
(2/r) = 0.707. A two

standard deviation interval around this prior mean would range from 0.58
to 3.41, suggesting that posterior estimates for individual states larger than
3.4 would indicate evidence in the sample data against homoscedasticity.
The posterior mean for the vi estimates was greater than this upper level in
13 of the 48 states (shown in Table 2), with a mean over all states equal to
2.86 and a standard deviation equal to 2.36. The frequency distribution of
the 48 vi estimates is shown in Figure 4, where we see that the mean is not
representative for this skewed distribution. We conclude there is evidence
in favor of mild heteroscedasticity.

7The third party candidacy of Perot was ignored and only votes for Clinton and Dole
were used to make this classification of 0,1 values.

8Estimates based on 1,500 draws with the first 500 omitted were nearly identical sug-
gesting that one need not carry out an excessive number of draws in practice.
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Comparative estimates are presented in Table 3, where we see that differ-
ent inferences would be drawn from the homoscedastic versus heteroscedastic
estimates. With the exception of high school graduates, the magnitudes of
the coefficients on all other variables are quite different. The heteroscedastic
estimates are larger (in absolute value terms) than the homoscedastic results
with the exception of population in urban areas which is not significant. In
the case of college graduates, the homoscedastic and heteroscedastic results
differ regarding the magnitude and significance of a negative impact on
Clinton winning. Heteroscedastic results suggest a larger negative influence
significant at conventional levels while the homoscedastic results indicate a
smaller insignificant influence.

The results also indicate very different inferences would be drawn from
the non-spatial probit model versus the spatial probit models. For example,
the non-spatial model produced larger coefficient estimates for all three ed-
ucation variables. It is often the case that ignoring spatial dependence leads
to larger parameter estimates, since the spatial effects are attributed to the
explanatory variables in these non-spatial models. Another difference is that
the coefficient on median income is small and insignificant in the non-spatial
model whereas it is larger (in absolute value terms) and significant in both
spatial models.

The parameter estimates for the spatial interaction effects should exhibit
spatial dependence given the estimates for ρ. Figure 5 shows a graph of
these estimates along with a ±2 standard deviation confidence interval. In
the figure, the states were sorted by 0,1 values reflecting the 18 states where
Dole won the majority of votes versus the 30 states where Clinton won.
From the figure we see that in the 30 states where Clinton won there is
evidence of predominately positive spatial interaction effects, whereas in the
states where Dole won there are negative individual effects.

A comparison of the individual effect estimates from the homoscedastic
and heteroscedastic models is shown in Figure 6, where we see that these
two sets of estimates would lead to the same inferences.

Figure 7 shows a map of the significant positive and negative estimated
individual effects as well as the insignificant effects, (based on the het-
eroscedastic model). This map exhibits spatial clustering of positive and
negative effects, consistent with the positive spatial dependence parameter
estimate for ρ.

Finally, to assess predictive accuracy of the model we examined the pre-
dicted probabilities of Clinton winning. In counties where Dole won, the
model should produce a probability prediction less than 0.5 of a Clinton
win. On the other hand accurate predictions in counties where Clinton won
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would be reflected in probability predictions greater than 0.5. We counted
these cases and found the heteroscedastic model produced the correct pre-
dictions in 71.82 percent of the counties where Dole won and in 71.16 percent
of the counties where Clinton won. The homoscedastic model produced cor-
rect predictions for Dole in 73.29 percent of the counties and for Clinton in
69.06 percent of the counties.

6 Conclusion

A hierarchical Bayesian spatial probit model that allows for spatial interac-
tion effects as well as heterogeneous individual effects was introduced here.
The model extends the traditional Bayesian spatial probit model by allow-
ing decision-makers to exhibit spatial similarities. In addition to spatial
interaction effects, the model also accommodates heterogeneity over indi-
viduals (presumed to be located at distinct points in space) by allowing for
non-constant variance across observations.

Estimation of the model is via MCMC sampling which allows for the in-
troduction of prior information regarding homogeneity versus heterogeneity
as well as prior information for the regression and noise variance parameters.

The model is not limited to the case of limited dependent variables and
could be applied to traditional regression models where a spatial interaction
effect seems plausible. This modification involves eliminating the truncated
normal draws used to obtain latent y values in the case of limited dependent
variables. MATLAB functions that implement the probit and regression
variants of the model presented here are available at: http://www.spatial-
econometrics.com. They rely on a c-language interface available in MAT-
LAB to call an externally compiled c-program from within the MATLAB
programming environment. This enhances the speed of the estimation pro-
gram by a factor of six times over a program written in the interpreted
MATLAB matrix programming language.
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Appendix

This appendix derives a sequence of univariate conditional posterior dis-
tributions for each element of θ that allows the MCMC sampling scheme
proposed here to be applied in larger models. For models with less than
m = 100 regions it is probably faster to simply compute the inverse of the
mxm matrix A0 and use the multinormal distribution presented in (41). For
larger models this can be computationally burdensome as it requires large
amounts of memory.

The univariate conditional distributions are based on the observation
that the joint density in (40) involves no inversion of A0, and hence is easily
computable. Since the univariate conditional posteriors of each component,
θi of θ must be proportional to this density, it follows that each is univariate
normal with a mean and variance that are readily computable.

To formalize these observations, observe first that if for each realized
value of θ and each i = 1, . . . ,m we let θ−i = (θ1, . . . , θi−1, θi+1, . . . , θm),
then by the same argument as in (31) we see that

p(θi|?) =
p(θ, β, ρ, σ2, V, z, y)

p(θ−i, β, ρ, σ2, V, z|y)
∝ p(θ, β, ρ, σ2, V, z|y)

∝ π(z|β, θ, V ) · π(θ|ρ, σ2)

∝ exp{−1
2
[θ′(σ−2B′

ρBρ + ∆′V −1∆)θ

− 2(z −Xβ)′V −1∆θ]} (63)

This expression can be reduced to terms involving only θi as follows. If
we let φ = (φi : i = 1, . . . ,m)′ = [(z − Xβ)′V −1∆]′, then the bracketed
expression in (63) can be written as,

θ′(σ−2B′
ρBρ + ∆′V −1)∆θ − 2(z −Xβ)′V −1∆θ

=
1
σ2

θ′(I − ρW ′)(I − ρW )θ + θ′∆′V −1∆θ − 2φ′θ

=
1
σ2

[θ′θ − 2ρθ′Wθ + ρ2θ′W ′Wθ] + θ′∆′V −1∆θ − 2φ′θ (64)

But by permuting indices so that θ′ = (θi, θ
′
−1), it follows that

θ′Wθ = θ′
(

w.i W−i

)( θi

θ−i

)
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= θ′(θiw.i + W−iθ−i)
= θi(θ′w.i) + θ′W−iθ−i (65)

where w.i is the ith column of W and W−i is the mx(m − 1) matrix of all
other columns of W . But since wii = 0 by construction, it then follows that

θ′Wθ = θ′

∑
j 6=i

θjwji

+
(

θi θ′−i

)( ∑
j 6=i θjwij

C

)

= θi

∑
j 6=i

θj(wji + wij) + C (66)

where C denotes a constant not involving parameters of interest. Similarly,
we see from (65) that

θ′W ′Wθ = (θiw.i + W−iθ−i)′(θiw.i + W−iθ−i)
= θ2

i w
′
.iw.i + 2θi(w′

.iW−iθ−i) + C (67)

Hence, by observing that

θ′θ = θ2
i + C (68)

θ′∆′V −1∆θ = niθ
2
i /vi + C (69)

−2φ′V −1θ = −2φiθi + C (70)

where the definition of φ = (φi : i = 1, . . . ,m)′ implies [using the notation
in (10)] that each φi has the form

φi =
1′i(zi −Xiβ)

vi
, i = 1, . . . ,m (71)

Finally, by substituting these results into (64), we may rewrite the con-
ditional posterior density of θi as

p(θi|?) ∝ exp{−1
2
[(−2ρθi

∑
j 6=i

θj(wji + wij)θi

+ ρ2θ2
i w

′
.iw.i + 2ρ2θi(w′

.iW−iθ−i))
1
σ2

+ niθ
2
i /vi − 2φiθi]}

= exp{−1
2
(aiθ

2
i − 2biθi)}
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∝ exp{−1
2
(aiθ

2
i − 2biθi + b2

i /ai)}

= exp{− 1
2(1/ai)

(
θi −

bi

ai

)2

} (72)

and ai and bi are given respectively by

ai =
1
σ2

+
ρ2

σ2
w′

.iw.i +
ni

vi
(73)

bi = φi +
ρ

σ2

∑
j 6=i

θj(wji + wij)θj −
ρ2

σ2
w′

.iW−iθ−i (74)

Thus the density in (72) is seen to be proportional to a univariate normal
density with mean, bi/ai, and variance, 1/ai, so that for each i = 1, . . . .m
the conditional posterior distribution of θi given θ−i must be of the form

θi|(θ−i, β, ρ, σ2, V, z, y) ∼ N(
bi

ai
,

1
ai

) (75)
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Figure 1: Actual y vs. mean of the latent y-draws
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Figure 2: Mean of Actual vs. Predicted θ estimates over 100 samples
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Table 1: Generated data results

Experiments using σ2 = 2
Estimates ols probit sprobit sregress
β1 = 3 0.2153 1.5370 2.9766 2.9952
β2 = -1.5 -0.1291 -0.8172 -1.5028 -1.5052
β3 = -3 -0.0501 -1.5476 -2.9924 -2.9976
β4 = 2 0.1466 1.0321 2.0019 2.0013
β5 = -1 -0.0611 -0.5233 -0.9842 -1.0013
β6 = 1 0.0329 0.5231 0.9890 1.0006
ρ = 0.7 0.6585 0.6622
σ2 = 2 2.1074 2.0990
Standard deviations ols probit sprobit sregress
σβ1 0.0286 0.2745 0.1619 0.0313
σβ2 0.0434 0.3425 0.1463 0.0393
σβ3 0.0346 0.4550 0.2153 0.0390
σβ4 0.0256 0.2250 0.1359 0.0252
σβ5 0.0176 0.1630 0.1001 0.0293
σβ6 0.0109 0.1349 0.0819 0.0244
σρ 0.1299 0.1278
σσ 0.5224 0.3971

Experiments using σ2 = 0.5
Estimates ols probit sprobit sregress
β1 = 3 0.2312 2.4285 3.0290 2.9983
β2 = -1.5 -0.1312 -1.1601 -1.5017 -1.4966
β3 = -3 -0.0517 -2.4646 -3.0277 -3.0042
β4 = 2 0.1513 1.5975 2.0137 1.9984
β5 = -1 -0.0645 -0.8140 -1.0121 -1.0002
β6 = 1 0.0348 0.8046 1.0043 0.9994
ρ = 0.6 0.5963 0.5886
σ2 = 0.5 0.4960 0.5071
Standard deviations ols probit sprobit sregress
σβ1 0.0172 0.2058 0.1684 0.0292
σβ2 0.0219 0.2516 0.1420 0.0392
σβ3 0.0168 0.3873 0.2215 0.0382
σβ4 0.0125 0.1652 0.1301 0.0274
σβ5 0.0103 0.1595 0.1102 0.0329
σβ6 0.0074 0.1280 0.0899 0.0237
σρ 0.1257 0.1181
σσ 0.1584 0.1101
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Table 2: Posterior means for Vi parameters indicating heteroscedasticity

State Vi estimate
Arizona 4.7210
Colorado 8.6087
Florida 3.9645
Georgia 11.1678
Kentucky 8.8893
Missouri 6.5453
Mississippi 4.3855
North Carolina 3.8744
New Mexico 4.7840
Oregon 4.3010
Pennsylvania 3.4929
Virginia 7.9718
Washington 4.7888
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Table 3: 1996 Presidential Election results

Homoscedastic Spatial Probit model with individual spatial effects
Variable Coefficient Std. deviation P-level†
high school 0.0976 0.0419 0.0094
college -0.0393 0.0609 0.2604
graduate/professional 0.1023 0.0551 0.0292
non-white 0.2659 0.0375 0.0000
median income -0.0832 0.0420 0.0242
urban population -0.0261 0.0326 0.2142
ρ 0.5820 0.0670 0.0000
σ2 0.6396 0.1765

Heteroscedastic Spatial Probit model with individual spatial effects
Variable Coefficient Std. deviation P-level†
high school 0.0898 0.0446 0.0208
college -0.1354 0.0738 0.0330
graduate/professional 0.1787 0.0669 0.0010
non-white 0.3366 0.0511 0.0000
median income -0.1684 0.0513 0.0002
urban population -0.0101 0.0362 0.3974
ρ 0.6176 0.0804 0.0000
σ2 0.9742 0.3121

Non-spatial Probit model
Variable Coefficient t-statistic t-probability
high school 0.1961 6.494 0.0000
college -0.1446 -3.329 0.0008
graduate/professional 0.2276 5.568 0.0000
non-white 0.2284 8.203 0.0000
median income -0.0003 -0.011 0.9909
urban population -0.0145 -0.521 0.6017
† see Gelman, Carlin, Stern and Rubin (1995) for a description of p-levels
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Figure 3: Actual vs. Predicted θ from a single estimation run
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Figure 5: Individual effects estimates for the 1996 presidential election
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Figure 7: A map of individual effects estimates from the heteroscedastic
spatial probit model
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