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Abstract: The topic of this paper is a novel Bayesian continuous-basis field representation

and inference framework. Within this paper several problems are solved: The maximally in-

formative inference of continuous-basis fields, that is where the basis for the field is itself a

continuous object and not representable in a finite manner; the tradeoff between accuracy of

representation in terms of information learned, and memory or storage capacity in bits; the

approximation of probability distributions so that a maximal amount of information about

the object being inferred is preserved; an information theoretic justification for multigrid

methodology. The maximally informative field inference framework is described in full

generality and denoted the Generalized Kalman Filter. The Generalized Kalman Filter al-

lows the update of field knowledge from previous knowledge at any scale, and new data, to

new knowledge at any other scale. An application example instance, the inference of con-

tinuous surfaces from measurements (for example, camera image data), is presented.

Keywords: Bayesian inference; Generalized Kalman filter; Kalman filter; Kullback-Leibler

distance; Maximally informative statistical inference; Knowledge representation; Mini-

mumDescription Length; Sufficient statistics; Multigrid methods; Adaptive scale inference;

Adaptive grid inference; Mutual information.
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1 Overview

The paper begins by reviewing traditional approahes to surfae representation and inferene.

Then the new �eld representation and inferene paradigm is introdued within the ontext of

maximally informative (MI) inferene [5℄, early ideas appearing in [4℄. The knowledge represen-

tation distribution is introdued and disussed in the ontext of MI inferene. Then, using the

MI inferene approah, the here-named Generalized Kalman Filter (GKF) equations are derived

for a spei� example instane of inferring a surfae height �eld. The GKF equations motivate a

loation-dependent adaptive sale or multigrid approah to the MI inferene of ontinuous-basis

�elds.

2 Introdution: Surfae representation

2.1 Traditional methods

Many methods for representing surfaes have been utilized previously, however these methods in-

volve representing the surfae by a disrete basis �eld, perhaps with a deterministi interpolation

de�ned (bi-linear, tensor B-splines, et.) to provide a de�nition for the surfae at points inter-

mediate to the disrete �eld. Probability distributions or densities of these disrete �elds then

often take the form of normalized exponentials of sums of lique energy funtions, and produe

a onstrut ommonly known as a Markov Random Field. (See Geman [2℄, for an often ited

example.) There are several immediate observations on these approahes:

� The surfae remains unspei�ed at points intermediate to the disrete �eld, exept by the

often unde�ned notion of interpolation.

� When interpolation is not de�ned, the disrete �eld probability distribution says nothing

about the probability distribution of surfae at points intermediate to the disrete �eld

points.

� When interpolation is de�ned then, given a value of the disrete �eld, there is no unertainty

in the surfae intermediate to the disrete �eld points. There is a deterministi mapping

from any given disrete �eld to the orresponding ontinuous surfae. In partiular, when

the disrete �eld basis overs a �xed grid on the (x; y) plane with z heights at eah grid

point, known here as a height �eld, all sampling of the surfae intermediate to the �xed grid

is determined at the sale of the �xed grid. This is generally not physial, see next.

� The surfae distribution is not an intrinsi property of any physial surfae, rather a post-

ho imposition of the analyst attempting a useful regularization. For instane, neessary
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saling properties are ignored: Moving a amera loser to the surfae, for example, so that

the density of sample points on the physial surfae inreases, is not properly represented

in the �xed basis of the disrete �eld distribution; there is no onsisteny imposed that

requires a subsampled set of points to have the same probability density that one would �nd

by marginalizing the surfae distribution over the sample points not in the subsampling.

2.2 Saling onsisteny

The onsisteny ondition mentioned in the last setion, whih must be imposed on probability

distributions for ontinuous �elds is:

Saling of sample points onsisteny: For S � A indies of disrete �eld variables,

P (XS) =
Z
P (XA) dXAnS (1)

Note that equation 1 is a ondition whih must be imposed on the distributions whih any mod-

elling system learns where it is sensible to supersample or subsample the �eld arbitrarily, as in

the ontinuous �eld basis ase.

2.3 Elements of the paradigm

The rest of this paper disusses an approah to ontinuous �eld inferene whih orrets the

de�ienies, inluding the intermediate value and saling problems, of traditional disrete-basis

approahes to the inferene of disrete height �elds, for example. The new approah is here named

the Generalized Kalman Filter.

There are four entral objets of importane within the inferene approah desribed in this

paper, one of whih is a new objet to Bayesian inferene:

� The prior distribution for �eld. The prior holds all information about �elds before any data

is observed.

� The likelihood distribution. The likelihood is preditive for data, given the �eld. It inor-

porates all of the physis of the measurement proess.

� The posterior distribution. The posterior distribution summarizes everything knowable

about the �eld given assumptions of likelihood form, the prior knowledge, and all data.

� The knowledge-representation (KR) distribution. Within the usual Bayesian point of

view, the KR distribution is the new mathematial objet. In the paradigm desribed

in this paper the KR distribution is the objet updated when new data arrives. The KR
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distribution is parameterized by maximally informative statistis (see [5℄) for the learned �eld

knowledge. Note that beause the KR distribution has a �nite number-of-values limitation,

the KR distribution is not neessarily able to represent what ould have been learned from

data about the (ontinuous) �eld. Generally, the prior distribution and the KR distribution

determine an approximation (possibly exat) to the �eld posterior distribution. It should

be noted that modern omputer arhiteture (memory and spae-time) onstraints appear

to be the fundamental physial drivers for the utilization of the KR distribution, simply

beause storing the exat posterior generally requires an in�nite amount of memory.

In the height �eld inferene appliation disussed later the KR distribution is parameterized

by heights at a set of disrete basis points, but holds knowledge about a ontinuous basis

height �eld. However, generally, the KR distribution may use an arbitrary set of basis

funtions.

One advane of the GKF is that the KR distribution is naturally adaptive in both dimension

and sale, allowing the learning of ontinuous-basis �eld information at the appropriate sale,

where appropriate.

Bene�ts of the approah desribed in this paper are that it has these information theoretially

optimal features: 1. A loation-dependent adaptive and salable multigrid-like algorithm, so that

only the bytes neessary to represent the learned information are stored, leading to a style of

maximally sparse representation of surfae knowledge; 2. A reursive updating algorithm. It will

beome lear that the Bayesian GKF �eld inferene paradigm also has these properties:

� It is the information learned about the �eld, (the KR distribution), whih takes the form

of a distribution over disrete values. In the surfae inferene example these disrete values

are heights at disrete basis points.

� The prior distribution for �elds, in onjuntion with the learned knowledge of the �eld held

within the KR distribution determine a well-de�ned posterior distribution over ontinuous

�elds.

� The �eld posterior distribution is always a well de�ned quantity everywhere. In the surfae

inferene example disussed later, this ontinuity is at points intermediate to the disrete

height �eld basis points of the KR distribution.

� The saling ondition equation 1 is automatially imposed beause the posterior distribution

is a distribution over �elds.

As an example onsider the inferene of ontinuous surfaes: While it may seem obvious, in the

ase of ontinuous surfae inferene, that what one is atually representing with a disrete set of
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values in memory is only a part of the information whih helps to determine the surfae posterior

distribution, it is unusual to not be disussing the height �eld as the primary representation of

surfae. It is the inherently disrete nature of the storage of information in mahines whih fores

us into this stane - generally it is impossible to represent an arbitrary ontinuous �eld with a �nite

set of disrete values - one must also have another objet from whih to ompute the intermediate

values of the �eld. (Another way to look at the disparity between the urrent proposal for �eld

inferene and traditional proposals is that the traditional approahes are suÆient only for band-

limited �elds.)

In setion 3 the GKF is speialized to height �elds, where an example, surfae representation and

learning, of the GKF paradigm is desribed. (The approah taken in this setion is to speialize to a

ase that is then easily seen to generalize to the general ontinuous basis �eld inferene paradigm.)

The next setion ontinues with observations on the update sheme. Further setions ontinue

with the example speial ase for surfae distributions with partiularly tratable mathematis,

and �nal setions provide expliit forms for the general GKF equations, a disussion on their

relationship to the standard Kalman �lter, a disussion on the amount of information learned at

eah update, and a searh heuristi. Extensive appendies provide supporting mathematis for

the derivations.

3 Surfae representation and inferene

In this setion the main ideas of the Bayesian surfae representation and inferene paradigm

presented in this paper are given. The tehnique is general, though: setion 4 disusses the

extension to an arbitrary-basis, arbitrary-dimension �eld.

3.1 Surfae distributions

The surfae and height �eld distributions (the prior, likelihood, and posterior surfae and height

�eld distributions) are disussed in this setion.

3.1.1 Surfae and height �eld prior distributions

Consider a set S of surfaes where eah element s 2 S is a height �eld, i.e. suh that s = s(x; y)

is real funtion of two variables. Write the prior probability distribution for surfaes in S given

the parameters � whih determine the prior distribution as

P (s j �): (2)

Consider a vetor v = (v1; : : : ; vn) of disrete (x; y) points, vi = (xi; yi). For any given surfae

s denote the assoiated vetor of heights by h(s; v) = (h1(s; v); : : : ; hn(s; v)). Write the prior
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distribution of the surfae heights at the hosen points v as P (hv j �). This disrete height

distribution may be found as follows:

P (hv j �) =
Z

P (hv j s; �)P (s j �) ds (3)

=
Z

P (hv j s)P (s j �) ds (4)

=
Z
Æ(hv � h(s; v))P (s j �) ds (5)

where the vetor delta-funtion is de�ned as

Æ(hv � h(s; v)) = �n
i=1Æ(hv;i � hi(s; v)) (6)

Now, given that what is known is the surfae heights hv at a vetor v of disrete (x; y) points,

the posterior distribution of surfaes is found from Bayes' theorem as

P (s j hv; �) =
P (hv j s; �)P (s j �)

P (hv j �) (7)

=
P (hv j s)P (s j �)

P (hv j �) (8)

=
Æ(hv � h(s; v))P (s j �)R
Æ(hv � h(s; v))P (s j �) ds (9)

where the denominator distribution was found in equation 5.

3.1.2 Measurements: The Likelihood

In general, a surfae s and some other parameters � not dependent upon s (i.e. amera point

spread funtion, amera position and diretion, lighting position and diretion, et.) speify the

probability distribution for data (likelihood)

P (x j s; �; �) = P (x j s; �) (10)

where the data distribution is independent of � one s is known.

3.1.3 Conditioning on data: Surfae and height �eld posterior distributions

Given data, the surfae posterior distribution is inferred using Bayes' theorem as

P (s j x; �; �) =
P (x j s; �; �)P (s j �; �)

P (x j �; �) (11)

=
P (x j s; �)P (s j �)R
P (x j s; �)P (s j �) ds (12)
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The distribution of the surfae posterior marginalized to a set of disrete points may be written

using equations 11{12, doing steps similar to those taken in equations 3{5, as

P (hv j x; �; �) =
Z

P (hv j s;x; �; �)P (s j x; �; �) ds (13)

=
Z

P (hv j s)P (s j x; �; �) ds (14)

=
Z
Æ(hv � h(s; v))P (s j x; �; �) ds (15)

In steps similar to equations 7{9 the surfae posterior when a height �eld is also known is given

by

P (s j hv;x; �; �) =
P (hv;x j s; �; �)P (s j �; �)

P (hv;x j �; �) (16)

=
P (hv j s)P (x j s; �)P (s j �)

P (hv;x j �; �) (17)

=
Æ(hv � h(s; v))P (x j s; �)P (s j �)R
Æ(hv � h(s; v))P (x j s; �)P (s j �) ds (18)

where we used the fats that, given a surfae, the data and the surfae heights are independent,

and the surfae distribution is independent of the amera and lighting parameters �.

3.2 Approximating the posterior

One motivation for approximating the surfae distribution is that generally a surfae is an unount-

ably in�nite, ontinuous entity, and therefore there is little else whih an be done to represent

it exatly other than to go into, literally, in�nite detail (requiring an in�nite supply of memory).

It is therefore useful to have an approximation sheme whih, although �nite, aptures the rel-

evant information provided by data. Another exellent reason for developing an approximation

is mathematial tratability. Having a representation sheme whih allows a tratable alula-

tion of the posterior is a huge bene�t for both omputation and ommuniation. Finally, it is of

great interest to not waste omputational resoures while representing learned surfae information.

The solution to the surfae representation problem presented here addresses the ompetition for

representational resoures (memory) issue in a unique manner.

3.2.1 The knowledge representation distribution

The full posterior may be written in the form

P (s j x; �; �) =
Z

P (s j hv;x; �; �)P (hv j x; �; �) dhv (19)
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where the distributions inside the integral appear in equations 13{18. The issue of generating

a �nite representation is not yet resolved via equation 19 however, sine storing information

suÆient to determine the distributions P (s j x; �; �), and P (s j hv;x; �; �) generally requires

storing an in�nite set of values in a �nite amount of memory, or requires that all data be stored,

disallowing any disarding of data and the inremental updating of the representation. Instead,

onsider the following approximation where the prior onditioned on a set of heights, along with

a new distribution, the knowledge representation distribution P̂ (hv j x; �; �), are substituted for

the distributions inside the integral of equation 19.

P̂ (s j P̂ (hv j x; �; �) ) =
Z

P (s j hv; �) P̂ (hv j x; �; �) dhv (20)

It is important to note at this point that any suitable surfae distribution may be substituted into

the right-hand side of equation 20 for P (s j hv; �), sine it is important only that the resulting

integral be apable of making a good approximation to the true posterior. Further, it is not

neessary to restrit the basis v to disrete height �eld basis points, any suitable basis may be

taken, for instane Fourier omponents. Although all of the alulations of this paper are arried

thru with the form of 20, other forms may prove more onvenient, and it is not diÆult to suggest

others. In partiular, sine equation 20 will be used in an iterative update loop later, updates

that take for the right-hand side prior term the last posterior term appear quite reasonable (the

orresponding GKF update equations may be found immediately from those presented later).

Although onditioning on the KR distribution P̂ (hv j x; �; �) may seem strange, a good way

to understand the meaning is that it is the KR distribution whih is being used as a statisti for

the learned surfae information. The key thing to notie in equation 20 is that, with reasonable

regularity onditions, hoosing the points of v suÆiently dense, the approximation desired to the

full posterior may beome arbitrarily good. The trik will be to hoose v appropriately, prop-

erly weighting the ompeting need to approximate arbitrarily well everywhere with the limited

resoures that are imposed when a �nite amount of storage is available, i.e. when the dimensional-

ity of v is �xed. This will be addressed in the next setion. In the ase of simple imaging systems,

the point spread funtion and pixel diameter are good indiators of the neessary sampling sale

for v. In the super-resolved ase, the resolution expeted available from the data is the appropriate

sale for v.

The approximation to the posterior of 20 has several properties whih make it valuable:

� The prior distribution P (s j hv; �) whih supplies the unertainties assoiated with points

of the surfae not in the vetor v may be hosen to have a simple form (see appendix 12.1)

that is easily enoded algorithmially in �nite memory.

� There is a lear separation between what was already known - the prior P (s j hv; �), and

what has been learned - the KR distribution P̂ (hv j x; �; �).
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� There is a lear desription of the sale at whih information has been aquired in terms of

the density and unertainties assoiated with the points (v; h(s; v)) on the surfae, and in

terms of the unertainties of their positions as enoded in the KR distribution.

In pratie, it is useful to take a multinormal distribution over the disrete-point height �eld

as the KR distribution. Let the parameterization of the KR distribution be �v. For example, if

the KR is taken to be multinormal then the parameters of that distribution are

�v(x) = (�v(x);�v(x)); (21)

the mean and ovariane matrix of the multinormal, where the funtional dependene on x in-

diates a data dependeny through the update proedure, and the subsript v indiates that the

parameters parameterize a distribution of heights at points v. Beause the KR distribution and

its parameters are related by a one-to-one mapping, re-write equation 20 as

P̂ (s j �v; �) =
Z

P (s j hv; �) P̂ (hv j �v) dhv: (22)

In summary, we have arrived at an approximation to the surfae posterior distribution, via the

KR distribution, parameterized by �v.

3.3 Updating the knowledge representation

Now we disuss updating �v when new data are aquired. Temporarily restrit attention to the

�xed v ase. During this and the next setions refer to �gure 1 for a owhart of the general GKF

update proess.

3.3.1 Bayes' theorem

Having aquired �n
v = �v(x

n), from previously seen data xn = (x1; : : : ;xn) and upon seeing new

data xn+1, the goal is to �nd �n+1
v suh that the surfae distribution given �n+1

v approximates

the surfae distribution given xn+1 and �n
v . Given new data xn+1 in the ontext of the previously

seen data xn summarized by �n
v , our updated surfae distribution is found via Bayes' theorem

P̂ (s j xn+1;�
n
v ; �; �) =

P (xn+1 j s;�n
v ; �; �)P̂ (s j �n

v ; �; �)

P̂ (xn+1 j �n
v ; �; �)

=
P (xn+1 j s; �)P̂ (s j �n

v ; �)

P̂ (xn+1 j �n
v ; �; �)

=
P (xn+1 j s; �)P̂ (s j �n

v ; �)R
P (xn+1 j s; �)P̂ (s j �n

v ; �) ds
(23)
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where we de�ned

P̂ (xn+1 j �n
v ; �; �) =

Z
P (xn+1 j s; �)P̂ (s j �n

v ; �) ds: (24)

The updated posterior P̂ (s j �n
v ;xn+1; �; �) will be approximated by the �n+1

v parameterized KR

distribution of equation 22 as

P̂ (s j �n+1
v ; �) =

Z
P (s j hv; �) P̂ (hv j �n+1

v ) dhv: (25)

The approximation ondition for determining �n+1
v is then written

P̂ (s j �n+1
v ; �) � P̂ (s j xn+1;�

n
v ; �; �) (26)

Equation 26 suggests we try to minimize various measures of the loseness of the two distributions.

For example, one measure is the average square di�erene of the two distributions,Z
jP1(s)� P2(s)j2 ds (27)

but there is (apparently) no good �rst-priniples reason to use this form. In the next setion we

disuss the measure of distane whih leads to the maximally informative hoie of �n+1
v .

3.3.2 Maximally informative inferene

The measure of distane whih leads to the �n+1 providing the most information about the surfae

distribution is the maximally informative hoie for the statisti �n+1. The ondition for being

maximally informative, see [5℄, is that the Kullbak-Leibler distane D(P1(s); P2(s)) is minimized,

where

D(P1(s); P2(s)) =
Z

P1(s) log

 
P1(s)

P2(s)

!
ds (28)

and where the P 's above are posterior distributions of �eld, that is

P1(s) = P̂ (s j xn+1;�
n
v ; �; �) (29)

P2(s) = P̂ (s j �n+1
v ; �): (30)

That is,

Find the �n+1 suh that

��n+1
v

Z
P̂ (s j �n

v ;xn+1; �; �) log

 
P̂ (s j �n

v ;xn+1; �; �)

P̂ (s j �n+1
v ; �)

!
ds = 0

(31)
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while at the �n+1
v satisfying the derivative ondition above

det

"
�2
�n+1
v

Z
P̂ (s j �n

v ;xn+1; �; �) log

 
P̂ (s j �n

v ;xn+1; �; �)

P̂ (s j �n+1
v ; �)

!
ds

#
< 0

(32)

i.e., the hessian is negative de�nite and the extremum is a loal maximum. If possible, hoose

the global maximum. Note that the Kullbak-Leibler distane is asymmetri. Generally, it is

highly relevant whih distribution ontains the prior information and whih distribution is being

updated. Maximum entropy tehniques reverse the roles of P1 and P2 whih appear here. For a

detailed explanation see [5℄.

In the following setion are some observations on the approah taken to maximally informative

surfae inferene. Setion 5 then briey makes expliit the spei� distribution forms whih are

assumed. The Generalized Kalman Filter update equations for the surfae inferene example

whih follow from this approah are then presented in setion 6, ompleting the derivation of the

maximally informative approah.

4 Observations on the update sheme

Note the following:

� The updating sheme desribed here is a maximally informative update sheme and is related

to the Kalman �lter. The Kalman �lter is a minimum variane �ltering sheme appliable

in the ase of �xed representation dimension. The ruial step whih has been taken in the

urrent work is the step of allowing the representation sheme to be adaptable. We have

adopted the label \Generalized Kalman Filter" (GKF) to desribe the idea represented here.

The GKF equations are presented in setion 6.

� To this point we have only optimized over �v. It is lear that we may also vary the number of

verties jvj of the representation, allowing optimization over the number of verties. Varying

the number of verties of the representation is absolutely neessary if surfae knowledge at

sales smaller than the urrent set of verties represents is to ever aumulate. In setion 6 the

GKF update equations are derived assuming that the number of verties in the representation

basis vertex set is arbitrary at eah update.

� Beyond allowing the number of verties to vary, the positions of the verties may be allowed

to vary. In setion 6 the GKF update equations are derived assuming that the representation

basis vertex set positions are arbitrary.
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� Deteting when and where new verties are neessary is a matter of observing diretly in

equations 28 or 31 when new data produes a lower surfae unertainty over a region, and

when having smaller unertainty at neighboring verties is not suÆient to represent this

lower unertainty over the region.

� The vertex representation for the surfae knowledge is onvenient, but not neessary. For

example it is possible to extend a height �eld to a height-and-reetane �eld or \arbitrary

dimension �eld", where the reetane lies within a many-dimensional spae. Reasonable

strutures for the ovariane matrix allow di�ering orrelations between reetane values

and between height values. It will be seen in in setion 6 that the GKF update equations

are easily used in the \arbitrary dimension �eld" ontext.

� In its most abstrat form, instead of having a \�eld", there is simply a set of objets, while

for eah \objet" there is an assoiated vetor of properties, where some of the omponents of

the property vetor may be onsidered a loation in spae. In this fairly abstrated setting,

the olletion of objets has an assoiated joint probability distribution whih desribes the

probability distribution over on�gurations of objets. It will be seen in in setion 6 that

the GKF update equations are easily understood in the \objet" ontext.

� Equation 31 whih de�nes the quantity to be minimized is where a penalty term whih

indiates how many bits in hardware is available in trade for eah bit of information learned

from data. For example, one might penalize the KL distane by 1=10th the number of bytes it

takes to represent the new information gained by extending the number of points represented.

The exat form of the information learned about the surfae distribution ontained in the

KR distribution is found in setion 8, where the dimensionality of the representation enters

diretly, and where bits-used penalty-terms may be introdued.

� The previous note points out how a minimum desription length method fails for this prob-

lem. It is ertainly the ase that that our update sheme may require muh more memory

(in bits) to represent the information learned than the information learned (in bits). At

some point, if information at small enough sales is desired, MDL would trunate and stop.

Clearly, applying MDL would then be a disaster. On the other hand, what seems to work

here may be alled an adaptive MDL approah.

� Note that a method like maximum entropy is entirely de�ient for providing distributions of

surfaes: given the onstraints implied by the knowledge of the distribution of the heights

at disrete points: maximum entropy ignores orrelations between nearby surfae points no

matter how lose, an entirely ludirous situation. On the other hand, a method like relative
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maximum entropy, based on inverting the roles of the distributions in equation 28, laims to

provide the least informative inferene relative to the prior information, a heuristi, diÆult

to justify, at best. Further, suh approahes are typially based on likelihood distributions,

rather than the posteriors that appear in equation 28.

5 Surfae Distribution Forms

5.1 Prior

For simpliity of mathematial presentation only, the prior in our surfae inferene example is

taken multinormal over ontinuous, smooth height �elds. One partiular, onveniently hosen,

representation of the prior distribution is onstruted in appendix 12.1. This prior may be written

in the shorthand

P (s j �) = N(�s;�s)(s) (33)

where � = (�s;�s) is the parameter vetor. The density of the height �eld determined by the

prior

P (hv j �) =
Z
P (hv j s)P (s j �) ds (34)

=
Z
Æ(hv � h(s; v))P (s j �) ds (35)

= N(�v;�v)(hv) (36)

where

�v = Avs�s

�v = Avs�sA
T
vs (37)

and the projetion onto the height �eld is given by Avs. Note that equation 37 implies that the

surfae density ovariane is represented di�erently than a disrete surfae distribution ovariane

matrix. Spei�ally, the projetion matrix Avs is a delta-funtion-like operator, and �s is a ontin-

uous funtion of two positions. In appendix 12.1 we show that the surfae density has a ompat

ontinuous power spetrum representation, and there give the expliit form of that representation.

Thus the notation of equation 37 must be onsidered a shorthand for the underlying ontinuous

onstrut.

5.2 Likelihood

When measurement is modelled as a linear proess orrupted by gaussian noise we have

x = Ms + �
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� � N(0;��): (38)

or

P (x j s; �) = N(Ms;��)(x) (39)

where � = (M;��) is the parameter vetor.

6 The Generalized Kalman Filter equations.

In this setion a onise derivation of the Generalized Kalman Filter update equations speialized

to the disrete basis multinormal KR distribution of equation 22 are derived. The updated KR

need not have the same basis dimension nor position as the previous KR basis, solving the problem

of how to allow updates from one representation to the next, same, �ner or oarser, representation.

Proeeding, the KR distribution in terms of the parameterized height �eld of equation 22 is

P̂ (s j �n
v ; �) =

Z
P (s j hv; �) P̂ (hv j �n

v ) dhv (40)

The distribution of surfae given the height �eld from equation 9 is

P (s j hv�) =
P (hv j s)P (s j �)

P (hv j �)
=

Æ(hv � h(s; v))P (s j �)
P (hv j �) (41)

Simplify the integral of the KR distribution to �nd

P̂ (s j �n
v ; �) =

Z P (hv j s)P (s j �)
P (hv j �) P̂ (hv j �n

v ) dhv

= P (s j �)
Z
Æ(hv � h(s; v))

P̂ (hv j �n
v )

P (hv j �) dhv

= P (s j �) P̂ (h(s; v) j �
n
v )

P (h(s; v) j �) (42)

Note how the full surfae distribution is simply modi�ed by the ratio

P̂ (h(s; v) j �n
v )

P (h(s; v) j �) (43)

From equation 23 the Bayesian update of the KR distribution is

P̂ (s j xn+1;�
n
v ; �; �) =

P (xn+1 j s; �) P̂ (s j �n
v ; �)R

P (xn+1 j s; �) P̂ (s j �n
v ; �) ds

=
P (xn+1 j s; �) P̂ (s j �n

v ; �)

P̂ (xn+1 j �n
v ; �; �)

(44)
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Rewriting the updated distribution using equation 42 yields

P̂ (s j xn+1;�
n
v ; �; �) / P (xn+1 j s; �)P (s j �)� P̂ (h(s; v) j �n

v )

P (h(s; v) j �)
(45)

For maximally informative inferene of the new KR we minimize, from equation 28,

D(P1(s); P2(s)) = D(P̂ (s j xn+1;�
n
v ; �; �); P̂ (s j �n+1

v ; �))

=
Z

P̂ (s j xn+1;�
n
v ; �; �) log

 
P̂ (s j xn+1;�

n
v ; �; �)

P̂ (s j �n+1
v ; �)

!
ds

(46)

Note that it is not assumed here that v and v have the same dimension. Expanding the probability

distributions within the logarithm appearing above yields

D(P1(s); P2(s)) =
Z
P̂ (s j xn+1;�

n
v ; �; �)

� [�log (P (h(s; v) j �))
+log (P (h(s; v) j �))
+log (P (xn+1 j s; �))
�log

�
P̂ (xn+1 j �n

v ; �; �)
�

+log
�
P̂ (h(s; v) j �n

v )
�

�log
�
P̂ (h(s; v) j �n+1

v )
� i

ds (47)

Eah term has the form of an information (or unertainty). Together the six terms paint a

desriptive piture of how information is aquired by the maximally informative update when

taken as three groups of two terms: Denote by \new KR" the two terms with v and �n+1
v , by

\previous KR" the two terms with v and �n
v and no data, and by \new data" the two terms with

data dependeny. Now, noting the signs on these quantities, beause D is positive, the whole

point of hoosing a good �n+1 approximation by minimizing D is that

Expeted information in new KR '
(Expeted information in previous KR

+Expeted information in new data) (48)

or in very rough terms we may see the update as apturing the sum-total of the available knowledge

Total knowledge = Prior knowledge+ New knowledge from data (49)
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Beause only terms depending upon the update parameters v and �n+1
v are needed to perform

the minimization, we drop the other terms at this point, and after making the multinormal

substitutions for the distributions in the above we have

�D(P1(s); P2(s)) =
Z
P̂ (hv j xn+1;�

n
v ; �; �) log (N(�v;�v)(hv)) dhv

�
Z
P̂ (hv j xn+1;�

n
v ; �; �) log

�
N(�n+1

v ;�n+1
v )(hv)

�
dhv

(50)

To simplify the P̂ 's appearing in equation 50, the distribution of surfae given old knowledge and

new data, marginalized to the height �eld v, is useful, as is seen by observing equations 47 and 50.

Thus, onsider

P̂ (s j xn+1;�
n
v ; �; �) / N(M(�)s;�n+1

� )(xn+1)N(�s;�s)(s)

� N(�n
v ;�

n
v )(h(s; v))

N(�v;�v)(h(s; v))
(51)

found by making substitutions into 45 for the assumed distributions. Sine it is not neessarily the

ase that vi 2 fvjg or that vi 2 fvjg. proeed by marginalizing to the union of the omponents of

v and v, whih we denote v [ v, and then to the v omponents. Let Av[v;s denote the projetion

from vs to v [ v, Av;v[v denote the projetion from v [ v to v, and Av;v denote the projetion

from v to v. In performing the two projetions (from vs to v [ v, and then from v [ v to v) in

order we �nd (not neessarily in most simple form), using results of appendies 12.2{12.5, that

Z
P̂ (s j xn+1;�

n
v ; �; �) ds n v = N(�R;�R)(hv) (52)

where

�R
v = �R(�

�1
Q �v

Q + (�n
v )
�1�n

v
� ��1v �v)

��1R = ��1Q + (�n
v )
�1 � ��1v (53)

and where

�
Q
v = Av;v[vAv[v;s�

P
s

��1Q = Av;v[vAv[v;s�
�1
P AT

v[v;sA
T
v;v[v

(54)

�P
s = �P (�

�1
s �s +MT��1� xn+1)

��1P = ��1s +MT��1� M
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(55)

�n
v
= Av;v�

n

v

(�n
v )
�1 = Av;v(�

n
v )
�1AT

v;v

(56)

�v = Av;v�v

��1v = Av;v�
�1
v AT

v;v

(57)

�v = Av;s�s

��1v = Av;s�
�1
s AT

v;s

(58)

Using the results of appendix 12.6, the quantities of equation 53 above orrespond to the values

of the mean and standard deviation parameters of the new KR, found at the minimum Kullbak

Leibler distane, i.e. the minimization is immediately apparent from those results. Thus:

�n+1
v = (�n+1

v ;�n+1
v )

�n+1
v = �R

v

�n+1
v = �R

v (59)

Equations 53 are the Generalized Kalman Filter (GKF) update equations for the surfae inferene

example, yet are quite a bit more general (the neessary hange of variables needed when the

forward projetion is nonlinear appears in appendix 12.10). Having these update equations allows

one to onsider updating a representation of any dimension relative to the original representation.

Thus. knowledge may be represented in �ner detail, orresponding to the old representation being

ontained in the new, knowledge may be represented in the same detail, orresponding to the ase

when the new representation is the same as the old representation, or knowledge may be tossed,

orresponding to the ase when the new representation does not ontain the old representation.

The maximally informative inferene approah and its result of the Kullbak Leibler distane on

onditional posteriors led diretly here to deriving the GKF and the solution of the problem of

storing knowledge at sales adaptive to the atual needs of the data driving the update. The

standard KF is disussed in [1℄.

7 Speializing the GKF

When the surfae of interest is itself a disrete height �eld, and the KR representation basis never

hanges in dimension nor position from that height �eld's basis, then all projetions appearing
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in equations 53 and following are identities, and the update equations simplify to the standard

Kalman �lter equations, in e�et equations 55 only, given suitable identi�ation of the variables.

8 Information learned

One a new set of parameters has been hosen, and for the purpose of evaluating the new update

in the ontext of other possible updates at di�erent sales, using di�erent representational bases,

it is useful to have the quantity of information about the surfae distribution that is ontained in

the KR at the maximally informative update. Using the results of appendix 12.6 in equation 50

we have this information, up to a onstant, is given by

IR = C(xn+1;�
n
v ; �; �)

+
1

2

�
Tr

h
(�R + U(�R � �v))
 ��1v

i
+ log(j�vj)

�

� 1

2

�
Tr

h
�R 
 ��1R

i
+ log(j�Rj)

�
(60)

Note that the d's (representation basis dimensions) from the dlog(2�)'s of equation 94 have an-

elled. However the d's remain hidden within the terms as matrix dimensions. When onsidering

optimizing learned inormation against storage resoures, one must weigh a separate ost in bits

for the memory used against the bits learned, the expression above. Note also, interestingly the

expression above ontains a BIC-like log(d) dependene term.

9 Searh for update parameters

Now that we know what the update equations for the updating of the KR distribution look like, it

is worthwhile onsidering how an updating sheme might be implemented to aquire information

at the appropriate sale. First, we dismiss the notion that we will ever be using the ontinuous

height �eld vs (the support of s) at any time. None of the update equations fore that to happen!

Seond, sine we have onluded that omputationally vs is a disrete set, and sine there will

always be pathologial ases where the surfae is muh rougher than we are to represent, we

aknowledge that fat and proeed by presenting a useful algorithm whih allows the updating of

the KR while maintaining the ability to explore a large range of sales. The following multigrid-

style algorithm provides the general avor:

� Choose vs denser by several orders of sale than the urrent representation, and using other

riteria assoiated with the knowledge of the data aquisition system (see below).

� Choose v at regular sales intermediate between vs and the old KR on v, ompute the

updates on all v hosen at these sales.
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� Compute the information learned at eah sale.

� Plot the information learned as a funtion of inreasing density (dereasing sale).

� Choose, based on exploration of the plot, and osts assoiated with storing the learned

information, whether to explore other otaves of sale. If Choose to explore, repeat above

proedure.

� If hoie is to pik an informationally and storage attrative KR, do this and update the

representation aordingly.

In the surfae reonstrution problem data often omes in the form of images. The images may

ome from devies with vastly di�erent resolutions, and the known parameters of pixel size, point

spread funtion and geometry determine the appropriate reonstrution sale. Finally adapting

the surfae to resolve at sub-pixel sales requires a memory-aggressive approah whih extends

the exploration farther out on the learning urve towards smaller, denser representation sales.

10 Conlusion

Field inferene has been generalized from the typial disrete �xed-basis setting to a ontinuous-

basis setting. The problem of surfae inferene was solved in the ontext of ontinuous �eld

inferene. Using the approah of aquiring the maximally informative KR distribution, the GKF

equations were found. The GKF allows the updated KR parameters to be found at any sale

and/or \positions" (abstratly, basis omponents). The approah allows the learning of informa-

tion at the relevant sales desired. It provides an information-theoreti justi�ation for loation-

dependent adaptive multi-grid inferene. It also e�etively provides similar justi�ation for a

sale-adaptive MDL method. This is apparently the �rst time that the maximally informative

inferene of ontinuous-basis objets and the multigrid approah have been rigorously justi�ed.
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12 Appendies

12.1 Constrution of a 2D surfae prior

In this appendix we �rst introdue the reader to the fourier representation of a gaussian proess,

then using the notions developed �nd the representation for a 2D gaussian proess over the plane,

where the orrelations of the proess at points x and y are proportional to exp(�k jx� yj), k > 0,

a simple translation-invariant hoie for the form of the orrelation struture of the probability

density of surfaes having the plane as support. The utility for the GKF of having this proess

is that it serves as a simply omputed algorithmi representation of the prior for surfaes having

the plane as support.

12.1.1 The disrete gaussian proess

Consider f(n; ), n 2 ZN = f�N; : : : ;�1; 0; 1; : : : ; Ng, a disrete proess with expression as the

fourier expansion

f(n; ) =
NX

k=�N

ke
ikn (61)

where the oeÆients  = (k) are onstrained by f 2 R so that k = ��k, and the n and k

range over ZN . Let the oeÆients be random variables: k = xk + iyk with xk � N(0; �k) and

yk � N(0; �k) both gaussian distributed random variables with mean 0 and standard deviation

�k. Now, dropping the k's, the joint density of (x; y) is given by

Px;y(x; y) =
e�x

2=2�2

p
2��

e�y
2=2�2

p
2��

: (62)

From this the joint density of (r; �) where r =
p
x2 + y2 and � = artan(y=x) is given by

Pr;�(r; �) =
re�r

2=2�2

2��2
: (63)

The density of r is given diretly by integrating over �

Pr(r) =
re�r

2=2�2

�2
; (64)

while the density of � is given diretly by integrating over r

P�(�) =
1

2�
: (65)
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Making a hange of variables, the density of � = x2 + y2 = r2 is given by the exponential

distribution

P�(u) =
e�u=2�

2

2�2
(66)

The distribution of k + �k = 2Re[k℄ = 2xk, k > 0 is of interest beause the proess is real.

P+�(u) =
e�u

2=2(2�)2

p
2�2�

(67)

whih is just a gaussian with zero mean but twie the variane of the omponents x and y of

. Note that the atual oeÆients in equation 61 ke
ikn + �ke

�ikn = 2Re[ke
ikn℄ also have the

distribution of equation 67 sine the phase of k is uniformly distributed in [0; 2�℄.

Now, given a set of integers � � ZN we may ask for the density of the sampled values of the

proess f at � = (n1; n2; : : : ; nm)

f(�) = (f(n1); f(n2); : : : ; f(nm)); (68)

where m = j�j ; ni 2 ZN ; i = 1; : : : ; m. De�ne

f(�; ) = (f(n1; ); f(n2; ); : : : ; f(nm; )) (69)

Then the probability density funtion whih desribes the sampled values is

P (f(�)) =
Z
Æ(f(�)� f(�; ))P () d (70)

where

P () = P (0)
NY
k=1

P (k + �k) (71)

Note that that the density of P (f(�)) is multivariate gaussian sine the representation of f(�; ) as

a fourier series shows that it is the sum of gaussian random vetors with omponents 2Re[ke
ikn℄.

The ovarianes of the proess are found as

�m;n = E[f(m)f(n)℄ = E[f(m)f �(n)℄

= E

2
4 NX
k;l=�N

k
�
l e

i(km�ln)

3
5

=
NX

k=�N

E[k
�
k℄e

ik(m�n)

= F [E[k
�
k℄℄(m� n) (72)
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where we used the fat that the oeÆients of di�erent frequeny are unorrelated for k 6= l, i.e

E[k
�
l ℄ = 0 for k 6= l. De�ne the power spetrum R(k) as

R(k) = E[k
�
k℄ (73)

Then we have that the ovariane is given by the fourier transform of the power spetrum,

�m;n = E[f(m)f(n)℄ = F [R℄(m� n) = �m�n (74)

where we have aknowledged that the ovariane struture is dependent only upon the di�erene

m�n. From this we see that the inverse fourier transform of the ovariane is the power spetrum,

F�1 [�u℄ (k) = R(k) (75)

Finally, note that the density of k
�
k given by equation 66 allows us to infer the parameters �k

whih are the standard deviations of the gaussian proesses xk and yk underlying the oeÆients

k, sine from equation 66

E[k
�
k℄ =

Z
u
e�u=2�

2
k

2�2
k

du = 2�2
k (76)

In the next setion the basis for gaussian proesses developed here is extended to the ontinuous

2D ase to ompute the power spetrum of a proess spei�ed by a ontinuous-basis ovariane

struture.

12.1.2 The ontinuous-basis 2D proess

Similar to the development in the last setion, in two dimensions, given the ontinuous-basis

ovariane �x = exp(�k jxj), k > 0., the power spetrum is found as the inverse fourier transform

of the ovariane, i.e.

R(u = (u; v)) = F�1
2 [�x℄(u; v)

=
Z Z

e�kj(x;y)je�iuxe�ivy dx dy (77)

Make the hange of variables (x; y)! (r; �) so that x = ros(�), y = rsin(�), then

R(u; v) =
Z 1

0

Z 2�

0
e�kre�ir(uos(�)+vsin(�)) r dr d� (78)

For simpliity, make the further hange of variables (u; v) ! (s; �) so that u = sos(�), v =

ssin(�), so that

R(s; �) =
Z 1

0

Z 2�

0
e�kre�irs(os(�)os(�)+sin(�)sin(�)) r dr d�
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=
Z 1
0

Z 2�

0
e�kre�irsos(���) r dr d�

=
Z 1
0

re�kr
Z 2�

0
e�irsos(���) d� dr

R(s) = 2�
Z 1
0

re�krJ0(rs) dr (79)

Finally,

R(u) =
2�k

(juj2 + k2)3=2
(80)

Note that we have negleted the proportionality onstant 1=2� in the fourier transform, amounting

to normalizing the delta funtion to 2�, and have saled u to units of yles per 2�. Note also that

both the ovariane of the proess and the power spetrum sale with the same proportionality

onstant. Harmoni analysis is disussed in [3℄

12.2 Multinormal density MGF

The moment generating funtion for a probability distribution f is de�ned as the funtional

M [f ℄(�) = Ef [e
Tr[U(�;x)℄℄ (81)

where U(y; z) is de�ned suh that U = [Uij℄ and Uij(y; z) := yizj, from whih holds the property

�kM [f ℄(�)

��i1 : : : �ik

j�=0
= Ef [xi1 : : : xik ℄ (82)

i.e the moments are found as derivatives of the MGF with respet to the parameter � at � = 0.

Take the multinormal density funtion for x

P (x j �) = N(�)(x)

= N(�;�)(x)

=
1

(2�)d=2 j � j1=2 exp(�
1

2
Tr[U(x� �)
 ��1℄) (83)

where U(y) is de�ned suh that Uij(y) := Uij(y;y) and d = Dim(x). The MGF of N(�)(x) is

then given by

M [N(�)(x)℄(�) = E[eTr[U(�;x)℄ j �℄
=

Z 1

(2�)d=2 j � j1=2 exp(�
1

2
Tr[U(x� �)
 ��1℄ + Tr[U(�;x)℄) dx

(84)
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Minus twie the exponent of the integral above may be written as

Tr[U(x� �)
 ��1℄� 2Tr[U(�;x)℄ = Tr[U(x� (�� ��))
 ��1℄

+Tr[U(�)
 ��1℄

�Tr[U(�� ��)
 ��1℄

= Tr[U(x� (�� ��))
 ��1℄

�Tr[U(�)
 �℄

�2Tr[U(�;�)℄ (85)

from whih the moment generating funtion is immediately found as

M [N(�)(x)℄(�) = exp(Tr[U(�;�)℄ +
1

2
Tr[U(�)
 �℄ ) (86)

From the above we have

E[xi j �℄ = �i

E[(xi � �i)(xj � �j) j �℄ = �ij (87)

whih agrees with the alulation of appendix 12.2. Two things to note: 1. The inverse of � is

assumed to exist. 2. All moments are determined by simple produts and sums of the parameters

(�;�).

12.3 Multinormal linear hange of variables

Letting y = Ax be the hange of variables, where P (x j �) = N(�)(x), the MGF of the density

P (y j �) is found from the MGF of the density for P (x j �) in a straightforward manner as

M [P (y j �)℄(�) = E[eTr[U(�;y)℄ j �℄
= E[eTr[U(�;Ax)℄ j �℄ (88)

= E[eTr[U(AT�;x)℄ j �℄
= exp(Tr[U(�; AT�)℄ +

1

2
Tr[U(AT�)
 �℄)

= exp(Tr[U(A�;�)℄ +
1

2
Tr[U(�)
 (A�AT )℄)

(89)

Note that the dropped subsripts x and x of the � and � are easily determined by the ontext,

and that the density used to take the expetation naturally hanged in equation 88 from P (y j �)
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to P (x j �) without onfusion. With this result and referring to equation 86 and preeding we

�nd that the density for y is multinormal with

�y = A�x

�y = A�xA
T (90)

Note that everywhere the ondition of A was neither mentioned nor assumed, thus A may be a

retangular matrix or otherwise not of full rank.

12.4 Multinormal projetions

Another useful operation is that of projetion onto a subset of the omponents of the argument

of the multinormal distribution. Projetions may be trivially represented as a linear operation,

where the \projetion matrix" is typially a retangular matrix having the form of a unique

(single) element of value 1 in eah row and olumn, zeroes elsewhere. Finding the distribution of

the projeted variables is equivalent to the operation of marginalizing over the omponents not in

the projetion. Let A be the projetion matrix seleting a subset of the variables of x as y = Ax.

Then, using the result of setion 12.3, we immediately �nd integrals of the formZ
N(�;�)(x) dx n y = N(A�; A�AT )(y) (91)

Both vetor A� and the matrix A�AT are now just appropriately rearranged piees of the original

vetor � and matrix �. Spei�ally, if yk = xik then [A�AT ℄pq = �ipjq .

12.5 Multinormal multipliation

One operation whih frequently ours in Bayesian inferene is that of taking the produt of

two multinormal distributions of the same variable and normalizing that produt to �nd a new

distribution. Finding the new � = (�;�) amounts to ompleting the square, but it is useful to

state the result, and we do this here. Let �1 = (�1;�1) and �1 = (�1;�1) be the parameters of

the multinormal distributions in the produt. Then

� = �(��11 �1 + ��12 �2)

� = (��11 + ��11 )�1 (92)

12.6 Expeted unertainty in multinormals

It is useful to know the expeted unertainty of one gaussian distribution in the ontext of another.

Consider the quantity

E[�log(P (�2)(x)) j �1℄ = �
Z
N(�1;�1)(x) log (N(�2;�2)(x)) dx (93)
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whih ours in similar form in the development of the Generalized Kalman Filter (setion 6) and

represents the expeted unertainty, or entropy, of the surfae representation in the ontext of

the updated surfae distribution. The value of this integral is found straightforwardly using the

results mentioned in appendix 12.2 as

E[�log(N(�2;�2)(x)) j �1℄ =
1

2
E

h
Tr[U(x� �2)
 ��12 ℄

i

+
d

2
log(2�) +

1

2
log(j�2j)

=
1

2
Tr

h
(�1 + U(�1 � �2))
 ��12

i

+
d

2
log(2�) +

1

2
log(j�2j)

(94)

12.7 Maximizing the expeted information

Varying �2, the minimum value of the unertainty above ours when �2 = �1. That this is true

for the � omponent of �2 is immediate from the positive de�nite quadrati nature of the �rst

term. For the � omponent the following fat following from the properties of determinants and

matrix inverses failitates the result:

� j�j
��kl

= (�1)k+lCofkl(�)

j�j = ��1kl (95)

12.8 Notes on matrix inverses and submatries

Given the invertible matrix V , omposed in the following manner of submatries V11, V12, V21, V22,

A =

"
V11 V12
V21 V22

#
(96)

and its inverse

A�1 =

"
V̂11 V̂12
V̂21 V̂22

#
(97)

then it is immediate that the following relationships hold among the submatries

"
I11 N12

N21 I22

#
=

"
V11V̂11 + V12V̂21 V11V̂12 + V12V̂22
V21V̂11 + V22V̂21 V21V̂12 + V22V̂22

#
(98)

where I and N represent the identity and zero matries respetively. Any quadrati operator

xTQx may be deomposed using projetion matries A and A where these are diagonal matries
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with one and zero entries only, and where

A+ A = I (99)

in the following manner

xTQx = xT (A+ A)Q(A+ A)Tx

= xTAQAAxA + xTAQAAxA + xT
A
QAAxA + xT

A
QAAxA (100)

Now, assume Q is symmetri and that both it and QAA and QAA are invertible, and rewrite this

form as the sum of two terms as follows

xTQx = (xA ��)TQAA(xA � �) + C(xA)
= xTAQAAxA � xTAQAAxA � xTAQAAxA +�TQAA�+ C(xA)

(101)

where � = (QAA)
�1QAAxA. Thus

C(xA) = xT
A

�
QAA �QAA(QAA)

�1QAA

�
xA (102)

Applying the identities of equation 98

QAAQ̂AA +QAAQ̂AA = NAA (103)

followed by

QAAQ̂AA +QAAQ̂AA = IAA (104)

�nd that

QAA �QAA(QAA)
�1QAA = (Q̂AA)

�1 (105)

so that

C(xA) = xT
A
(Q̂AA)

�1xA (106)

whih immediately provides an alternate method for marginalizing gaussian distributions.

12.9 Alternate inverse forms

In the GKF update equations expressions for updating inverse matries in terms of the sum of

other inverse matries our. Beause one of the summand matries may not be well-onditioned,

it is of interest to �nd an expression for the updated matrix in terms of the other matries, whih
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expliitly is not a funtion of the inverse matries. Thus, let P , Q, R be invertible matries suh

that

P�1 = Q�1 +R�1 (107)

Then we �nd

P = Q�Q(Q +R)�1Q (108)

by the following diret substitution

PP�1 = (Q�Q(Q +R)�1Q)(Q�1 +R�1)

= I �Q
h
(Q+R)�1(I +QR�1)� R�1

i
= I (109)

12.10 Nonlinear forward projetion

In the nonlinear forward projetion ase the projetion is given by f(s), where f(�) is a nonlinear

funtion of s rather then the linear form Ms. Beause the derivative of the forward projetion is

often a straightforward objet to ompute, expand f(s) about the mean of the old surfae, �s

x = f(�s) +
�f

�s
j�

s
(s� �s) + � (110)

Letting M = �f
�s j�

s
we have

P (x j s; �) = N((f(�s)�M�s) +Ms;��)(x)

= N(Ms;��)(x� (f(�
s
)�M�

s
))

(111)

so that the appropriate hanges to be made to the GKF update equations are simply

x! x� (f(�
s
)�M�

s
)

M ! �f
�s j�

s
(112)

while everything else otherwise remains the same.



GKF Update Loop Equation

Bayes update

MaxInfo Approx.

The elements going into  are the prior, restricted to some knowledge  about the

field, .  (In the main text example,  is the set of known surface height field values.)

and the Knowledge Representation (KR) distribution is , which is the learned

knowledge about the specifics of the surface at the 'th iteration of the GKF.

These form the approximate posterior  given by the integral over  of the product of

the KR distribution and the prior distribution given  known, that is

 (1)

At update , the new data and the approximate posterior from iteration n are incorporated 

using the likelihood  and Bayes' theorem to produce the data-dependent posterior 

written . Then, the new KR that caputres an approximation to this exact poste-

rior using (1) above with  via Maximally informative statistical inference completes 

the GKF loop.

Figure 1 - Generalized Kalman Filter Update Loop
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