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Abstract: The topic of this paper is a novel Bayesian continuous-basis field representation

and inference framework. Within this paper several problems are solved: The maximally in-

formative inference of continuous-basis fields, that is where the basis for the field is itself a

continuous object and not representable in a finite manner; the tradeoff between accuracy of

representation in terms of information learned, and memory or storage capacity in bits; the

approximation of probability distributions so that a maximal amount of information about

the object being inferred is preserved; an information theoretic justification for multigrid

methodology. The maximally informative field inference framework is described in full

generality and denoted the Generalized Kalman Filter. The Generalized Kalman Filter al-

lows the update of field knowledge from previous knowledge at any scale, and new data, to

new knowledge at any other scale. An application example instance, the inference of con-

tinuous surfaces from measurements (for example, camera image data), is presented.

Keywords: Bayesian inference; Generalized Kalman filter; Kalman filter; Kullback-Leibler

distance; Maximally informative statistical inference; Knowledge representation; Mini-

mumDescription Length; Sufficient statistics; Multigrid methods; Adaptive scale inference;

Adaptive grid inference; Mutual information.
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1 Overview

The paper begins by reviewing traditional approa
hes to surfa
e representation and inferen
e.

Then the new �eld representation and inferen
e paradigm is introdu
ed within the 
ontext of

maximally informative (MI) inferen
e [5℄, early ideas appearing in [4℄. The knowledge represen-

tation distribution is introdu
ed and dis
ussed in the 
ontext of MI inferen
e. Then, using the

MI inferen
e approa
h, the here-named Generalized Kalman Filter (GKF) equations are derived

for a spe
i�
 example instan
e of inferring a surfa
e height �eld. The GKF equations motivate a

lo
ation-dependent adaptive s
ale or multigrid approa
h to the MI inferen
e of 
ontinuous-basis

�elds.

2 Introdu
tion: Surfa
e representation

2.1 Traditional methods

Many methods for representing surfa
es have been utilized previously, however these methods in-

volve representing the surfa
e by a dis
rete basis �eld, perhaps with a deterministi
 interpolation

de�ned (bi-linear, tensor B-splines, et
.) to provide a de�nition for the surfa
e at points inter-

mediate to the dis
rete �eld. Probability distributions or densities of these dis
rete �elds then

often take the form of normalized exponentials of sums of 
lique energy fun
tions, and produ
e

a 
onstru
t 
ommonly known as a Markov Random Field. (See Geman [2℄, for an often 
ited

example.) There are several immediate observations on these approa
hes:

� The surfa
e remains unspe
i�ed at points intermediate to the dis
rete �eld, ex
ept by the

often unde�ned notion of interpolation.

� When interpolation is not de�ned, the dis
rete �eld probability distribution says nothing

about the probability distribution of surfa
e at points intermediate to the dis
rete �eld

points.

� When interpolation is de�ned then, given a value of the dis
rete �eld, there is no un
ertainty

in the surfa
e intermediate to the dis
rete �eld points. There is a deterministi
 mapping

from any given dis
rete �eld to the 
orresponding 
ontinuous surfa
e. In parti
ular, when

the dis
rete �eld basis 
overs a �xed grid on the (x; y) plane with z heights at ea
h grid

point, known here as a height �eld, all sampling of the surfa
e intermediate to the �xed grid

is determined at the s
ale of the �xed grid. This is generally not physi
al, see next.

� The surfa
e distribution is not an intrinsi
 property of any physi
al surfa
e, rather a post-

ho
 imposition of the analyst attempting a useful regularization. For instan
e, ne
essary
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s
aling properties are ignored: Moving a 
amera 
loser to the surfa
e, for example, so that

the density of sample points on the physi
al surfa
e in
reases, is not properly represented

in the �xed basis of the dis
rete �eld distribution; there is no 
onsisten
y imposed that

requires a subsampled set of points to have the same probability density that one would �nd

by marginalizing the surfa
e distribution over the sample points not in the subsampling.

2.2 S
aling 
onsisten
y

The 
onsisten
y 
ondition mentioned in the last se
tion, whi
h must be imposed on probability

distributions for 
ontinuous �elds is:

S
aling of sample points 
onsisten
y: For S � A indi
es of dis
rete �eld variables,

P (XS) =
Z
P (XA) dXAnS (1)

Note that equation 1 is a 
ondition whi
h must be imposed on the distributions whi
h any mod-

elling system learns where it is sensible to supersample or subsample the �eld arbitrarily, as in

the 
ontinuous �eld basis 
ase.

2.3 Elements of the paradigm

The rest of this paper dis
usses an approa
h to 
ontinuous �eld inferen
e whi
h 
orre
ts the

de�
ien
ies, in
luding the intermediate value and s
aling problems, of traditional dis
rete-basis

approa
hes to the inferen
e of dis
rete height �elds, for example. The new approa
h is here named

the Generalized Kalman Filter.

There are four 
entral obje
ts of importan
e within the inferen
e approa
h des
ribed in this

paper, one of whi
h is a new obje
t to Bayesian inferen
e:

� The prior distribution for �eld. The prior holds all information about �elds before any data

is observed.

� The likelihood distribution. The likelihood is predi
tive for data, given the �eld. It in
or-

porates all of the physi
s of the measurement pro
ess.

� The posterior distribution. The posterior distribution summarizes everything knowable

about the �eld given assumptions of likelihood form, the prior knowledge, and all data.

� The knowledge-representation (KR) distribution. Within the usual Bayesian point of

view, the KR distribution is the new mathemati
al obje
t. In the paradigm des
ribed

in this paper the KR distribution is the obje
t updated when new data arrives. The KR
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distribution is parameterized by maximally informative statisti
s (see [5℄) for the learned �eld

knowledge. Note that be
ause the KR distribution has a �nite number-of-values limitation,

the KR distribution is not ne
essarily able to represent what 
ould have been learned from

data about the (
ontinuous) �eld. Generally, the prior distribution and the KR distribution

determine an approximation (possibly exa
t) to the �eld posterior distribution. It should

be noted that modern 
omputer ar
hite
ture (memory and spa
e-time) 
onstraints appear

to be the fundamental physi
al drivers for the utilization of the KR distribution, simply

be
ause storing the exa
t posterior generally requires an in�nite amount of memory.

In the height �eld inferen
e appli
ation dis
ussed later the KR distribution is parameterized

by heights at a set of dis
rete basis points, but holds knowledge about a 
ontinuous basis

height �eld. However, generally, the KR distribution may use an arbitrary set of basis

fun
tions.

One advan
e of the GKF is that the KR distribution is naturally adaptive in both dimension

and s
ale, allowing the learning of 
ontinuous-basis �eld information at the appropriate s
ale,

where appropriate.

Bene�ts of the approa
h des
ribed in this paper are that it has these information theoreti
ally

optimal features: 1. A lo
ation-dependent adaptive and s
alable multigrid-like algorithm, so that

only the bytes ne
essary to represent the learned information are stored, leading to a style of

maximally sparse representation of surfa
e knowledge; 2. A re
ursive updating algorithm. It will

be
ome 
lear that the Bayesian GKF �eld inferen
e paradigm also has these properties:

� It is the information learned about the �eld, (the KR distribution), whi
h takes the form

of a distribution over dis
rete values. In the surfa
e inferen
e example these dis
rete values

are heights at dis
rete basis points.

� The prior distribution for �elds, in 
onjun
tion with the learned knowledge of the �eld held

within the KR distribution determine a well-de�ned posterior distribution over 
ontinuous

�elds.

� The �eld posterior distribution is always a well de�ned quantity everywhere. In the surfa
e

inferen
e example dis
ussed later, this 
ontinuity is at points intermediate to the dis
rete

height �eld basis points of the KR distribution.

� The s
aling 
ondition equation 1 is automati
ally imposed be
ause the posterior distribution

is a distribution over �elds.

As an example 
onsider the inferen
e of 
ontinuous surfa
es: While it may seem obvious, in the


ase of 
ontinuous surfa
e inferen
e, that what one is a
tually representing with a dis
rete set of
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values in memory is only a part of the information whi
h helps to determine the surfa
e posterior

distribution, it is unusual to not be dis
ussing the height �eld as the primary representation of

surfa
e. It is the inherently dis
rete nature of the storage of information in ma
hines whi
h for
es

us into this stan
e - generally it is impossible to represent an arbitrary 
ontinuous �eld with a �nite

set of dis
rete values - one must also have another obje
t from whi
h to 
ompute the intermediate

values of the �eld. (Another way to look at the disparity between the 
urrent proposal for �eld

inferen
e and traditional proposals is that the traditional approa
hes are suÆ
ient only for band-

limited �elds.)

In se
tion 3 the GKF is spe
ialized to height �elds, where an example, surfa
e representation and

learning, of the GKF paradigm is des
ribed. (The approa
h taken in this se
tion is to spe
ialize to a


ase that is then easily seen to generalize to the general 
ontinuous basis �eld inferen
e paradigm.)

The next se
tion 
ontinues with observations on the update s
heme. Further se
tions 
ontinue

with the example spe
ial 
ase for surfa
e distributions with parti
ularly tra
table mathemati
s,

and �nal se
tions provide expli
it forms for the general GKF equations, a dis
ussion on their

relationship to the standard Kalman �lter, a dis
ussion on the amount of information learned at

ea
h update, and a sear
h heuristi
. Extensive appendi
es provide supporting mathemati
s for

the derivations.

3 Surfa
e representation and inferen
e

In this se
tion the main ideas of the Bayesian surfa
e representation and inferen
e paradigm

presented in this paper are given. The te
hnique is general, though: se
tion 4 dis
usses the

extension to an arbitrary-basis, arbitrary-dimension �eld.

3.1 Surfa
e distributions

The surfa
e and height �eld distributions (the prior, likelihood, and posterior surfa
e and height

�eld distributions) are dis
ussed in this se
tion.

3.1.1 Surfa
e and height �eld prior distributions

Consider a set S of surfa
es where ea
h element s 2 S is a height �eld, i.e. su
h that s = s(x; y)

is real fun
tion of two variables. Write the prior probability distribution for surfa
es in S given

the parameters � whi
h determine the prior distribution as

P (s j �): (2)

Consider a ve
tor v = (v1; : : : ; vn) of dis
rete (x; y) points, vi = (xi; yi). For any given surfa
e

s denote the asso
iated ve
tor of heights by h(s; v) = (h1(s; v); : : : ; hn(s; v)). Write the prior
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distribution of the surfa
e heights at the 
hosen points v as P (hv j �). This dis
rete height

distribution may be found as follows:

P (hv j �) =
Z

P (hv j s; �)P (s j �) ds (3)

=
Z

P (hv j s)P (s j �) ds (4)

=
Z
Æ(hv � h(s; v))P (s j �) ds (5)

where the ve
tor delta-fun
tion is de�ned as

Æ(hv � h(s; v)) = �n
i=1Æ(hv;i � hi(s; v)) (6)

Now, given that what is known is the surfa
e heights hv at a ve
tor v of dis
rete (x; y) points,

the posterior distribution of surfa
es is found from Bayes' theorem as

P (s j hv; �) =
P (hv j s; �)P (s j �)

P (hv j �) (7)

=
P (hv j s)P (s j �)

P (hv j �) (8)

=
Æ(hv � h(s; v))P (s j �)R
Æ(hv � h(s; v))P (s j �) ds (9)

where the denominator distribution was found in equation 5.

3.1.2 Measurements: The Likelihood

In general, a surfa
e s and some other parameters � not dependent upon s (i.e. 
amera point

spread fun
tion, 
amera position and dire
tion, lighting position and dire
tion, et
.) spe
ify the

probability distribution for data (likelihood)

P (x j s; �; �) = P (x j s; �) (10)

where the data distribution is independent of � on
e s is known.

3.1.3 Conditioning on data: Surfa
e and height �eld posterior distributions

Given data, the surfa
e posterior distribution is inferred using Bayes' theorem as

P (s j x; �; �) =
P (x j s; �; �)P (s j �; �)

P (x j �; �) (11)

=
P (x j s; �)P (s j �)R
P (x j s; �)P (s j �) ds (12)
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The distribution of the surfa
e posterior marginalized to a set of dis
rete points may be written

using equations 11{12, doing steps similar to those taken in equations 3{5, as

P (hv j x; �; �) =
Z

P (hv j s;x; �; �)P (s j x; �; �) ds (13)

=
Z

P (hv j s)P (s j x; �; �) ds (14)

=
Z
Æ(hv � h(s; v))P (s j x; �; �) ds (15)

In steps similar to equations 7{9 the surfa
e posterior when a height �eld is also known is given

by

P (s j hv;x; �; �) =
P (hv;x j s; �; �)P (s j �; �)

P (hv;x j �; �) (16)

=
P (hv j s)P (x j s; �)P (s j �)

P (hv;x j �; �) (17)

=
Æ(hv � h(s; v))P (x j s; �)P (s j �)R
Æ(hv � h(s; v))P (x j s; �)P (s j �) ds (18)

where we used the fa
ts that, given a surfa
e, the data and the surfa
e heights are independent,

and the surfa
e distribution is independent of the 
amera and lighting parameters �.

3.2 Approximating the posterior

One motivation for approximating the surfa
e distribution is that generally a surfa
e is an un
ount-

ably in�nite, 
ontinuous entity, and therefore there is little else whi
h 
an be done to represent

it exa
tly other than to go into, literally, in�nite detail (requiring an in�nite supply of memory).

It is therefore useful to have an approximation s
heme whi
h, although �nite, 
aptures the rel-

evant information provided by data. Another ex
ellent reason for developing an approximation

is mathemati
al tra
tability. Having a representation s
heme whi
h allows a tra
table 
al
ula-

tion of the posterior is a huge bene�t for both 
omputation and 
ommuni
ation. Finally, it is of

great interest to not waste 
omputational resour
es while representing learned surfa
e information.

The solution to the surfa
e representation problem presented here addresses the 
ompetition for

representational resour
es (memory) issue in a unique manner.

3.2.1 The knowledge representation distribution

The full posterior may be written in the form

P (s j x; �; �) =
Z

P (s j hv;x; �; �)P (hv j x; �; �) dhv (19)
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where the distributions inside the integral appear in equations 13{18. The issue of generating

a �nite representation is not yet resolved via equation 19 however, sin
e storing information

suÆ
ient to determine the distributions P (s j x; �; �), and P (s j hv;x; �; �) generally requires

storing an in�nite set of values in a �nite amount of memory, or requires that all data be stored,

disallowing any dis
arding of data and the in
remental updating of the representation. Instead,


onsider the following approximation where the prior 
onditioned on a set of heights, along with

a new distribution, the knowledge representation distribution P̂ (hv j x; �; �), are substituted for

the distributions inside the integral of equation 19.

P̂ (s j P̂ (hv j x; �; �) ) =
Z

P (s j hv; �) P̂ (hv j x; �; �) dhv (20)

It is important to note at this point that any suitable surfa
e distribution may be substituted into

the right-hand side of equation 20 for P (s j hv; �), sin
e it is important only that the resulting

integral be 
apable of making a good approximation to the true posterior. Further, it is not

ne
essary to restri
t the basis v to dis
rete height �eld basis points, any suitable basis may be

taken, for instan
e Fourier 
omponents. Although all of the 
al
ulations of this paper are 
arried

thru with the form of 20, other forms may prove more 
onvenient, and it is not diÆ
ult to suggest

others. In parti
ular, sin
e equation 20 will be used in an iterative update loop later, updates

that take for the right-hand side prior term the last posterior term appear quite reasonable (the


orresponding GKF update equations may be found immediately from those presented later).

Although 
onditioning on the KR distribution P̂ (hv j x; �; �) may seem strange, a good way

to understand the meaning is that it is the KR distribution whi
h is being used as a statisti
 for

the learned surfa
e information. The key thing to noti
e in equation 20 is that, with reasonable

regularity 
onditions, 
hoosing the points of v suÆ
iently dense, the approximation desired to the

full posterior may be
ome arbitrarily good. The tri
k will be to 
hoose v appropriately, prop-

erly weighting the 
ompeting need to approximate arbitrarily well everywhere with the limited

resour
es that are imposed when a �nite amount of storage is available, i.e. when the dimensional-

ity of v is �xed. This will be addressed in the next se
tion. In the 
ase of simple imaging systems,

the point spread fun
tion and pixel diameter are good indi
ators of the ne
essary sampling s
ale

for v. In the super-resolved 
ase, the resolution expe
ted available from the data is the appropriate

s
ale for v.

The approximation to the posterior of 20 has several properties whi
h make it valuable:

� The prior distribution P (s j hv; �) whi
h supplies the un
ertainties asso
iated with points

of the surfa
e not in the ve
tor v may be 
hosen to have a simple form (see appendix 12.1)

that is easily en
oded algorithmi
ally in �nite memory.

� There is a 
lear separation between what was already known - the prior P (s j hv; �), and

what has been learned - the KR distribution P̂ (hv j x; �; �).
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� There is a 
lear des
ription of the s
ale at whi
h information has been a
quired in terms of

the density and un
ertainties asso
iated with the points (v; h(s; v)) on the surfa
e, and in

terms of the un
ertainties of their positions as en
oded in the KR distribution.

In pra
ti
e, it is useful to take a multinormal distribution over the dis
rete-point height �eld

as the KR distribution. Let the parameterization of the KR distribution be �v. For example, if

the KR is taken to be multinormal then the parameters of that distribution are

�v(x) = (�v(x);�v(x)); (21)

the mean and 
ovarian
e matrix of the multinormal, where the fun
tional dependen
e on x in-

di
ates a data dependen
y through the update pro
edure, and the subs
ript v indi
ates that the

parameters parameterize a distribution of heights at points v. Be
ause the KR distribution and

its parameters are related by a one-to-one mapping, re-write equation 20 as

P̂ (s j �v; �) =
Z

P (s j hv; �) P̂ (hv j �v) dhv: (22)

In summary, we have arrived at an approximation to the surfa
e posterior distribution, via the

KR distribution, parameterized by �v.

3.3 Updating the knowledge representation

Now we dis
uss updating �v when new data are a
quired. Temporarily restri
t attention to the

�xed v 
ase. During this and the next se
tions refer to �gure 1 for a 
ow
hart of the general GKF

update pro
ess.

3.3.1 Bayes' theorem

Having a
quired �n
v = �v(x

n), from previously seen data xn = (x1; : : : ;xn) and upon seeing new

data xn+1, the goal is to �nd �n+1
v su
h that the surfa
e distribution given �n+1

v approximates

the surfa
e distribution given xn+1 and �n
v . Given new data xn+1 in the 
ontext of the previously

seen data xn summarized by �n
v , our updated surfa
e distribution is found via Bayes' theorem

P̂ (s j xn+1;�
n
v ; �; �) =

P (xn+1 j s;�n
v ; �; �)P̂ (s j �n

v ; �; �)

P̂ (xn+1 j �n
v ; �; �)

=
P (xn+1 j s; �)P̂ (s j �n

v ; �)

P̂ (xn+1 j �n
v ; �; �)

=
P (xn+1 j s; �)P̂ (s j �n

v ; �)R
P (xn+1 j s; �)P̂ (s j �n

v ; �) ds
(23)
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where we de�ned

P̂ (xn+1 j �n
v ; �; �) =

Z
P (xn+1 j s; �)P̂ (s j �n

v ; �) ds: (24)

The updated posterior P̂ (s j �n
v ;xn+1; �; �) will be approximated by the �n+1

v parameterized KR

distribution of equation 22 as

P̂ (s j �n+1
v ; �) =

Z
P (s j hv; �) P̂ (hv j �n+1

v ) dhv: (25)

The approximation 
ondition for determining �n+1
v is then written

P̂ (s j �n+1
v ; �) � P̂ (s j xn+1;�

n
v ; �; �) (26)

Equation 26 suggests we try to minimize various measures of the 
loseness of the two distributions.

For example, one measure is the average square di�eren
e of the two distributions,Z
jP1(s)� P2(s)j2 ds (27)

but there is (apparently) no good �rst-prin
iples reason to use this form. In the next se
tion we

dis
uss the measure of distan
e whi
h leads to the maximally informative 
hoi
e of �n+1
v .

3.3.2 Maximally informative inferen
e

The measure of distan
e whi
h leads to the �n+1 providing the most information about the surfa
e

distribution is the maximally informative 
hoi
e for the statisti
 �n+1. The 
ondition for being

maximally informative, see [5℄, is that the Kullba
k-Leibler distan
e D(P1(s); P2(s)) is minimized,

where

D(P1(s); P2(s)) =
Z

P1(s) log

 
P1(s)

P2(s)

!
ds (28)

and where the P 's above are posterior distributions of �eld, that is

P1(s) = P̂ (s j xn+1;�
n
v ; �; �) (29)

P2(s) = P̂ (s j �n+1
v ; �): (30)

That is,

Find the �n+1 su
h that

��n+1
v

Z
P̂ (s j �n

v ;xn+1; �; �) log

 
P̂ (s j �n

v ;xn+1; �; �)

P̂ (s j �n+1
v ; �)

!
ds = 0

(31)
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while at the �n+1
v satisfying the derivative 
ondition above

det

"
�2
�n+1
v

Z
P̂ (s j �n

v ;xn+1; �; �) log

 
P̂ (s j �n

v ;xn+1; �; �)

P̂ (s j �n+1
v ; �)

!
ds

#
< 0

(32)

i.e., the hessian is negative de�nite and the extremum is a lo
al maximum. If possible, 
hoose

the global maximum. Note that the Kullba
k-Leibler distan
e is asymmetri
. Generally, it is

highly relevant whi
h distribution 
ontains the prior information and whi
h distribution is being

updated. Maximum entropy te
hniques reverse the roles of P1 and P2 whi
h appear here. For a

detailed explanation see [5℄.

In the following se
tion are some observations on the approa
h taken to maximally informative

surfa
e inferen
e. Se
tion 5 then brie
y makes expli
it the spe
i�
 distribution forms whi
h are

assumed. The Generalized Kalman Filter update equations for the surfa
e inferen
e example

whi
h follow from this approa
h are then presented in se
tion 6, 
ompleting the derivation of the

maximally informative approa
h.

4 Observations on the update s
heme

Note the following:

� The updating s
heme des
ribed here is a maximally informative update s
heme and is related

to the Kalman �lter. The Kalman �lter is a minimum varian
e �ltering s
heme appli
able

in the 
ase of �xed representation dimension. The 
ru
ial step whi
h has been taken in the


urrent work is the step of allowing the representation s
heme to be adaptable. We have

adopted the label \Generalized Kalman Filter" (GKF) to des
ribe the idea represented here.

The GKF equations are presented in se
tion 6.

� To this point we have only optimized over �v. It is 
lear that we may also vary the number of

verti
es jvj of the representation, allowing optimization over the number of verti
es. Varying

the number of verti
es of the representation is absolutely ne
essary if surfa
e knowledge at

s
ales smaller than the 
urrent set of verti
es represents is to ever a

umulate. In se
tion 6 the

GKF update equations are derived assuming that the number of verti
es in the representation

basis vertex set is arbitrary at ea
h update.

� Beyond allowing the number of verti
es to vary, the positions of the verti
es may be allowed

to vary. In se
tion 6 the GKF update equations are derived assuming that the representation

basis vertex set positions are arbitrary.
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� Dete
ting when and where new verti
es are ne
essary is a matter of observing dire
tly in

equations 28 or 31 when new data produ
es a lower surfa
e un
ertainty over a region, and

when having smaller un
ertainty at neighboring verti
es is not suÆ
ient to represent this

lower un
ertainty over the region.

� The vertex representation for the surfa
e knowledge is 
onvenient, but not ne
essary. For

example it is possible to extend a height �eld to a height-and-re
e
tan
e �eld or \arbitrary

dimension �eld", where the re
e
tan
e lies within a many-dimensional spa
e. Reasonable

stru
tures for the 
ovarian
e matrix allow di�ering 
orrelations between re
e
tan
e values

and between height values. It will be seen in in se
tion 6 that the GKF update equations

are easily used in the \arbitrary dimension �eld" 
ontext.

� In its most abstra
t form, instead of having a \�eld", there is simply a set of obje
ts, while

for ea
h \obje
t" there is an asso
iated ve
tor of properties, where some of the 
omponents of

the property ve
tor may be 
onsidered a lo
ation in spa
e. In this fairly abstra
ted setting,

the 
olle
tion of obje
ts has an asso
iated joint probability distribution whi
h des
ribes the

probability distribution over 
on�gurations of obje
ts. It will be seen in in se
tion 6 that

the GKF update equations are easily understood in the \obje
t" 
ontext.

� Equation 31 whi
h de�nes the quantity to be minimized is where a penalty term whi
h

indi
ates how many bits in hardware is available in trade for ea
h bit of information learned

from data. For example, one might penalize the KL distan
e by 1=10th the number of bytes it

takes to represent the new information gained by extending the number of points represented.

The exa
t form of the information learned about the surfa
e distribution 
ontained in the

KR distribution is found in se
tion 8, where the dimensionality of the representation enters

dire
tly, and where bits-used penalty-terms may be introdu
ed.

� The previous note points out how a minimum des
ription length method fails for this prob-

lem. It is 
ertainly the 
ase that that our update s
heme may require mu
h more memory

(in bits) to represent the information learned than the information learned (in bits). At

some point, if information at small enough s
ales is desired, MDL would trun
ate and stop.

Clearly, applying MDL would then be a disaster. On the other hand, what seems to work

here may be 
alled an adaptive MDL approa
h.

� Note that a method like maximum entropy is entirely de�
ient for providing distributions of

surfa
es: given the 
onstraints implied by the knowledge of the distribution of the heights

at dis
rete points: maximum entropy ignores 
orrelations between nearby surfa
e points no

matter how 
lose, an entirely ludi
rous situation. On the other hand, a method like relative
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maximum entropy, based on inverting the roles of the distributions in equation 28, 
laims to

provide the least informative inferen
e relative to the prior information, a heuristi
, diÆ
ult

to justify, at best. Further, su
h approa
hes are typi
ally based on likelihood distributions,

rather than the posteriors that appear in equation 28.

5 Surfa
e Distribution Forms

5.1 Prior

For simpli
ity of mathemati
al presentation only, the prior in our surfa
e inferen
e example is

taken multinormal over 
ontinuous, smooth height �elds. One parti
ular, 
onveniently 
hosen,

representation of the prior distribution is 
onstru
ted in appendix 12.1. This prior may be written

in the shorthand

P (s j �) = N(�s;�s)(s) (33)

where � = (�s;�s) is the parameter ve
tor. The density of the height �eld determined by the

prior

P (hv j �) =
Z
P (hv j s)P (s j �) ds (34)

=
Z
Æ(hv � h(s; v))P (s j �) ds (35)

= N(�v;�v)(hv) (36)

where

�v = Avs�s

�v = Avs�sA
T
vs (37)

and the proje
tion onto the height �eld is given by Avs. Note that equation 37 implies that the

surfa
e density 
ovarian
e is represented di�erently than a dis
rete surfa
e distribution 
ovarian
e

matrix. Spe
i�
ally, the proje
tion matrix Avs is a delta-fun
tion-like operator, and �s is a 
ontin-

uous fun
tion of two positions. In appendix 12.1 we show that the surfa
e density has a 
ompa
t


ontinuous power spe
trum representation, and there give the expli
it form of that representation.

Thus the notation of equation 37 must be 
onsidered a shorthand for the underlying 
ontinuous


onstru
t.

5.2 Likelihood

When measurement is modelled as a linear pro
ess 
orrupted by gaussian noise we have

x = Ms + �
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� � N(0;��): (38)

or

P (x j s; �) = N(Ms;��)(x) (39)

where � = (M;��) is the parameter ve
tor.

6 The Generalized Kalman Filter equations.

In this se
tion a 
on
ise derivation of the Generalized Kalman Filter update equations spe
ialized

to the dis
rete basis multinormal KR distribution of equation 22 are derived. The updated KR

need not have the same basis dimension nor position as the previous KR basis, solving the problem

of how to allow updates from one representation to the next, same, �ner or 
oarser, representation.

Pro
eeding, the KR distribution in terms of the parameterized height �eld of equation 22 is

P̂ (s j �n
v ; �) =

Z
P (s j hv; �) P̂ (hv j �n

v ) dhv (40)

The distribution of surfa
e given the height �eld from equation 9 is

P (s j hv�) =
P (hv j s)P (s j �)

P (hv j �)
=

Æ(hv � h(s; v))P (s j �)
P (hv j �) (41)

Simplify the integral of the KR distribution to �nd

P̂ (s j �n
v ; �) =

Z P (hv j s)P (s j �)
P (hv j �) P̂ (hv j �n

v ) dhv

= P (s j �)
Z
Æ(hv � h(s; v))

P̂ (hv j �n
v )

P (hv j �) dhv

= P (s j �) P̂ (h(s; v) j �
n
v )

P (h(s; v) j �) (42)

Note how the full surfa
e distribution is simply modi�ed by the ratio

P̂ (h(s; v) j �n
v )

P (h(s; v) j �) (43)

From equation 23 the Bayesian update of the KR distribution is

P̂ (s j xn+1;�
n
v ; �; �) =

P (xn+1 j s; �) P̂ (s j �n
v ; �)R

P (xn+1 j s; �) P̂ (s j �n
v ; �) ds

=
P (xn+1 j s; �) P̂ (s j �n

v ; �)

P̂ (xn+1 j �n
v ; �; �)

(44)
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Rewriting the updated distribution using equation 42 yields

P̂ (s j xn+1;�
n
v ; �; �) / P (xn+1 j s; �)P (s j �)� P̂ (h(s; v) j �n

v )

P (h(s; v) j �)
(45)

For maximally informative inferen
e of the new KR we minimize, from equation 28,

D(P1(s); P2(s)) = D(P̂ (s j xn+1;�
n
v ; �; �); P̂ (s j �n+1

v ; �))

=
Z

P̂ (s j xn+1;�
n
v ; �; �) log

 
P̂ (s j xn+1;�

n
v ; �; �)

P̂ (s j �n+1
v ; �)

!
ds

(46)

Note that it is not assumed here that v and v have the same dimension. Expanding the probability

distributions within the logarithm appearing above yields

D(P1(s); P2(s)) =
Z
P̂ (s j xn+1;�

n
v ; �; �)

� [�log (P (h(s; v) j �))
+log (P (h(s; v) j �))
+log (P (xn+1 j s; �))
�log

�
P̂ (xn+1 j �n

v ; �; �)
�

+log
�
P̂ (h(s; v) j �n

v )
�

�log
�
P̂ (h(s; v) j �n+1

v )
� i

ds (47)

Ea
h term has the form of an information (or un
ertainty). Together the six terms paint a

des
riptive pi
ture of how information is a
quired by the maximally informative update when

taken as three groups of two terms: Denote by \new KR" the two terms with v and �n+1
v , by

\previous KR" the two terms with v and �n
v and no data, and by \new data" the two terms with

data dependen
y. Now, noting the signs on these quantities, be
ause D is positive, the whole

point of 
hoosing a good �n+1 approximation by minimizing D is that

Expe
ted information in new KR '
(Expe
ted information in previous KR

+Expe
ted information in new data) (48)

or in very rough terms we may see the update as 
apturing the sum-total of the available knowledge

Total knowledge = Prior knowledge+ New knowledge from data (49)
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Be
ause only terms depending upon the update parameters v and �n+1
v are needed to perform

the minimization, we drop the other terms at this point, and after making the multinormal

substitutions for the distributions in the above we have

�D(P1(s); P2(s)) =
Z
P̂ (hv j xn+1;�

n
v ; �; �) log (N(�v;�v)(hv)) dhv

�
Z
P̂ (hv j xn+1;�

n
v ; �; �) log

�
N(�n+1

v ;�n+1
v )(hv)

�
dhv

(50)

To simplify the P̂ 's appearing in equation 50, the distribution of surfa
e given old knowledge and

new data, marginalized to the height �eld v, is useful, as is seen by observing equations 47 and 50.

Thus, 
onsider

P̂ (s j xn+1;�
n
v ; �; �) / N(M(�)s;�n+1

� )(xn+1)N(�s;�s)(s)

� N(�n
v ;�

n
v )(h(s; v))

N(�v;�v)(h(s; v))
(51)

found by making substitutions into 45 for the assumed distributions. Sin
e it is not ne
essarily the


ase that vi 2 fvjg or that vi 2 fvjg. pro
eed by marginalizing to the union of the 
omponents of

v and v, whi
h we denote v [ v, and then to the v 
omponents. Let Av[v;s denote the proje
tion

from vs to v [ v, Av;v[v denote the proje
tion from v [ v to v, and Av;v denote the proje
tion

from v to v. In performing the two proje
tions (from vs to v [ v, and then from v [ v to v) in

order we �nd (not ne
essarily in most simple form), using results of appendi
es 12.2{12.5, that

Z
P̂ (s j xn+1;�

n
v ; �; �) ds n v = N(�R;�R)(hv) (52)

where

�R
v = �R(�

�1
Q �v

Q + (�n
v )
�1�n

v
� ��1v �v)

��1R = ��1Q + (�n
v )
�1 � ��1v (53)

and where

�
Q
v = Av;v[vAv[v;s�

P
s

��1Q = Av;v[vAv[v;s�
�1
P AT

v[v;sA
T
v;v[v

(54)

�P
s = �P (�

�1
s �s +MT��1� xn+1)

��1P = ��1s +MT��1� M
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(55)

�n
v
= Av;v�

n

v

(�n
v )
�1 = Av;v(�

n
v )
�1AT

v;v

(56)

�v = Av;v�v

��1v = Av;v�
�1
v AT

v;v

(57)

�v = Av;s�s

��1v = Av;s�
�1
s AT

v;s

(58)

Using the results of appendix 12.6, the quantities of equation 53 above 
orrespond to the values

of the mean and standard deviation parameters of the new KR, found at the minimum Kullba
k

Leibler distan
e, i.e. the minimization is immediately apparent from those results. Thus:

�n+1
v = (�n+1

v ;�n+1
v )

�n+1
v = �R

v

�n+1
v = �R

v (59)

Equations 53 are the Generalized Kalman Filter (GKF) update equations for the surfa
e inferen
e

example, yet are quite a bit more general (the ne
essary 
hange of variables needed when the

forward proje
tion is nonlinear appears in appendix 12.10). Having these update equations allows

one to 
onsider updating a representation of any dimension relative to the original representation.

Thus. knowledge may be represented in �ner detail, 
orresponding to the old representation being


ontained in the new, knowledge may be represented in the same detail, 
orresponding to the 
ase

when the new representation is the same as the old representation, or knowledge may be tossed,


orresponding to the 
ase when the new representation does not 
ontain the old representation.

The maximally informative inferen
e approa
h and its result of the Kullba
k Leibler distan
e on


onditional posteriors led dire
tly here to deriving the GKF and the solution of the problem of

storing knowledge at s
ales adaptive to the a
tual needs of the data driving the update. The

standard KF is dis
ussed in [1℄.

7 Spe
ializing the GKF

When the surfa
e of interest is itself a dis
rete height �eld, and the KR representation basis never


hanges in dimension nor position from that height �eld's basis, then all proje
tions appearing
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in equations 53 and following are identities, and the update equations simplify to the standard

Kalman �lter equations, in e�e
t equations 55 only, given suitable identi�
ation of the variables.

8 Information learned

On
e a new set of parameters has been 
hosen, and for the purpose of evaluating the new update

in the 
ontext of other possible updates at di�erent s
ales, using di�erent representational bases,

it is useful to have the quantity of information about the surfa
e distribution that is 
ontained in

the KR at the maximally informative update. Using the results of appendix 12.6 in equation 50

we have this information, up to a 
onstant, is given by

IR = C(xn+1;�
n
v ; �; �)

+
1

2

�
Tr

h
(�R + U(�R � �v))
 ��1v

i
+ log(j�vj)

�

� 1

2

�
Tr

h
�R 
 ��1R

i
+ log(j�Rj)

�
(60)

Note that the d's (representation basis dimensions) from the dlog(2�)'s of equation 94 have 
an-


elled. However the d's remain hidden within the terms as matrix dimensions. When 
onsidering

optimizing learned inormation against storage resour
es, one must weigh a separate 
ost in bits

for the memory used against the bits learned, the expression above. Note also, interestingly the

expression above 
ontains a BIC-like log(d) dependen
e term.

9 Sear
h for update parameters

Now that we know what the update equations for the updating of the KR distribution look like, it

is worthwhile 
onsidering how an updating s
heme might be implemented to a
quire information

at the appropriate s
ale. First, we dismiss the notion that we will ever be using the 
ontinuous

height �eld vs (the support of s) at any time. None of the update equations for
e that to happen!

Se
ond, sin
e we have 
on
luded that 
omputationally vs is a dis
rete set, and sin
e there will

always be pathologi
al 
ases where the surfa
e is mu
h rougher than we 
are to represent, we

a
knowledge that fa
t and pro
eed by presenting a useful algorithm whi
h allows the updating of

the KR while maintaining the ability to explore a large range of s
ales. The following multigrid-

style algorithm provides the general 
avor:

� Choose vs denser by several orders of s
ale than the 
urrent representation, and using other


riteria asso
iated with the knowledge of the data a
quisition system (see below).

� Choose v at regular s
ales intermediate between vs and the old KR on v, 
ompute the

updates on all v 
hosen at these s
ales.
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� Compute the information learned at ea
h s
ale.

� Plot the information learned as a fun
tion of in
reasing density (de
reasing s
ale).

� Choose, based on exploration of the plot, and 
osts asso
iated with storing the learned

information, whether to explore other o
taves of s
ale. If Choose to explore, repeat above

pro
edure.

� If 
hoi
e is to pi
k an informationally and storage attra
tive KR, do this and update the

representation a

ordingly.

In the surfa
e re
onstru
tion problem data often 
omes in the form of images. The images may


ome from devi
es with vastly di�erent resolutions, and the known parameters of pixel size, point

spread fun
tion and geometry determine the appropriate re
onstru
tion s
ale. Finally adapting

the surfa
e to resolve at sub-pixel s
ales requires a memory-aggressive approa
h whi
h extends

the exploration farther out on the learning 
urve towards smaller, denser representation s
ales.

10 Con
lusion

Field inferen
e has been generalized from the typi
al dis
rete �xed-basis setting to a 
ontinuous-

basis setting. The problem of surfa
e inferen
e was solved in the 
ontext of 
ontinuous �eld

inferen
e. Using the approa
h of a
quiring the maximally informative KR distribution, the GKF

equations were found. The GKF allows the updated KR parameters to be found at any s
ale

and/or \positions" (abstra
tly, basis 
omponents). The approa
h allows the learning of informa-

tion at the relevant s
ales desired. It provides an information-theoreti
 justi�
ation for lo
ation-

dependent adaptive multi-grid inferen
e. It also e�e
tively provides similar justi�
ation for a

s
ale-adaptive MDL method. This is apparently the �rst time that the maximally informative

inferen
e of 
ontinuous-basis obje
ts and the multigrid approa
h have been rigorously justi�ed.
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12 Appendi
es

12.1 Constru
tion of a 2D surfa
e prior

In this appendix we �rst introdu
e the reader to the fourier representation of a gaussian pro
ess,

then using the notions developed �nd the representation for a 2D gaussian pro
ess over the plane,

where the 
orrelations of the pro
ess at points x and y are proportional to exp(�k jx� yj), k > 0,

a simple translation-invariant 
hoi
e for the form of the 
orrelation stru
ture of the probability

density of surfa
es having the plane as support. The utility for the GKF of having this pro
ess

is that it serves as a simply 
omputed algorithmi
 representation of the prior for surfa
es having

the plane as support.

12.1.1 The dis
rete gaussian pro
ess

Consider f(n; 
), n 2 ZN = f�N; : : : ;�1; 0; 1; : : : ; Ng, a dis
rete pro
ess with expression as the

fourier expansion

f(n; 
) =
NX

k=�N


ke
ikn (61)

where the 
oeÆ
ients 
 = (
k) are 
onstrained by f 2 R so that 
k = 
��k, and the n and k

range over ZN . Let the 
oeÆ
ients be random variables: 
k = xk + iyk with xk � N(0; �k) and

yk � N(0; �k) both gaussian distributed random variables with mean 0 and standard deviation

�k. Now, dropping the k's, the joint density of (x; y) is given by

Px;y(x; y) =
e�x

2=2�2

p
2��

e�y
2=2�2

p
2��

: (62)

From this the joint density of (r; �) where r =
p
x2 + y2 and � = ar
tan(y=x) is given by

Pr;�(r; �) =
re�r

2=2�2

2��2
: (63)

The density of r is given dire
tly by integrating over �

Pr(r) =
re�r

2=2�2

�2
; (64)

while the density of � is given dire
tly by integrating over r

P�(�) =
1

2�
: (65)
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Making a 
hange of variables, the density of 

� = x2 + y2 = r2 is given by the exponential

distribution

P

�(u) =
e�u=2�

2

2�2
(66)

The distribution of 
k + 
�k = 2Re[
k℄ = 2xk, k > 0 is of interest be
ause the pro
ess is real.

P
+
�(u) =
e�u

2=2(2�)2

p
2�2�

(67)

whi
h is just a gaussian with zero mean but twi
e the varian
e of the 
omponents x and y of


. Note that the a
tual 
oeÆ
ients in equation 61 
ke
ikn + 
�ke

�ikn = 2Re[
ke
ikn℄ also have the

distribution of equation 67 sin
e the phase of 
k is uniformly distributed in [0; 2�℄.

Now, given a set of integers � � ZN we may ask for the density of the sampled values of the

pro
ess f at � = (n1; n2; : : : ; nm)

f(�) = (f(n1); f(n2); : : : ; f(nm)); (68)

where m = j�j ; ni 2 ZN ; i = 1; : : : ; m. De�ne

f(�; 
) = (f(n1; 
); f(n2; 
); : : : ; f(nm; 
)) (69)

Then the probability density fun
tion whi
h des
ribes the sampled values is

P (f(�)) =
Z
Æ(f(�)� f(�; 
))P (
) d
 (70)

where

P (
) = P (
0)
NY
k=1

P (
k + 
�k) (71)

Note that that the density of P (f(�)) is multivariate gaussian sin
e the representation of f(�; 
) as

a fourier series shows that it is the sum of gaussian random ve
tors with 
omponents 2Re[
ke
ikn℄.

The 
ovarian
es of the pro
ess are found as

�m;n = E[f(m)f(n)℄ = E[f(m)f �(n)℄

= E

2
4 NX
k;l=�N


k

�
l e

i(km�ln)

3
5

=
NX

k=�N

E[
k

�
k℄e

ik(m�n)

= F [E[
k

�
k℄℄(m� n) (72)
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where we used the fa
t that the 
oeÆ
ients of di�erent frequen
y are un
orrelated for k 6= l, i.e

E[
k

�
l ℄ = 0 for k 6= l. De�ne the power spe
trum R(k) as

R(k) = E[
k

�
k℄ (73)

Then we have that the 
ovarian
e is given by the fourier transform of the power spe
trum,

�m;n = E[f(m)f(n)℄ = F [R℄(m� n) = �m�n (74)

where we have a
knowledged that the 
ovarian
e stru
ture is dependent only upon the di�eren
e

m�n. From this we see that the inverse fourier transform of the 
ovarian
e is the power spe
trum,

F�1 [�u℄ (k) = R(k) (75)

Finally, note that the density of 
k

�
k given by equation 66 allows us to infer the parameters �k

whi
h are the standard deviations of the gaussian pro
esses xk and yk underlying the 
oeÆ
ients


k, sin
e from equation 66

E[
k

�
k℄ =

Z
u
e�u=2�

2
k

2�2
k

du = 2�2
k (76)

In the next se
tion the basis for gaussian pro
esses developed here is extended to the 
ontinuous

2D 
ase to 
ompute the power spe
trum of a pro
ess spe
i�ed by a 
ontinuous-basis 
ovarian
e

stru
ture.

12.1.2 The 
ontinuous-basis 2D pro
ess

Similar to the development in the last se
tion, in two dimensions, given the 
ontinuous-basis


ovarian
e �x = exp(�k jxj), k > 0., the power spe
trum is found as the inverse fourier transform

of the 
ovarian
e, i.e.

R(u = (u; v)) = F�1
2 [�x℄(u; v)

=
Z Z

e�kj(x;y)je�iuxe�ivy dx dy (77)

Make the 
hange of variables (x; y)! (r; �) so that x = r
os(�), y = rsin(�), then

R(u; v) =
Z 1

0

Z 2�

0
e�kre�ir(u
os(�)+vsin(�)) r dr d� (78)

For simpli
ity, make the further 
hange of variables (u; v) ! (s; �) so that u = s
os(�), v =

ssin(�), so that

R(s; �) =
Z 1

0

Z 2�

0
e�kre�irs(
os(�)
os(�)+sin(�)sin(�)) r dr d�
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=
Z 1
0

Z 2�

0
e�kre�irs
os(���) r dr d�

=
Z 1
0

re�kr
Z 2�

0
e�irs
os(���) d� dr

R(s) = 2�
Z 1
0

re�krJ0(rs) dr (79)

Finally,

R(u) =
2�k

(juj2 + k2)3=2
(80)

Note that we have negle
ted the proportionality 
onstant 1=2� in the fourier transform, amounting

to normalizing the delta fun
tion to 2�, and have s
aled u to units of 
y
les per 2�. Note also that

both the 
ovarian
e of the pro
ess and the power spe
trum s
ale with the same proportionality


onstant. Harmoni
 analysis is dis
ussed in [3℄

12.2 Multinormal density MGF

The moment generating fun
tion for a probability distribution f is de�ned as the fun
tional

M [f ℄(�) = Ef [e
Tr[U(�;x)℄℄ (81)

where U(y; z) is de�ned su
h that U = [Uij℄ and Uij(y; z) := yizj, from whi
h holds the property

�kM [f ℄(�)

��i1 : : : �ik

j�=0
= Ef [xi1 : : : xik ℄ (82)

i.e the moments are found as derivatives of the MGF with respe
t to the parameter � at � = 0.

Take the multinormal density fun
tion for x

P (x j �) = N(�)(x)

= N(�;�)(x)

=
1

(2�)d=2 j � j1=2 exp(�
1

2
Tr[U(x� �)
 ��1℄) (83)

where U(y) is de�ned su
h that Uij(y) := Uij(y;y) and d = Dim(x). The MGF of N(�)(x) is

then given by

M [N(�)(x)℄(�) = E[eTr[U(�;x)℄ j �℄
=

Z 1

(2�)d=2 j � j1=2 exp(�
1

2
Tr[U(x� �)
 ��1℄ + Tr[U(�;x)℄) dx

(84)
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Minus twi
e the exponent of the integral above may be written as

Tr[U(x� �)
 ��1℄� 2Tr[U(�;x)℄ = Tr[U(x� (�� ��))
 ��1℄

+Tr[U(�)
 ��1℄

�Tr[U(�� ��)
 ��1℄

= Tr[U(x� (�� ��))
 ��1℄

�Tr[U(�)
 �℄

�2Tr[U(�;�)℄ (85)

from whi
h the moment generating fun
tion is immediately found as

M [N(�)(x)℄(�) = exp(Tr[U(�;�)℄ +
1

2
Tr[U(�)
 �℄ ) (86)

From the above we have

E[xi j �℄ = �i

E[(xi � �i)(xj � �j) j �℄ = �ij (87)

whi
h agrees with the 
al
ulation of appendix 12.2. Two things to note: 1. The inverse of � is

assumed to exist. 2. All moments are determined by simple produ
ts and sums of the parameters

(�;�).

12.3 Multinormal linear 
hange of variables

Letting y = Ax be the 
hange of variables, where P (x j �) = N(�)(x), the MGF of the density

P (y j �) is found from the MGF of the density for P (x j �) in a straightforward manner as

M [P (y j �)℄(�) = E[eTr[U(�;y)℄ j �℄
= E[eTr[U(�;Ax)℄ j �℄ (88)

= E[eTr[U(AT�;x)℄ j �℄
= exp(Tr[U(�; AT�)℄ +

1

2
Tr[U(AT�)
 �℄)

= exp(Tr[U(A�;�)℄ +
1

2
Tr[U(�)
 (A�AT )℄)

(89)

Note that the dropped subs
ripts x and x of the � and � are easily determined by the 
ontext,

and that the density used to take the expe
tation naturally 
hanged in equation 88 from P (y j �)
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to P (x j �) without 
onfusion. With this result and referring to equation 86 and pre
eding we

�nd that the density for y is multinormal with

�y = A�x

�y = A�xA
T (90)

Note that everywhere the 
ondition of A was neither mentioned nor assumed, thus A may be a

re
tangular matrix or otherwise not of full rank.

12.4 Multinormal proje
tions

Another useful operation is that of proje
tion onto a subset of the 
omponents of the argument

of the multinormal distribution. Proje
tions may be trivially represented as a linear operation,

where the \proje
tion matrix" is typi
ally a re
tangular matrix having the form of a unique

(single) element of value 1 in ea
h row and 
olumn, zeroes elsewhere. Finding the distribution of

the proje
ted variables is equivalent to the operation of marginalizing over the 
omponents not in

the proje
tion. Let A be the proje
tion matrix sele
ting a subset of the variables of x as y = Ax.

Then, using the result of se
tion 12.3, we immediately �nd integrals of the formZ
N(�;�)(x) dx n y = N(A�; A�AT )(y) (91)

Both ve
tor A� and the matrix A�AT are now just appropriately rearranged pie
es of the original

ve
tor � and matrix �. Spe
i�
ally, if yk = xik then [A�AT ℄pq = �ipjq .

12.5 Multinormal multipli
ation

One operation whi
h frequently o

urs in Bayesian inferen
e is that of taking the produ
t of

two multinormal distributions of the same variable and normalizing that produ
t to �nd a new

distribution. Finding the new � = (�;�) amounts to 
ompleting the square, but it is useful to

state the result, and we do this here. Let �1 = (�1;�1) and �1 = (�1;�1) be the parameters of

the multinormal distributions in the produ
t. Then

� = �(��11 �1 + ��12 �2)

� = (��11 + ��11 )�1 (92)

12.6 Expe
ted un
ertainty in multinormals

It is useful to know the expe
ted un
ertainty of one gaussian distribution in the 
ontext of another.

Consider the quantity

E[�log(P (�2)(x)) j �1℄ = �
Z
N(�1;�1)(x) log (N(�2;�2)(x)) dx (93)
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whi
h o

urs in similar form in the development of the Generalized Kalman Filter (se
tion 6) and

represents the expe
ted un
ertainty, or entropy, of the surfa
e representation in the 
ontext of

the updated surfa
e distribution. The value of this integral is found straightforwardly using the

results mentioned in appendix 12.2 as

E[�log(N(�2;�2)(x)) j �1℄ =
1

2
E

h
Tr[U(x� �2)
 ��12 ℄

i

+
d

2
log(2�) +

1

2
log(j�2j)

=
1

2
Tr

h
(�1 + U(�1 � �2))
 ��12

i

+
d

2
log(2�) +

1

2
log(j�2j)

(94)

12.7 Maximizing the expe
ted information

Varying �2, the minimum value of the un
ertainty above o

urs when �2 = �1. That this is true

for the � 
omponent of �2 is immediate from the positive de�nite quadrati
 nature of the �rst

term. For the � 
omponent the following fa
t following from the properties of determinants and

matrix inverses fa
ilitates the result:

� j�j
��kl

= (�1)k+lCofkl(�)

j�j = ��1kl (95)

12.8 Notes on matrix inverses and submatri
es

Given the invertible matrix V , 
omposed in the following manner of submatri
es V11, V12, V21, V22,

A =

"
V11 V12
V21 V22

#
(96)

and its inverse

A�1 =

"
V̂11 V̂12
V̂21 V̂22

#
(97)

then it is immediate that the following relationships hold among the submatri
es

"
I11 N12

N21 I22

#
=

"
V11V̂11 + V12V̂21 V11V̂12 + V12V̂22
V21V̂11 + V22V̂21 V21V̂12 + V22V̂22

#
(98)

where I and N represent the identity and zero matri
es respe
tively. Any quadrati
 operator

xTQx may be de
omposed using proje
tion matri
es A and A where these are diagonal matri
es
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with one and zero entries only, and where

A+ A = I (99)

in the following manner

xTQx = xT (A+ A)Q(A+ A)Tx

= xTAQAAxA + xTAQAAxA + xT
A
QAAxA + xT

A
QAAxA (100)

Now, assume Q is symmetri
 and that both it and QAA and QAA are invertible, and rewrite this

form as the sum of two terms as follows

xTQx = (xA ��)TQAA(xA � �) + C(xA)
= xTAQAAxA � xTAQAAxA � xTAQAAxA +�TQAA�+ C(xA)

(101)

where � = (QAA)
�1QAAxA. Thus

C(xA) = xT
A

�
QAA �QAA(QAA)

�1QAA

�
xA (102)

Applying the identities of equation 98

QAAQ̂AA +QAAQ̂AA = NAA (103)

followed by

QAAQ̂AA +QAAQ̂AA = IAA (104)

�nd that

QAA �QAA(QAA)
�1QAA = (Q̂AA)

�1 (105)

so that

C(xA) = xT
A
(Q̂AA)

�1xA (106)

whi
h immediately provides an alternate method for marginalizing gaussian distributions.

12.9 Alternate inverse forms

In the GKF update equations expressions for updating inverse matri
es in terms of the sum of

other inverse matri
es o

ur. Be
ause one of the summand matri
es may not be well-
onditioned,

it is of interest to �nd an expression for the updated matrix in terms of the other matri
es, whi
h
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expli
itly is not a fun
tion of the inverse matri
es. Thus, let P , Q, R be invertible matri
es su
h

that

P�1 = Q�1 +R�1 (107)

Then we �nd

P = Q�Q(Q +R)�1Q (108)

by the following dire
t substitution

PP�1 = (Q�Q(Q +R)�1Q)(Q�1 +R�1)

= I �Q
h
(Q+R)�1(I +QR�1)� R�1

i
= I (109)

12.10 Nonlinear forward proje
tion

In the nonlinear forward proje
tion 
ase the proje
tion is given by f(s), where f(�) is a nonlinear

fun
tion of s rather then the linear form Ms. Be
ause the derivative of the forward proje
tion is

often a straightforward obje
t to 
ompute, expand f(s) about the mean of the old surfa
e, �s

x = f(�s) +
�f

�s
j�

s
(s� �s) + � (110)

Letting M = �f
�s j�

s
we have

P (x j s; �) = N((f(�s)�M�s) +Ms;��)(x)

= N(Ms;��)(x� (f(�
s
)�M�

s
))

(111)

so that the appropriate 
hanges to be made to the GKF update equations are simply

x! x� (f(�
s
)�M�

s
)

M ! �f
�s j�

s
(112)

while everything else otherwise remains the same.



GKF Update Loop Equation

Bayes update

MaxInfo Approx.

The elements going into  are the prior, restricted to some knowledge  about the

field, .  (In the main text example,  is the set of known surface height field values.)

and the Knowledge Representation (KR) distribution is , which is the learned

knowledge about the specifics of the surface at the 'th iteration of the GKF.

These form the approximate posterior  given by the integral over  of the product of

the KR distribution and the prior distribution given  known, that is

 (1)

At update , the new data and the approximate posterior from iteration n are incorporated 

using the likelihood  and Bayes' theorem to produce the data-dependent posterior 

written . Then, the new KR that caputres an approximation to this exact poste-

rior using (1) above with  via Maximally informative statistical inference completes 

the GKF loop.

Figure 1 - Generalized Kalman Filter Update Loop
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