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Abstract: This paper uses a semi-parametric Poisson-gamma model to estimate the relationships 

between crash counts and various roadway characteristics, including curvature, traffic levels, 

speed limit and surface width. A Bayesian nonparametric estimation procedure is employed for 

the model’s link function, substantially reducing the risk of a mis-specified model. It is shown 

via simulation that little is lost in terms of estimation quality if the nonparametric estimation 

procedure is used when standard parametric assumptions (e.g., linear functional forms) are 

satisfied, but there is significant gain if the parametric assumptions are violated. It is also shown 

that imposing appropriate monotonicity constraints on the relationships provides better function 

estimates. Results suggest that key factors for explaining crash rate variability across roadways 

are the amount and density of traffic, presence and degree of a horizontal curve, and road 

classification. Issues related to count forecasting on individual roadway segments and out-of- 

sample validation measures also are discussed. 
 

Keywords: Forecasting; Poisson-gamma model; Markov chain Monte Carlo, Monotonicity 

constraints; Regression splines. 
 
 
 

Please send correspondence to: Kara Kockelman, Department of Civil, Architectural and 

Environmental Engineering, Mail Code C1767, University of Texas, Austin, Texas, 78712, U.S.A. 

E-mail: kkockelm@mail.utexas.edu; Telephone: 512-471-0210; Fax: 512-475-8744. 
 



- 1 - 

1. Introduction 

 Understanding roadway safety is an important task, but is complicated by the rare nature of 

crash incidents and the large number of potential causal factors. In addition, there is a lack of 

subject matter theory regarding the appropriate functional forms to use for relating causal factors 

to crash rates. As described in Wahba’s (1978) classic paper, functional data analysis involves 

complex curve fitting. The current paper adds to the transportation literature by applying 

Bayesian nonparametric tools for functional analysis to crash data.  Related work includes 

Mahamassani et al.’s (1988) direct use of cubic regression splines for urban density patterns, 

Biller’s (2000) adaptive computational methods for Bayesian semi-parametric models, and Biller 

and Fahrmeir’s (2001) method to allow for varying coefficients. Fahrmeir and Osuna (2007) 

used regression splines for a negative binomial model of count data in the context of automobile 

insurance claims data, while Xie and Zhang (2008) use regression splines in a frequentist context 

with fixed knot locations to model accident counts at traffic intersections. Neelon and Dunson 

(2004), Dunson (2005), Schipper et al. (2007) and Shively, Sager and Walker (2009) considered 

monotonic function estimation in additive models.  

 This paper uses a Bayesian nonparametric monotone function estimation methodology in the 

context of a Poisson-gamma model to model and estimate the relationships between the number 

of crashes on segments of two-lane rural highways and roadway characteristics such as degree of 

curvature, vertical grade, amount of traffic and speed limit, among others (in all, there are 15 

explanatory variables included in the model). The resulting function estimates provide valuable 

information regarding which characteristics explain the variability in crash counts across 

roadway segments and therefore which characteristics transportation officials should focus on to 

improve road safety. The nonlinear relationships can provide a better understanding of the effect 

roadway characteristics have on crash rates and road safety.  

 Unfortunately, transportation data sets are often imperfect, with some design variables out of 

date (e.g., the road was improved but the road file was not updated) and many crashes going 

unreported. Also, important explanatory variables are often unavailable (e.g., number of snowy 
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days at a location, roadside clear zone slope and width, and average speeds of travel). Given the 

issues related to crash data and the inherent noise in the data, it is important to impose a 

reasonable amount of structure on the analysis without imposing so much that the results are 

potentially misleading due to incorrect assumptions. A fully parametric analysis lies at one end 

of the “structure spectrum”, and a fully nonparametric analysis at the other end (without any 

assumptions on either the density function or the functional forms of the covariate relationships). 

By specifying a Poisson-gamma distribution for the count data and imposing monotonicity 

constraints on the functional forms of the covariate relationships, we have chosen a compromise. 

The monotonicity constraints incorporate a significant amount of information into the model but 

stop short of specifying the functional forms of the relationships. 

 Nonparametric techniques allow nonlinear relationships to be observed that may not be 

detected using a parametric analysis. If there is subject matter theory available to specify the 

appropriate functional forms, then it should be used. However, valuable insights can often be 

obtained using nonparametric methods that provide limited structure to the analysis without 

allowing too much flexibility. Nonparametric estimation methods also provide a valuable tool for 

exploratory data analysis. Such analysis can provide valuable information about relationships 

that is not available from a parametric approach. 

 The Bayesian nonparametric methodology used in this paper allows monotonicity constraints 

to be imposed on the unknown functions when such constraints are appropriate. Strong subject 

matter arguments can be made that many of the roadway characteristic variables in the data set 

will be monotonically related to crash counts. We show via simulation that imposing appropriate 

monotonicity constraints increases the quality of the function estimates and thereby provides 

more reliable conclusions to be drawn from the analysis. In addition, the monotone 

nonparametric procedure produces smooth function estimates, without the “wiggles” that often 

occur with unconstrained nonparametric procedures. The resulting function estimates make more 

intuitive sense and are easier to interpret and explain to users. Finally, as discussed above, 
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monotonicity assumptions impose additional structure on the analysis that is particularly useful 

in the presence of noisy data. 

 A natural question that arises for any nonparametric estimation procedure, especially when it 

is used for models with a large number of functions to estimate and a substantial amount of 

variability in the dependent variable, is: How good are the function estimates? In particular, does 

the extra flexibility provided by a nonparametric procedure provide function estimates that are 

too “noisy”? The answer to this question depends on the complexity of the model, the amount of 

data, the structure of the explanatory variables and the number of functions to be estimated. It is 

shown via simulation in section 5 for a Poisson-gamma model with the explanatory variables and 

number of observations in our data set that the nonparametric monotone estimation procedure 

does nearly as well as the standard parametric procedure when the parametric assumptions are 

satisfied, and substantially better when the assumptions are violated.  

 A second important question is: How well does the estimated model predict future crash 

counts? In many contexts, questions of this type can be answered using out-of-sample validation 

procedures. However, we show theoretically and via simulation that no estimation procedure will 

be able to accurately predict the number of crashes on a specific road segment given the inherent 

variability in Poisson count data. This is true whether the model is estimated parametrically or 

nonparametrically, and whether or not the parametric assumptions are satisfied. The lack of 

forecasting power is shown to hold even in the extreme case when the “true” relationships 

between crash counts and the explanatory variables are known, i.e., when there is no estimation 

error in the function estimates. This finding does not invalidate the importance of accurate 

function estimation because accurate estimates are critically important for developing safer 

roads. To be more specific, given the rare nature of crashes on any given roadway segment, 

safety engineers are typically interested in what happens over the long-run, across many road 

segments with the same or similar characteristics (e.g., same curvature, amount of traffic, and 

speed limit). The expected number of crashes per segment per year across segments with the 

same characteristics and across several years (i.e., with random variability averaged out) depends 



- 4 - 

crucially on the functions relating crash counts to roadway characteristics and therefore on 

accurate and reliable estimates of the functions. 

 The empirical results obtained from our model indicate the important factors in explaining 

the variability in crash rates across road segments are the amount and density of traffic, whether 

or not there is a curve in the road and if so, how sharp and how long the curve is, and the type of 

road. The functions associated with eight of the explanatory variables are estimated 

nonparametrically. The results indicate that four are nonlinear functions and cannot be easily 

modeled using a parametric functional form. The fifth estimated function is very close to linear, 

and the variables associated with the other three functions do not appear to be related to crash 

counts. The remaining seven variables are categorical variables and enter the model linearly. A 

thorough discussion of the empirical results and their interpretation is given in section 4. 

 The paper is organized as follows. Section 2 outlines the nonparametric monotone function 

estimation methodology used in the paper. Section 3 discusses the data used in the analysis. 

Section 4 gives the empirical results and their interpretation in terms of roadway safety. It also 

contains a discussion of why it is difficult to make accurate forecasts in the context of Poisson-

gamma models. Section 5 provides simulation results to show the significant advantages of using 

a nonparametric monotone function estimation procedure rather than either a standard parametric 

procedure or a nonparametric procedure without monotonicity constraints. The MCMC sampling 

algorithm used to implement the monotone estimation procedure is outlined in the appendix. 
 

2. The model and estimation methodology 

 Crash counts on each roadway segment in a one-year period are assumed to arise from a 

generalized-additive Poisson-gamma model: 
 

 Pr(Yi = yi | xi, zi) = exp{-φi g(xi, zi)} !
)],,([

i

y
iii

y
zxg iφ

 (1) 

 
where   
 

 log[g(xi, zi)] = α + f1(x1i) + … + fp(xpi) + γ1z1i + … + γqzqi, 
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and i indexes observations/roadway segments (1, …, n). The dependent variable yi is the number 

of crashes on the ith road segment, xi = (x1i, …, xpi) are explanatory variables that enter the model 

nonlinearly and  zi = (z1i, …, zqi) are explanatory variables (typically 0/1 indicator variables) that 

enter the model linearly. The mean function is μ(xi, zi, φi) = φi g(xi, zi) where φi are independent 

Γ(η,η) random variables included to model additional heterogeneity in crash rates across 

roadway segments. This model is similar to the Poisson-gamma model considered by Dunson 

(2005) and Fahrmeir and Osuna (2007). The variables included in xi and zi include curvature, 

traffic flow, terrain type, and other variables, as discussed in section 3. Further, f1, …, fp are 

unknown functions to be estimated nonparametrically and γ1, …, γq are unknown parameter 

values. For a Bayesian model, prior distributions must be placed on the unknown parameter 

values. The prior distributions on the α and γj values are non-informative N(0, k) distributions 

with k large, while the prior on η is a non-informative Γ(0.01, 0.01) distribution. The priors for 

the unknown function spaces are discussed below. 

 While the negative binomial specification has become the forerunner in crash count 

modeling, covariates are entered linearly (e.g., Miaou 1994, Abdel-Aty and Radwan 2000, and 

Kockelman et al. 2006).  Extensions to this popular model are largely limited to panel-data 

settings with random effects (e.g., Chin and Quddus 2003, Ulfarsson and Shankar 2003, and 

Kweon and Kockelman 2005), zero-inflated specifications (e.g., Gurmu et al. 1999, Kumara and 

Chin 2003, Lord et al. 2005a), and multivariate applications using Bayesian methods for 

parameter estimation (Maher 1990, Park and Lord 2007, and Ma et al. 2008).  Linearity in 

parametric expressions for link functions remains the norm acrossmodeling specifications and 

applications in the transportation discipline.  

 This remainder of this section discusses the nonparametric monotone estimation 

methodology that will be used to estimate the unknown functions and parameters in (1), and in 

particular, the prior distribution used on the function space to ensure monotonic function 

estimates. Section 2.1 provides a brief description of Bayesian nonparametric function estimation 
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in a regression model with Gaussian errors. Section 2.2 then shows how the methodology can be 

modified to enforce a monotonicity constraint on an estimated function through the prior 

distribution on the function space. Given an MCMC sampling algorithm to make the procedure 

computationally feasible (discussed in the appendix), the monotone function estimation 

methodology applies to both Gaussian and non-Gaussian models, including the Poisson-gamma 

model in (1). 
 

2.1 Bayesian nonparametric function estimation in Gaussian models 

 Consider the model 
 

 yi = α + f(xi) + εi (2) 
 

where εi are independent N(0, 2σ ) random variables and f is an unknown function to be estimated 

nonparametrically. Without loss of generality, we assume 0 < x1 ≤ … ≤ xn ≤ 1. There are 

numerous nonparametric methods available to estimate f, including stochastic splines (Wahba 

1978 and Wong and Kohn 1996) and regression splines (Smith and Kohn 1996), among others.  

 Following Smith and Kohn (1996), we employ a regression spline methodology. More 

specifically, the quadratic regression spline  
 

 fm(x) = β1x + β2x
2 + β3

2
1)~( +− xx  + … + βm+2

2)~( +− mxx   (3) 
 

is used to approximate the function f(x) in (2), where 1
~x , …, mx~  are m “knots” placed along the 

domain of the independent variable x such that 0 < 1
~x  < … < mx~  < 1 and (z)+ = max (0, z). The 

resulting approximating model is  
 

 yi = α + fm(xi) + εi. (4) 
 

Quadratic regression splines are used rather than cubic splines in order to ensure that the 

monotonicity constraints (imposed in section 2.2) on the function fm(x) are tractable and 

practically feasible.  
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 The smoothness of the function fm depends on the number and location of the knots. To 

illustrate this (and to set up the monotonicity constraints developed in section 2.2), consider the 

function with m = 1 knot at x = 1
~x : 

 

 fm(x) = β1x + β2x
2 + β3

2
1)~( +− xx  (5)  

 

If β1, β2 and β3 are all nonzero (so the knot 1
~x  remains in the model), Figure 1a shows the change 

in the function at 1
~x . The figure is drawn assuming 1

~x  = 0.5. The corresponding first derivative  
 

 )(xfm′ = β1 + 2β2x + 2β3 +− )~( 1xx  (6)  
 

is shown in Figure 1b and changes direction abruptly at x = 1
~x  (in other words, the second 

derivative is discontinuous at x = 1
~x ). It is in this sense that the function is “not smooth” at a 

knot. Figure 1c shows the function fm(x) with β3 = 0. In this case, the knot 1
~x  drops out of the 

model and the function is a simple quadratic with no change at 1
~x , (i.e., it is “smoother” than the 

function with 1
~x  included). Intuitively, the more knots there are, the less smooth the function will 

be. Determining which knots should remain in the model, or equivalently determining which β’s 

are nonzero, is central to the analysis. Smith and Kohn (1996) suggested using a Bayesian 

variable selection technique to determine which β’s should remain in the model. A variation of 

their technique is employed in the nonparametric monotone function estimation methodology 

used in this paper. 
 

Figure 1 goes here 
 

  To briefly describe Smith and Kohn’s variable selection technique, the approximating model 

in (4) (which is effectively a regression model) is re-written in matrix notation as 
 

 y = ια + Xβ + ε  
 

where y = (y1, …, yn)′, ι = (1, …, 1)′, the ith row of X is (xi, 
2
ix , …, 2)~( +− mi xx ), β = (β1, β2, …, 

βm+2)′, and ε = (ε1, …, εn)′. To construct the prior distributions for the βj values, let J be the (m + 
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2) × 1 vector of indicator variables with the jth element Jj such that Jj = 0 if βj = 0 and Jj = 1 if βj 

≠ 0. Thus, if Jj = 0, βj and the corresponding regressor drop out of the model. Further, let βJ 

consist of the elements βj corresponding to those elements of J that equal one, and let XJ consist 

of the regressor variables in X corresponding to those elements of J that equal one. Using this 

notation, Smith and Kohn (1996) suggest using the prior βJ ~ N(0, 12 )( −′ JJ XXcσ ), where c is 

typically set to the sample size n. In addition, J1, …, Jm+2 are independent with Pr(Jj = 1) = pj, 

where pj is set by the user. Finally, non-informative priors are placed on α and 2σ . The estimate 

of the function fm(x), and therefore f(x), is the posterior mean E(fm(x) | y) and can be obtained 

using an MCMC sampling algorithm. Smith and Kohn show that this function estimation 

technique provides excellent estimates for a wide range of “true” functions.  
 

2.2 Monotone nonparametric function estimation  

 Numerous authors have addressed monotonic function estimation in Gaussian models, 

including Wright and Wegman (1980), Friedman and Tibshirani (1984), Mammen (1991) and 

Ramsay (1998). More recently, Neelon and Dunson (2004) and Shively, Sager and Walker 

(2009) considered monotone function estimation in a Gaussian context from a Bayesian 

perspective. In addition, several authors have shown how to generalize these methodologies to 

allow for non-Gaussian specifications, including Dunson (2005), Schipper, Taylor and Lin 

(2007) and Shively, Walker and Damien (2009). 

 Shively, Sager and Walker (2009) show how to impose monotonicity constraints on the 

function fm(x) in (3), and therefore on the function estimate E(fm(x) | y), through the prior on the 

β values. Their paper considered only the case of Gaussian regression. However, Shively, 

Walker and Damien (2009) show how the methodology can be generalized to allow for more 

computationally complex non-Gaussian models such as the Poisson-gamma. To briefly 

summarize their methodology for monotonicity constraints, we again consider the case where m 

= 1 with fm(x) and )(xfm′  given in (5) and (6). To impose monotonicity constraints so that the 

function fm(x) is non-decreasing requires that )(xfm′ ≥ 0 for all x ∈  (0, 1]. The key idea is that for 
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each combination of J = (J1, J2, J3), )(xfm′  is constrained to be non-negative by placing an 

appropriately constrained prior on βJ. More specifically, a multivariate normal prior is placed on 

βJ constrained to the region of β-values that force )(xfm′  ≥ 0 for all x ∈  (0, 1].  

 For example, for J = (1, 1, 1), )(xfm′ ≥ 0 for all x ∈  (0, 1] if )(xfm′ ≥ 0 at x = 0, x = 1
~x  and x = 

1. To see this, note that, if fm(x) is a quadratic regression spline, then )(xfm′  is a piecewise linear 

function, as in Figure 1b. This implies that, if )(xfm′  is non-negative at the endpoint of each 

“piece” of the derivative function, then it is nonzero for all x ∈  (0, 1]. This corresponds to 

constraining βJ=(1,1,1) = (β1, β2, β3) to the region defined by 
  

 β1 ≥ 0;     β1 + 2β2 1
~x  ≥ 0;     β1 + 2β2 + 2β3(1 – 1

~x ) ≥ 0 (7) 
 

Therefore, given J = (1, 1, 1), the function fm(x) is constrained to be non-decreasing by placing a 

N(0, )1,1,1(=Ω Jc ) prior on βJ=(1,1,1) = (β1, β2, β3) constrained to the region defined in (7), where 

)1,1,1(=Ω J  is an appropriately defined covariance matrix. The specific structure of this matrix is 

discussed in more detail in the appendix. 

 Similarly, for J = (1, 1, 0), )(xfm′ ≥ 0 for all x ∈  (0, 1] if )(xfm′ ≥ 0 at x = 0 and x = 1, as in 

Figure 1d. This corresponds to constraining βJ=(1,1,0) = (β1, β2) to the region defined by 
  

 β1 ≥ 0     and     β1 + 2β2 ≥ 0 (8) 
 

Note that since J3 = 0, the prior assigns β3 = 0 with probability one. Therefore, given J = (1, 1, 0), 

the function fm(x) is constrained to be non-decreasing by placing a N(0, )0,1,1(=Ω Jc ) prior on 

βJ=(1,1,0) = (β1, β2) constrained to the region defined in (8). Other combinations of J = (J1, J2, J3) can 

be handled similarly. Also, the methodology generalizes to allow for any number of knots. 

 The technique of setting the priors for βJ for each J effectively puts a prior on the function 

space for fm(x) that places non-zero probability only on non-decreasing functions. Given this 

prior on the function space, the posterior mean E(fm(x) | y), and therefore the estimate of f(x) will 

be a non-decreasing function. Shively, Sager and Walker (2009) provide a technique for 

handling the changing constraints as variables drop in and out of a Gaussian regression model 
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that can be implemented via an MCMC sampling algorithm. And Shively, Walker and Damien 

(2009) develop a new MCMC sampling algorithm so the constrained spline methodology can be 

applied in the context of non-Gaussian models. They also show the substantial gain that is 

achieved by incorporating appropriate monotonicity constraints in non-Gaussian models, and 

show that the methodology outperforms existing nonparametric monotone function estimation 

methodologies for models where such methods have been developed. The MCMC sampling 

algorithm used to implement the methodology in the context of this paper’s Poisson-gamma 

model is given the appendix. 
 
3. Data 

 The data used in this paper were collected in Washington State in 2002 and stored through 

the Highway Safety Information System. To keep the data size manageable, we examine traffic 

crashes on two-lane rural roadways in the Puget Sound region, as assembled by Ma et al. (2008). 

A total of 7710 rural two-way highway segments in this region are used in the analysis, with an 

average segment length of 0.0665 miles for a total of 513 centerline miles. The sample contains 

913 police-logged crashes, including crashes that resulted in property damage only. Table 1 

shows all variables used in the analysis, along with their summary statistics.  

 Table 1’s first variable, Number of crashes, is our model’s dependent variable. The next eight 

variables are continuous explanatory variables that enter the model via unknown functional 

forms (i.e., the x-variables in equation (1)), while the remaining seven variables are categorical 

variables that enter the model linearly (the z-variables in (1)). 
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Table 1: Summary statistics  
 

Variable name Mean Std. Dev. Min Max 
yi:  Number of crashes 0.118 0.426 0 5 
x1i: Vehicle miles traveled in 2002 8,8671 143,134 21 267,965 
x2i: Average annualized daily traffic (# of vehicles) 3,752.7 2,727.3 254 28,624 
x3i: Horizontal curve length (feet) 1 666.8 575.6 20 4715 
x4i: Degree of horizontal curvature (degrees/100 feet) 1 6.268 7.433 0.17 100.52 
x5i: Vertical curve length (feet) 2 484.1 373.1 20 3,200 
x6i: Vertical grade (percentage) 2 1.992 2.004 0.01 16.13 
x7i: Average shoulder width on each side (feet) 2.087 1.297 0 16.5 
x8i: Posted speed limit (miles/hour) 49.620 8.152 25 60 
z1i: Surface width (feet) 23.979 4.387 16 70 
z2i: Indicator for horizontal curve: 1=yes; 0=no 0.372 0.483 0 1 
z3i: Indicator for vertical curve: 1=yes; 0=no 0.627 0.484 0 1 
z4i: Indicator for minor arterial: 1=yes; 0=no 0.285 0.451 0 1 
z5i: Indicator for collector: 1=yes; 0=no 0.246 0.430 0 1 
z6i: Indicator for rolling terrain: 1=yes; 0=no 0.596 0.491 0 1 
z7i: Indicator for mountainous terrain: 1=yes; 0=no 0.039 0.195 0 1 

 1  Summary statistics for horizontal curve length and degree of curvature are only for the 
2868 road segments that include a horizontal curve.  

 2 Summary statistics for vertical curve length and vertical grade are only for the 4834 road 
segments that include a vertical curve (i.e., only segments that are on a hill). 

 

 The variables average shoulder width, posted speed limit and surface width are fairly self-

explanatory. Surface width is treated as a linear z-variable because over 90% of the values are 

22, 23 or 24 feet, rendering it a nearly categorical variable. 

 Average annualized daily traffic (AADT) is defined as the average number of vehicles per 

day on the road segment in 2002. Since all highway segments in the data set are two lane 

facilities, it serves as a measure of traffic intensity here.  And since segment speeds are likely in 

the 50 and 60 mph range (but variable and not reported/known, as is typical in such data sets), 

AADT is nearly proportional to − and thus serves as a measure of − traffic density.  Moreover, 

since capacity values across these segments are nearly constant, AADT also serves as a volume-

to-capacity variable (as discussed by Lord et al. [2005b], in their study of crash rate model 



- 12 - 

specifications).  Vehicle miles traveled (VMT) in 2002 is simply AADT times the length of the 

roadway segment times 365 days.  

 The indicator variable for horizontal curve (z2) is zero if the road segment is straight and one 

if the segment has a curve. Horizontal curve length is the distance along a segment’s centerline 

from the start of horizontal curvature (either rightward or leftward) to the end of such curvature. 

In other words, it is the distance in centerline stationing between the point of curvature to the 

point of tangency. Degree of horizontal curvature is the number of degrees of curvature per 100 

feet of curve. Essentially, higher degree-of-curve turns are “tighter” (of lower radius) and result 

in greater centrifugal forces acting on vehicles, if speeds are not reduced. 

 Similarly, the indicator for vertical curve (z3) is zero if the road segment is flat and one if it is 

on a hill. Vertical curve length is the stationing distance from the start of a section that departs 

one gradeline and leads to another – via curvature in the vertical sense (e.g., a hilltop or valley 

bottom). Vertical grade is the rise or fall in elevation for every 100 feet of horizontal distance. 

For example, a road segment that rises or falls two feet for every 100 feet of horizontal distance 

has a two percent grade and is denoted as 2.00 in the data set. Since traffic travels in both 

directions on the two-lane road segments in our sample, all grades are shown in the positive 

sense. 

 For the remaining indicator variables, a minor arterial road is a relatively high-speed 

highway, but not as important as or at the design standards and flow volumes of an interstate 

highway or freeway.  Collector roads are the lowest class of highway, providing more access (via 

driveways and local street connections) than arterials and interstate highways.   
 

4. Empirical results and their interpretation 

 Given the variety of factors at play, infrequency of crashes, and high noise-to-signal ratio in 

Poisson, negative binomial and related specifications, proper modeling of crash data is 

challenging. However, thoughtful nonparametric designs that allow for adequate behavioral 

flexibility can open a variety of new doors for covariate effects and uncover previously 
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unobserved relationships. Further, incorporating appropriate monotonicity constraints into the 

model increases the quality of the estimated relationships and leads to more reliable and 

conclusive results. As discussed below, intuition, subject matter knowledge and the empirical 

results support monotonicity assumptions on many of the relationships between roadway 

characteristics and crash counts.  

 Section 4.1 discusses the subject matter reasons for imposing monotonicity constraints on the 

relationships and gives the empirical results of our analysis. Section 4.2 interprets the results 

while Section 4.3 gives out-of-sample validation results and discusses the difficulty in obtaining 

accurate forecasts for a Poisson-gamma model. 
 

4.1 Empirical results 

 The natural logarithms of the continuous x-variables are used as the explanatory variables in 

the model rather than the untransformed variables (i.e., log(x) values are used rather than x). 

Histograms (not shown here) for many of the continuous variables exhibit strong right skew. 

Using a logarithmic transformation puts all the variables on a similar scale and provides 

numerical stability in the nonparametric estimation procedure. The transformation does not affect 

the final inference since the function estimates adjust appropriately to the natural log 

transformation and can be easily back-transformed to the original x-scale.  

 log(VMT) was originally included in the model as a variable with an unknown function to be 

estimated nonparametrically. However, the resulting function estimate was nearly linear.  So, for 

ease of interpretation, as discussed in section 4.2, log(VMT) is included in the model as a linear 

z-variable. The final model we estimate is given in (1) with  
 

 log[g(xi, zi)] = α + γ1 log(VMTi) + γ2 log(SurfaceWidthi)  

 + γ3 MinorArteriali + γ4 Collectori + γ5 RollingTerraini + γ6 Mountainousi  

 + HorizCurvei × [αH + f1(log(HorizontalCurveLengthi)) +  f2(log(HorizontalCurveDegreei))]  

 + VerticalCurvei × [αV + f3(log(VerticalCurveLengthi)) +  f4(log(VerticalCurveGradei))] 
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 +  f5(log(AADTi)) +  f6(log(SpeedLimiti)) + f7(log(AverageShoulderWidthi)). (9) 
 

The indicator variable HorizCurvei (as defined in section 3) effectively removes the variables 

HorizontalCurveLengthi and HorizontalCurveDegreei from the model when the ith road segment 

does not contain a horizontal curve. The indicator variable VerticalCurvei has a similar effect for 

road segments without vertical curves (i.e., without hills or valleys). 

 The fully linear version of the model in (9), where the functions f1 through f7 are all assumed 

to be linear, was estimated initially. The linear coefficients were then used (along with subject 

matter reasoning) to set the monotonicity constraints in the nonparametric version of the model. 

The linear coefficients are given in column 2 of Table 2. 
 

Table 2: Estimated coefficients 
 

Estimated coefficients 
Variable 

Fully linear model Nonparametric model 
Intercept -13.14  (1.41) -15.30  (1.97) 
log(VMT)  0.69  (0.04) 0.69  (0.04) 
log(SurfaceWidth) -0.16  (0.10) -0.16  (0.35) 
MinorArterial -0.05  (0.10) -0.03  (0.10) 
Collector 0.15  (0.11) 0.20  (0.11) 
RollingTerrain -0.08  (0.09) -0.07  (0.09) 
Mountainous -0.03  (0.34) 0.03  (0.35) 
HorizCurve (αH coefficient) -1.35  (0.83) -1.65  (1.65) 
VerticalCurve (αV coefficient) 0.93  (0.43) 0.16  (0.44) 
log(HorizontalCurveLength) 0.12  (0.12) --- 
log(HorizontalCurveDegree) 0.37  (0.10) --- 
log(VerticalCurveLength) -0.18  (0.07) --- 
log(VerticalCurveGrade) -0.00  (0.07) --- 
log(AADT) 0.45  (0.07) --- 
log(SpeedLimit) 0.03  (0.21) --- 
log(AverageShoulderWidth) -0.08  (0.10) --- 
η 0.67   (0.10) 0.71  (0.10) 

 Standard errors are in parentheses. Bolded coefficients lie more than two 
standard errors from zero.  The dashed lines (---) indicate the relationship for 
this variable is estimated nonparametrically, as shown in Figure 2. 
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 The coefficients in column 2 associated with HorizontalCurveLength, 

HorizontalCurveDegree, AADT and SpeedLimit are positive, so the functions f1, f2, f5 and f6 were 

constrained to be monotonically increasing functions. The coefficients associated with 

VerticalCurveLength, VerticalCurveGrade and AverageShoulderWidth are negative, so the 

functions f3, f4 and f7 were constrained to be monotonically decreasing. 

 Strong subject matter reasons also justify the monotonicity constraints on 

HorizontalCurveLength, HorizontalCurveDegree, AADT and SpeedLimit. For example, a road 

segment’s degree of curvature is inversely proportional to the horizontal curve’s radius, and thus 

directly proportional to the centrifugal force experienced by the vehicle and its occupants. 

Further, roadway banking and side friction can be exceeded by natural forces occurring on high-

degree curves, particularly on slick roadways (e.g., on rainy days) at the start and end of curves 

where banking is generally not fully developed. These factors should lead to an increase in crash 

rates and imply a monotonically increasing relationship between HorizontalCurveDegree and the 

expected number of crashes. In addition, the longer the curve is, the greater the opportunity for a 

driver to lose control and be involved in a crash. This should imply a monotonically increasing 

relationship between HorizontalCurveLength and the expected number of crashes. 

 Since all road segments in the data set are rural two-lane highways, and speed and flow 

values are not given by time of day or day of year (and certainly are not constant), AADT serves 

as a measure of traffic intensity or congestion. The reason is that, if vehicle miles travelled are 

held constant, higher AADT values imply more traffic on the road segment and a tighter spacing 

between the vehicles. Shorter spacings should increase crash counts, suggesting a monotonically 

increasing relationship between AADT and the expected number of crashes. 

 Finally, higher posted speed limits are expected to be associated with higher crash rates 

because drivers traveling at higher speeds have less time to react to avoid danger. This suggests a 

monotonically increasing relationship between SpeedLimit and the expected number of crashes. 

 The coefficients associated with VerticalCurveGrade and AverageShoulderWidth are 

negative, but both lie less than one standard error from zero. This indicates that neither variable 
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is statistically significant in the linear model, in terms of explaining variability in crash counts 

across roadway sections. This is confirmed by the flat function estimates that are obtained from 

the nonparametric model. The coefficient associated with VerticalCurveLength is negative and 

more than two standard errors from zero. It is not clear from a subject matter perspective what 

the direction of the relationship should be between VerticalCurveLength and crash counts, 

because vertical curves include both uphill and downhill road segments. However, for the same 

change in grade longer curves will allow for longer sight distances and ostensibly safer driving 

conditions.  Given the strong evidence in results from the linear model, the function f3 for 

VerticalCurveLength was constrained to be monotone decreasing. 

 The estimates of the γ-coefficients in (9), when f1 through f7 are estimated nonparametrically, 

are given in the third column of Table 2, along with their standard errors (in parentheses). 

Figures 2 and 3 plot the estimated functions f1 through f7 for the continuous explanatory 

variables. In both Figures 2 and 3 all variables (other than the specific xj being plotted against) 

are set to their median values. To interpret these figures, note that g(x, z) is the mean function if 

φ = 1.  The solid curves in Figures 2a-g represent estimates of the function log[g(x, z)] plotted 

against log(xj) for each of the seven xj-variables. Similarly, the solid curves in Figures 3a-g 

represent estimates of g(x, z) plotted against xj (not log(xj)). The two sets of figures represent 

similar information, although on different scales (in Figure 2 on a log-log scale and in Figure 3 

on the original scale of the data), and are useful for different purposes, as discussed below. 

Finally, the dashed lines in Figures 2 and 3 are 50% confidence bands and provide a measure of 

uncertainty regarding the estimated function. One of the general advantages of Bayesian methods 

is the ready availability of confidence bands that provide meaningful measures of uncertainty. 

The coefficient and function estimates were obtained by combining the results from four 

independent runs of the MCMC sampling algorithm, each with warm-up and sampling periods of 

5,000 and 20,000 iterations. 

 It is useful to note that Figure 2’s shapes of the estimated functions for log[g(x, z)] do not 

depend on the median values of the non-xj -variables used to create the plots. These values affect 
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only the vertical placement of the estimated functions. (This is not true for the estimated mean 

functions in Figure 3 due to the exponentiation required to obtain g(x, z) rather than log[g(x, z)].) 

This means the inferences drawn from Figure 2 regarding shape and nonlinearity do not depend 

on the values of the non-xj -variables used to represent typical values. The invariance property in 

Figure 2 to the choice of “typical” values is important when determining whether the fj functions 

can be modeled using linear functions, as discussed below. 
 

Figures 2 and 3 go here 
 

 A comparison of column 2 and column 3 results, alongside Figures 2a-g, illustrates the 

similarity regarding which variables contribute explanatory power in the linear and 

nonparametric models. In particular, the variables log(VMT), log(AADT), 

log(HorizontalCurveDegree) and log(VerticalCurveLength) contribute substantially to 

explaining crash count variability in both model specifications. The only substantial difference 

between the two models is in the coefficient associated with the indicator variable for the 

presence of a VerticalCurve. In the fully linear model, the associated coefficient is more than two 

standard errors above zero, while in the nonparametric model it is effectively zero. 

 For the variables HorizontalCurveLength, HorizontalCurveDegree, AADT, 

VerticalCurveGrade and AverageShoulderWidth, the estimated functions are plotted for x-values 

through their 98th percentile values. The highly skewed nature of these x-variables and the 

sparcity of very large values mean that the function estimates for large x-values are unreliable 

and add little to our understanding of the core (and most common) relationships. Compounding 

the estimation problem for large x-values is the “endpoint” effect that typically occurs with 

nonparametric function estimation. For an x-value in the “middle” of the data, there are data on 

either side to provide information about the function estimate (because the estimation 

methodology provides smooth function estimates which borrow strength from nearby points). 

However, for large values there are no data on the right to help estimate the function value with 

the result that function estimates for large values are often poor. In our data set the endpoint 
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effect for small values of x is tempered for many of the x-variables because there are so many 

small values. In most data sets, however, there is typically an endpoint problem at both ends of 

the x-range. 

 We now consider which functions fj(log(xj)) in (9) can be reasonably assumed to be linear in 

log(xj) and which should be estimated nonparametrically. The closer an estimated function in 

Figure 2 is to a straight line, the stronger the evidence that it is a linear function. More 

specifically, if a straight line “fits inside” the 50% confidence bands this provides evidence that 

the true relationship is linear. Conversely, if a straight line does not fit inside the confidence 

bands there is evidence the relationship is nonlinear and should be estimated nonparametrically. 

As an example, for the variable HorizontalCurveDegree in Figure 2b, a straight line does not fit 

into the confidence bands so this provides evidence that the true relationship is nonlinear. 

Further, the estimated function for HorizontalCurveDegree does not have an obvious nonlinear 

parametric functional form such as quadratic or logarithmic. This illustrates the importance of 

using nonparametric estimation procedures to uncover nonlinear relationships that may not be 

apparent from a parametric analysis. From Figure 2, there is strong evidence that the functions 

associated with AADT and HorizontalCurveDegree are nonlinear and moderately strong 

evidence that the function associated with VerticalCurveLength is nonlinear. Also, neither of the 

estimated functions for AADT or HorizontalCurveDegree has an obvious nonlinear parametric 

functional form. 

 We use 50% confidence bands rather than a higher percentage (such as 90% bands) because, 

from a statistical point of view, it is a more serious error to assume a function is linear when it is 

not than the converse. If the function is linear, the nonparametric monotone estimation procedure 

will still provide a good estimate, assuming sample size is adequate. This is confirmed by section 

5’s simulation results. Conversely, if a function is actually nonlinear, the parametric procedure 

assuming linearity will result in a mis-specified model and give poor function estimates relative 

to the nonparametric monotone procedure. This is also confirmed by section 5’s simulation 

results. This implies that given sufficient data an analyst is often better off using the 
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nonparametric monotone procedure unless there is strong evidence the parametric assumptions 

of the model are satisfied. 

 We can also use the confidence bands to provide evidence regarding whether or not a 

specific x-variable is related to crash counts. If a flat (horizontal) line falls inside the 50% 

confidence bands for a specific xj-variable then it is reasonable to conclude xj is not related to 

crash rates. It is fairly clear from observing Figures 2 and 3 that the variables 

HorizontalCurveDegree, AADT and VerticalCurveLength are related to crash counts while 

VerticalCurveGrade, SpeedLimit and AverageShoulderWidth are not. There is some evidence, 

though not overwhelming, that HorizontalCurveLength is related to crash counts. As with 

determining whether a relationship is linear, we use 50% confidence bands to be conservative 

and therefore reduce the probability of incorrectly concluding there is no relationship when there 

is one. Incorrectly removing a variable when it is related to crash counts creates a mis-specified 

model with potentially serious consequences. For example, in a standard Gaussian regression 

model, incorrectly omitting variables can result in estimated coefficients with the wrong sign 

(see Maddala, 1977, pp. 155-156). 

 The three variables that do not appear to be related to crash counts (VerticalCurveGrade, 

SpeedLimit and AverageShoulderWidth) were removed from the model, and the remaining 

functions were re-estimated. The function estimates for the modified model are similar to the 

original model with all variables included. They are not shown here, to conserve space. 

 We also note the lack of “wiggle” in the estimated functions. One of the advantages of 

imposing appropriate monotonicity constraints in the estimation procedure is the smooth 

functions that result. Unconstrained nonparametric procedures often produce function estimates 

that are “noisy,” particularly if the noise-to-signal ratio in the data is high and the sample size is 

not sufficiently large. Unsmooth and noisy function estimates can be difficult to interpret and 

explain to end users. 
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4.2 Interpretation of the empirical results 

 This section provides an interpretation of the empirical results obtained from the model in (9) 

when the unknown functions and coefficients are estimated using the nonparametric monotone 

estimation procedure. We begin with a discussion of the estimates of the γ-coefficients and then 

discuss the estimated functions. First, in theory, crash counts should be directly proportional to 

VMT which means the coefficient γ1 should be one. However, in practice this is often not the 

case, including in our model where the estimate is 0.69. The most likely reason γ1 is less than one 

is that longer segments tend to be more homogenous in design, offering fewer surprises to 

drivers and therefore resulting in lower crash counts. This means that if AADT remains the same 

but segment length (and thus VMT) doubles, the crash counts may fall, thanks to more 

consistency in design features. 

 Second, the coefficient associated with the indicator variable for Collector is positive and 1.8 

standard errors from zero. The positive coefficient indicates a higher number of crashes on 

collector roads than on arterials (both primary and secondary), which implies two-lane rural 

collector roads in the Seattle area are less safe than arterials. This makes good sense if speed 

limits and other attributes are held constant, because arterials are typically built to a higher safety 

standard and collectors provide more access to local land use, resulting in a higher share of 

vehicles entering (and leaving) the facility via driveways and cross streets, which increases the 

likelihood of vehicle interactions. The remaining γ-coefficients in column 3 are less than one 

standard error from zero. These results are consistent with the coefficients given in column 2 for 

the fully linear model, with the previously discussed exception of VerticalCurve. 

 The assumption of monotonicity for AADT is strongly supported by the estimated function 

shown in Figures 2c and 3c. There is an interesting non-linearity in this relationship, with a 

dampening of effect (change in slope) around 2,000 vehicles per day. Such a function cannot be 

easily modeled using the parametric functions typically employed in practice. Keeping in mind 

that AADT is a good proxy for (the inverse of) inter-vehicle spacing (if VMT is held constant), or 

equivalently, for the density of vehicles on the road segment, the estimated function in Figure 3c 
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implies that the expected number of crashes increases much faster for low vehicle density 

segments than for high density segments.  

 The relationship between the expected number of crashes and HorizontalCurveDegree shown 

in Figure 3b appears somewhat sinusoidal, with an inflection point very near the average value of 

6.27 degrees, where the average is computed for segments containing horizontal curves. In 

increasing the degree of curvature from 4 to 12 degrees (and holding the other variables constant 

at their median values), the expected number of crashes is expected to increase by 0.06 crashes (a 

substantial increase, in practical terms). 

 The third variable that is related nonlinearly to the expected number of crashes is 

HorizontalCurveLength, although its relationship appears to be weaker than either AADT or 

HorizontalCurveDegree. Figure 3a indicates the expected number of crashes increases 

approximately 50% from 0.041 to 0.06, as the length of the curve increases from 0 to 2,000 feet. 

The rate of increase is greatest near zero, although this is the portion of the estimated function 

where the uncertainty in the estimate is greatest. 

 The fact that ShoulderWidth does not show up as an important variable in the fully linear and 

the nonlinear model is a bit surprising given the empirical results in some previous analyses. 

There are several possible reasons for this, including an incorrectly specified model, missing 

explanatory variables, estimation error due to the natural random variability in the data, or the 

possibility that for our data set ShoulderWidth does not contribute any explanatory power to the 

model.  Most likely, it is simply reflecting the fact that wider lanes and shoulders can encourage 

driver inattention and higher speeds, resulting in more and more severe collisions, especially on 

two-lane roads, where driveways and crossings lead to interactions of vehicles at very different 

speeds.  In other words, a more “forgiving roadside” can actually reduce safety (as described in 

Dumbaugh [2005]). 

 From a statistical perspective, it seems reasonable to rule out an incorrectly specified model 

because the Poisson-gamma model with a heterogeneity term included is a very flexible model 

(and is often used in these types of studies). The flexible functional forms used to model the 
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covariate relationships significantly reduces the possibility that incorrect parametric assumptions 

are made regarding these relationships. Also, various alternative specifications for incorporating 

VMT and AADT into the model were considered (although not shown here for brevity); but the 

estimated coefficients are similar, and the same coefficients are more than two standard errors 

from zero in each specification. The possibility of missing variables cannot be ruled out, but the 

variables included in our model are similar to those used in analogous studies. Also, the 

heterogeneity term φi is included to account for variability in the crash counts due to 

unobservable factors, such as travel speeds, impaired driving and weather conditions. 
 

4.3 Out-of-sample forecasting 

 This section discusses forecasting and out-of-sample validation in a Poisson-gamma model. 

Out-of-sample validation is the “gold standard” in model fitting diagnostics, so we focus on this 

measure of fit. However, the same discussion applies to in-sample measures of fit. We begin 

with a brief discussion of forecasting in a Bayesian context. We then discuss the difficulty in 

obtaining accurate predictions in a Poisson-gamma model due to the substantial amount of 

unexplainable variability inherent to such models. The section concludes with the out-of-sample 

validation results obtained when the parametric and nonparametric procedures are applied to the 

crash data.  

 For the model in (1), the prediction of a future value yn+1 is E(yn+1 | y). Likewise, Var(yn+1 | y) 

is a measure of predictive uncertainty. Analytically, based on standard Bayesian predictive 

inference (Bernardo and Smith, 1994), we have 
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where γ = (γ1, …, γ7) and fn+1 = [f(log(x1,n+1)), …, f(log(x8,n+1))]. The values of E(yn+1 | y) and 

Var(yn+1 | y) cannot be computed analytically but they are straightforward to obtain from the 

MCMC sampling algorithm used for estimation. The reason is that both quantities are functions 

of the random parameters α, γ, fn+1 and η. Since samples from the posterior distributions of these 
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parameters are available from the MCMC algorithm, we can use them to estimate E(yn+1 | y) and 

Var(yn+1 | y). 

 To discuss issues related to the difficulty in obtaining accurate predictions, the density 

function h1 in the integral represents the uncertainty in yn+1 given φn+1, α, γ,  fn+1 and η. This 

uncertainty is due to the variability in yn+1 generated from a Poisson-gamma distribution when the 

mean parameter is known, i.e., when μ(xn+1, zn+1) = φn+1g(xn+1, zn+1) is known. The density functions 

h2 and h3 taken together represent the uncertainty in the mean parameter μ(xn+1, zn+1) given the 

data y in the estimation sample (because μ(xn+1, zn+1) is a function of φn+1, α, γ and fn+1). More 

specifically, the density function h2 represents the variability in the future observation φn+1 ~ Γ(η, 

η) given η. The density function h3 represents the uncertainty regarding α, γ,  fn+1 and η given the 

data in the estimation sample (i.e., h3 represents the uncertainty due to the imperfect information 

about α, γ,  fn+1 and η captured by the estimation methodology). We note that the variability 

captured by h1 and h2 cannot be controlled by the analyst. On the other hand, the uncertainty 

captured by h3 can be reduced using a good estimation methodology. 

 If the total variation in a data set is dominated by unexplained variability (i.e., the variability 

captured by h1 and h2), then, regardless of whether one employs a parametric or nonparametric 

model, the out-of-sample forecasts will be poor. For the model and data set considered in this 

paper, the unexplained variability is very high given the inherent variability in Poisson-gamma 

data and the substantial variability in φn+1 ~ Γ(η, η) when η is less than one. These two sources of 

variability dominate the uncertainty due to the estimation methodology. This unfortunately 

means the model will provide poor forecasts no matter how good the estimation methodology is. 

This is supported by the simulation results discussed in section 5. In fact, we can show via 

simulation that even if the true values of α, γ,  fn+1 and η are known (i.e., there is no estimation 

error), the out-of-sample predictions for individual segments will still be very poor. 

 To obtain out-of-sample validation results for the crash data, the sample of 7710 observations 

is divided into an estimation sample with 5140 observations (two-thirds of the full sample) and a 
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validation sample of 2570 observations. The quality of the out-of-sample forecasts is measured 

using  
 

 RMSE  = ∑
=

−
2570

1

2)],(ˆ[
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iii zxgy  

 

where ),(ˆ ii zxg  depends on the estimated values of α, γ and f obtained from the estimation 

sample and the sum is over the 2570 observations in the validation sample. Note that the 

expected value of future observations given the data is ),(ˆ iii zxgφ . However, forecasts of future 

values of φi are one, since φi ~ Γ(η, η) with E(φi) = 1 and there is no information in the y-values 

in the estimation sample about the φi-values in the validation sample. For the nonparametric 

model the RMSE is 0.507, while for the fully linear model the RMSE is 0.489. As expected, the 

out-of-sample results for both models are very poor and nearly the same because the unexplained 

variability in the validation sample dominates the controllable estimation error.  
 

5. Quality of the estimation procedures and out-of-sample forecasts 

 This section reports the results of three simulation experiments that show for three different 

sets of functions (linear, nonlinear and flat): (1) the relative performance of the three estimation 

procedures (parametric, nonparametric with monotonicity constraints and nonparametric without 

monotonicity constraints), and (2) the out-of-sample forecasting performance for the three 

estimation procedures. The results show the quality of the function estimates depends crucially 

on the estimation methodology that is used. They also show that the inherent variability in count 

data obtained from a Poisson-gamma model makes accurate out-of-sample forecasting very 

difficult − no matter how well the unknown functions are estimated.  

 The three simulations use the model in equation (1) to generate the y-data with 
 

 log[g(xi, zi)] = α + γ1 Collectori +  f1(log(VMTi)) +  f2(log(AADTi))  

 + HorizCurvei × [f3(log(HorizontalCurveLengthi)) +  f4(log(HorizontalCurveDegreei))]. (10) 
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For each simulation, n = 7710 observations (as in the actual data set) are generated to form an 

estimation sample, and a second independent set of 7710 observations are generated to form a 

forecasting (validation) sample. The estimated coefficients and functions from the estimation 

sample are used to forecast the y-values in the forecasting sample.  Both samples are generated 

using the same x, z, α, γ1, η and function values. 

 Our goal is to create estimation and forecasting samples with properties similar to those of 

the actual crash data under various scenarios for the “true” coefficients and functions in (10). To 

accomplish this, the z-variable included in the model is the indicator variable for Collector. This 

is the significant z-variable from the actual data. Also, γ1 is set to the estimated value reported in 

section 4.  

 The four x-variables included in the model are VMT, AADT, HorizontalCurveLength and 

HorizontalCurveDegree. These are x-variables that have estimated functions with a range greater 

than 0.5 (see Figure 2) and therefore contribute to the variability in the actual crash count data. 

The functions associated with the x-variables vary across the three simulations. For the first two 

simulations, the range of the functions associated with each variable are set to give 

approximately the same function ranges as the corresponding estimated functions obtained using 

the actual crash data (the third simulation sets fj(log(xj)) = 0 for all four functions). For example, 

for the variable HorizontalCurveDegree, the range for f4 is set to 0.89, which is the range of the 

estimated function for HorizontalCurveDegree shown in Figure 2b. The functions are discussed 

in more detail below.   

 The value of η used to generate the φi values is set to 0.65. The value of α in each simulation 

is set so that the sample mean and standard deviation of the simulated y-data are similar to the 

sample mean and standard deviation of the y-data in the actual crash data. 10 runs are done for 

each simulation. 

 The first simulation sets the four functions in (10) to the linear functions: 
 
 fj(log(xj)) = rj  log(xj), j = 1, …, 4, 
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where rj is specified to give the function the appropriate range, as discussed above. The second 

simulation sets the four functions in (10) to the nonlinear functions: 
 
 fj(log(xj)) = ( ){ }3/])[log(exp jjjj baxr − , j = 1, …, 4 
 

where aj is the minimum of the log(xj) values across the 7710 observations, bj is the maximum of 

the log(xj) – aj values (so 0 ≤ [log(xj) – aj] / bj ≤ 1 for all xj), and rj is set as in the first simulation. 

The third simulation sets the four functions to be flat functions fj(log(xj)) = 0. This represents the 

case where there is no relationship between y and any of the x-variables.  

 The numerical measure we use to measure the quality of the three estimation procedures is 

the root-mean-squared-error (RMSE): 
 

 RMSE  = ∑
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where g(xi, zi) is defined in (10) and ),(ˆ ii zxg represents the estimate of g(xi, zi). The quantity g(xi, 

zi) in the above expression is the portion of the mean function that depends on the unknown 

functions fj and the unknown regression coefficients γj. The RMSE values for three simulation 

scenarios are reported in Table 3. 

 The RMSE used to measure the quality of the out-of-sample forecasts is: 
 

 RMSE  = ∑
=
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where the sum is over the 7710 observations in the forecasting sample and the coefficients and 

function values used to compute ),(ˆ ii zxg  are from the estimation sample. As in section 4.3 the 

forecasts of φi are one. The forecasting sample is large, in order to remove the effects of random 

variability across observations on the forecasting RMSE values. 
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Table 3: Root-mean-squared-errors (RMSE) 
for the three simulation experiments and three estimation procedures 

 
Estimation method 

 
True Nonparametric  

with monotonicity 
Nonparametric  

w/out monotonicity Linear 

                     Part 1: True functions are linear functions 
RMSE for the function estimates --- 0.019 0.023 0.014 
RMSE for out-of-sample forecasts 0.374 0.374 0.375 0.374 
                     Part 2: True functions are nonlinear functions 
RMSE for the function estimates --- 0.025 0.028 0.053 
RMSE for out-of-sample forecasts 0.387 0.389 0.390 0.392 
                     Part 3: True functions are flat functions 
RMSE for the function estimates --- 0.011 0.018 0.011 
RMSE for out-of-sample forecasts 0.394 0.394 0.394 0.394 

 

5.1 Quality of the estimation procedures 

 The simulation results reported in Part 1 of the table, where the true functions are linear, 

show just a 0.005 increase in the RMSE value when the nonparametric monotone procedure is 

used rather than the linear (parametric) procedure. This increase is expected given the 

information in the linearity assumption. However, the increase is small and the nonparametric 

procedure does nearly as well as the linear procedure − even when the linearity assumption is 

satisfied. The results in Part 2 of the table, where the true functions are nonlinear, show an 

RMSE increase of 0.028 when the linear procedure is used rather than the nonparametric 

monotone procedure (a 112% increase). This is substantially larger than the difference reported 

in Part 1. Finally, the results in Part 3 show there is no difference between the linear and 

nonparametric monotone procedure when the true functions are flat functions. The three sets of 

simulation results imply that little is lost using the nonparametric monotone procedure when the 

linearity assumptions are satisfied but there is a substantial gain if the linearity assumptions are 

violated.  

 Comparing the RMSE values for the two nonparametric procedures in columns 3 and 4 

shows the gain from incorporating the monotonicity constraint into the nonparametric procedure. 
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The biggest percentage gains are for the linear and flat functions, 21% and 64%, respectively. 

The exponential functions in Part 2 are rapidly increasing functions, which dissipates some of the 

impact of imposing monotonicity conditions on the function estimates in this case. Even so, there 

is a 12% increase in the quality of the function estimate. Monotonicity information is the most 

valuable when the function is slowly increasing or flat. Also, the importance and impact of the 

monotonicity information is greater in smaller sample sizes and/or when there are a large number 

of functions to be estimated. In other words, the less “information per function” there is in the 

data, the more important the monotonicity information becomes. 
 

5.2 Quality of the out-of-sample forecasts 

 The simulation results in Table 2 show that, even if the estimate of g(x, z) is very good, this is 

not reflected in significantly smaller forecast errors. For example, the results from the first 

simulation shown in Part 1 of the table (when the true functions are linear) indicate essentially no 

difference in the RMSE for the forecasted values obtained using the three estimation procedures. 

In fact, even if the true function values are known (i.e., the best possible scenario), the RMSE 

remains unchanged – as per the second column in the table, labeled “True”. Similar results hold 

for the other two simulations as well. In other words, in a forecasting context the gain from better 

function estimates is dominated by the uncontrollable variability.  
 

6. Conclusion 

 This paper uses a Bayesian semi-parametric estimation procedure for monotonic function 

estimation in a Poisson-gamma model of crash counts. The methodology uses quadratic 

regression splines with a Bayesian variable selection technique for choosing the knot points. In 

addition, monotonicity constraints are imposed on function estimates through prior distributions 

for unknown parameters. The model is a compromise between a fully parametric analysis and a 

fully nonparametric analysis. The monotonicity constraints, if appropriate, incorporate valuable 

information and structure into the model that often results in better estimates while still allowing 

for functional flexibility of the relationships. Using a semi-parametric procedure is particularly 
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important if the standard parametric assumptions in a Poisson-gamma model (typically linearity 

assumptions) are violated.  

 An important benefit of such procedures is that nonlinear relationships can be detected that 

are not observable when parametric functions are forced onto the model. These nonlinear 

relationships often have important subject matter implications.  In terms of roadway safety, we 

find strong nonlinear relationships between the number of crashes and the degree of horizontal 

curvature and traffic intensity (AADT), ceteris paribus.  When horizontal curvature is present, we 

find only a weak relationship to crash rates until curvature reaches approximately four degrees 

(of subtended angle) per 100 feet of curve (or a radius of roughly 1,400 feet), at which point the 

expected number of crashes begins to increase substantially. Similarly, for low levels of 

congestion there is a strong increase in the expected number of crashes as traffic levels rise 

(while holding VMT constant, by reducing segment length) but with an eventual reduction in the 

rate of increase, as congestion worsens. Neither of these relationships can be modeled using 

typical functions and are likely to be overlooked using a standard parametric analysis. 

 The monotonicity constraint incorporates important information into the model. The 

additional information provides better function estimates, as indicated by section 5’s simulation 

results, as well as smoother estimates without hard-to-interpret “wiggles” that unconstrained 

nonparametric procedures often produce. The Bayesian methodology also gives meaningful 

confidence bands that provide important measures of uncertainty regarding function estimates. In 

addition, the confidence bands can be used to determine if standard parametric assumptions are 

satisfied (in which case they can be safely incorporated into the model) and to determine which 

specific explanatory variables are actually related to crash counts.  
 

6.1 Future research 

 Total crashes (i.e., the sum of fatal, disabling injury, non-disabling injury, possible injury and 

no injury crashes) were analyzed here − rather than only fatal crashes, or fatal and disabling 

injury crashes. This is because the roadway sections are very short, on average, resulting in very 
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low (and often zero) crash counts.  In general, higher crash counts provide more information, and 

thus more reliable function estimates. Nevertheless, the issue of distinguishing the five crash 

types is an important one. Modeling the different types of crashes will make for more valuable 

inferences regarding the impact and import of various covariates. Given the sparseness present in 

most crash data sets that allow for control of site-specific design attributes, one meaningful way 

of “borrowing strength” across crash types is to pursue a nonparametric multivariate analysis, 

where the five types of crash counts are treated as a vector and the “Poisson count vector” is 

analyzed nonparametrically. Park and Lord (2007) and Ma et al. (2008) have used parametric 

multivariate analysis with linear relationships to model multiple categories of crash data. 

Nonparametric function estimation in non-Gaussian (e.g., Poisson-gamma) multivariate models 

is an interesting direction for future research in both the statistics and transportation literature. At 

this point in time, such methods are not available, but extension of the current modeling methods 

to these more complex contexts is quite feasible. 

 It also would be helpful to incorporate the effects of weather conditions, other design features 

(such as sight distances, driveway frequency, population density, and clear zone width), and 

other factors (e.g., distance to the nearest hospital) into the analysis.  Such data are not readily 

available in most settings, but they may be quite meaningful in terms of crash frequencies and 

outcomes. In general, the Bayesian approach employed here enables substantial specification 

flexibility for more appropriate modeling − and interpretation − of count-based relationships. 
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Appendix 

 This appendix outlines the MCMC sampling algorithm used to implement the 

nonpamametric monotone estimation procedure employed in the paper. Full details of the 

algorithm as it applies to estimating monotonic functions in the class of models that have log-

concave likelihood functions, of which the Poisson-gamma is a member, can be found in 

Shively, Walker and Damien (2009). The algorithm discussed below is for the Poisson-gamma 

model in equation (1) with a single continuous explanatory variable x with unknown function f(x) 

and a single linear regressor z with coefficient γ but it is straightforward to generalize to multiple 

functions and multiple linear regressors. 

 Let π represent the likelihood function 
 

 π(α, f(xi), γ, φi | y) = exp{-φi exp[α + f(xi) + γ zi]} !
]})(exp[{

i

y
iii

y
zxf iγαφ ++

. (A1) 

 

Given J = (J1, …, Jm+2), the quadratic regression spline function fm in (3) that approximates f(x) 

can be written in matrix notation as fm = XJ βJ where fm = (fm(x1), …, fm(xn))′, and XJ and βJ are 

defined as in section 2.1. The constraints on the βj values to ensure that the resulting function is 
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non-decreasing depend on the Jj values. For example, if Jj = 1 for all j then the constraints are β1 

≥ 0, β1 + 2 1
~x β2 ≥ 0, and β1 + 2 1

~
+jx β2 + ∑ = ++ −

j

k kkj xx
1 21 )~~(2 β  ≥ 0, j = 1, …, m (with 1

~
+mx  = 1). In 

general, the linear restrictions on the elements of βJ required to ensure the function is non-

decreasing can be written as δJ = LJ βJ, where LJ is a lower triangular matrix that depends on J 

and the jx~  values, and each element of δJ must be greater than or equal to zero. The portion of 

the δJ -parameter space that guarantees a non-decreasing function is the multi-dimensional 

generalization of the first quadrant. Setting the variance matrix in the prior for βJ discussed in 

section 2.2 to ΩJ = 11 )( −− ′JJ LL  gives a distribution for δJ that is a N(0, cI) distribution constrained 

to the multi-dimensional generalization of the first quadrant, where I is the identity matrix with 

appropriate dimensions.  

 To make the model analytically tractable we re-parameterize to give fm = WJ  δJ where WJ = 

XJ
1−

JL . Using this parameterization with the likelihood function in (A1) gives 
 

 π(y | α, J, δJ, γ, φ) = ∏
=

n

i
Ji Jy

1

),,,,|( φγδαπ  

 
 = exp{−s(y, α, J, δJ, γ, φ)} 
 
where  

 s(y, α, J, δJ, γ, φ) = [ ]∑
=

+++−++
n

i
iJJiiiiJJii zwyzw

1
}){log(}exp{ γδαφγδαφ  

 

and wJi represents the i-th row of WJ. The corresponding posterior distribution is 
 
 π(α, J, δJ, γ, φ, η | y) ∝  exp{−s(y, α, J, δJ, γ, φ)}π(α)π(J, δJ)π(γ)π(φ | η)π(η) 
 

where π(α), π(J, δJ), π(γ), π(φ | η) and π(η) represent prior distributions.  

 The key idea in the sampling algorithm is to introduce a latent variable v such that 
 
 π(v, α, J, δJ, γ, φ, η | y) )),,,,,(( φγδα J

v JysvIe >∝ −  
 
 × π(α)π(J, δJ)π(γ)π(φ | η)π(η) 
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where I is the indicator function with )),,,,,(( φγδα JJysvI >  = 1 if ),,,,,( φγδα JJysv >  and 

=0 otherwise.  

 For notational purposes, let J(-j) = J without the j-th element, δ(-j) = δ without the j-th element, 

and  φ(-i) = φ without the i-th element. Using this notation, the MCMC sampling algorithm 

described below is used to carry out function estimation. For excellent discussions of Bayesian 

inference using MCMC methods, see Gelfand and Smith (1990) and Casella and George (1992). 
 

(0) Start with some initial values v[0], α[0], J[0], δ[0], γ[0], φ[0] and η[0]; 

(1) Generate v conditional on α, J, δJ, γ, φ, η, y; 

(2) Generate (Jj, δj) conditional on v, α, J(-j), δ(-j), γ, φ, η, y; j = 1, …, m + 2; (Jj, δj) will be 

generated as a block; 

(3) Generate α conditional on v, J, δJ, γ, φ, η, y; 

(4) Generate γ conditional on v, α, J, δJ, φ, η, y; 

(5) Generate φi conditional on v, α, J, δJ, γ, φ(-i), η, y; i = 1, …, n; 

(6) Generate η conditional on v, α, J, δJ, γ, φ, y; 
 

 Let δ[l] and J[l] be the iterates of δ and J in the sampling period. Then an estimate of the 

posterior mean of the i-th element of fm, and therefore an estimate of fm(xi) is ∑
=

L

l

l
JiJ llw

L 1

][
, ][][

1 δ .  

 We briefly outline the generation of v and (Jj, δj) in steps 1 and 2. As shown below, δj | Jj = 1 

is generated in step 2 from a constrained normal distribution that depends on the roots of the 

function  
 
 )(~

js δ = s(δj; y, α, Jj = 1, )( jJ − , )( j−δ , γ, φ) – v  
 

in the δj -space, where )(~
js δ  is a convex function in δj, and α, )( jJ − , )( j−δ , γ, φ and v are held 

constant at their previously generated values. α, γ and φi, i = 1, …, n, are generated similarly to δj 

| Jj = 1 in that they reduce to generating random variates from a constrained normal distribution 

for α and γ, and from a constrained gamma distribution for φi, with the constraints in each case 
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depending on the roots of vJys J −),,,,,( φγδα  in the α, γ and φi spaces, respectively. The 

parameter η is straightforward to generate (although tedious) using a Metropolis-Hasting step. 

Details of the entire algorithm and its implementation are available from the authors on request. 
 

1. Generate v:  

 Generate v* from an Exp(1) distribution and compute v = v* + s(y, α, J, δJ, γ, φ). 
 

2. Generate (Jj, δj); j = 1, …, m + 2:  

 (Jj, δj) are generated as a block. To generate these values, we have 
 
 π(Jj, δj | L ) ∝  I[v > s(y, α, J, δJ, γ, φ)]π(δj | Jj )π(Jj) (A2) 
 

where “L ” represents (y, v, α, J(-j), δ(-j), γ, φ, η). For Jj = 0, this yields 
 
 π(Jj = 0 | L ) ( ) )0(),,,,0,,( )()( ==>∝ −− jjjj JJJysvI πφγδα    
 

To find π(Jj = 1 |L), we integrate δj out of the density function in (A2) with Jj set to one. To 

accomplish this, note that 
 
 π(Jj = 1, γj | L ) ∝  I[ )(~

js δ < 0]π(δj | Jj = 1)π(Jj = 1) 
 

where π(δj | Jj = 1) is the prior distribution for δj given Jj = 1 and )(~
js δ  is defined above.  If 

)(~
js δ  is greater than zero for all δj ≥ 0, then π(Jj = 1 |L) = 0. Otherwise, let *

mina  and amax 

represent the roots of this function. Noting that the monotonicity restriction is δj ≥ 0, let amin = 

min{0, *
mina }. Then 

 
 π(Jj = 1, δj |L ) ( ) )1()1|(maxmin ==<<∝ jjjj JJaaI πδπδ . (A3) 
 

δj can now be integrated out analytically to give π(Jj = 1 | L ). Given π(Jj = 0|L ) and π(Jj = 

1|L ), Jj is generated from a Bernoulli distribution. 
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 If Jj = 0, δj does not need to be generated. If Jj = 1, then δj | Jj = 1 has a N(0, c) distribution 

constrained to the interval (amin, amax). Well-known algorithms exist for generating from 

univariate constrained normal distributions. 

 Shively, Walker and Damien (2009) give a rejection sampling algorithm with a high 

acceptance rate for generating (Jj, δj) that avoids the direct calculation of the roots amin and amax. 

The rejection algorithm finds tight bounds bmin and bmax such that bmin ≤ amin and amax ≤ bmax. Using 

these bounds, π(Jj = 1, δj |L ) in (A3) is approximated by 
 
 πApprox(Jj = 1, δj |L ) ( ) )1()1|(maxmin ==<<∝ jjjj JJbbI πδπδ . 
 

The approximation is exact for all δj values except bmin < δj < amin and amax < δj < bmax. Thus, if the 

bounds bmin and bmax are tight (which they almost always are given the well-behaved function 

)(~
js δ ) the rejection sampling algorithm will have a high acceptance rate. This significantly 

increases the computationally efficiency of the MCMC algorithm and improves its numerical 

stability (numerical problems arise in the exact method if the roots amin and amax are not computed 

with sufficient accuracy – however, computing them with sufficient accuracy makes the 

sampling algorithm too computationally intensive to use in practice with large data sets). The 

rejection sampling algorithm can also be modified to apply to the generation of α, γ and φi, i = 1, 

…, n. 



Figure 1: Quadratic regression splines and derivatives 
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Figure 1a: Quadratic regression spline with I = (1,1,1)
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Figure 1b: Derivative of quadratic regression spline with I = (1,1,1)
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Figure 1c: Quadratic regression spline with I = (1,1,0)
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Figure 1d: Derivative of quadratic regression spline with I = (1,1,0)
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  Figure 2: Estimated functions    Figure 3: Estimated mean functions 
 on the log-log scale on the original x-scale 
 
In both sets of figures, the solid curve is the function estimate and the dashed lines are 50% confidence 
bands. 
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Figure 2a: Function for log(HorizontalCurveLength)
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Figure 3a: Mean Function for HorizontalCurveLength
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Figure 2b: Function for log(HorizontalCurveDegree)
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Figure 3b: Mean Function for HorizontalCurveDegree
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Figure 2c: Function for log(AADT)
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Figure 3c: Mean Function for AADT

 



Figure 2 (continued) Figure 3 (continued) 
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Figure 2d: Function for log(VerticalCurveLength)
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Figure 3d: Mean Function for VerticalCurveLength
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Figure 2e: Function for log(VerticalCurveGrade)
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Figure 3e: Mean Function for VerticalCurveGrade
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Figure 2f: Function for log(AverageShoulderWidth)
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Figure 3f: Mean Function for AverageShoulderWidth
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Figure 2g: Function for log(SpeedLimit)
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Figure 3g: Mean Function for SpeedLimit
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