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A Bayesian Semiparametric
Temporally–Stratified Proportional Hazards

Model with Spatial Frailties

Timothy E. Hanson∗, Alejandro Jara† and Luping Zhao‡

Abstract. Incorporating temporal and spatial variation could potentially enhance
information gathered from survival data. This paper proposes a Bayesian semi-
parametric model for capturing spatio–temporal heterogeneity within the propor-
tional hazards framework. The spatial correlation is introduced in the form of
county–level frailties. The temporal effect is introduced by considering the strati-
fication of the proportional hazards model, where the time–dependent hazards are
indirectly modeled using a probability model for related probability distributions.
With this aim, an autoregressive dependent tailfree process is introduced. The
full Kullback–Leibler support of the proposed process is provided. The approach
is illustrated using simulated data and data from the Surveillance Epidemiology
and End Results database of the National Cancer Institute on patients in Iowa
diagnosed with breast cancer.

Keywords: Spatio–temporal modeling, Dependent processes, Tailfree processes,
Breast cancer

1 Introduction

The proportional hazards (PH) model has been widely used in the analysis of censored
survival data. In the usual PH regression model the hazard function for an individual
with covariate vector x, λ (· | x), is specified as λ (· | x) = λ0(·) exp {x′β}, where β is a
vector of regression coefficients and λ0(·) is a baseline hazard function for individuals
with x = 0. The PH assumption has several advantages: (i) the effect of a factor can be
easily summarized by the relative risk, and (ii) a mathematical simplicity which has been
exploited by Cox (1972) to produce a simple semi–parametric approach via the partial
likelihood. The PH is, however, a strong assumption which may not be appropriate for
all datasets (see, e.g., Hanson and Yang 2007; De Iorio et al. 2009; Jara et al. 2010).

One way to relax the PH assumption is by including strata (Kalbfleisch and Prentice
1980). In the stratified PH model, the hazard function for the jth stratum, λj (· | x),
j ∈ J ⊂ IN , is specified such that

λj (· | x) = λ0j(·) exp {x′β} ,

where the {λ0j : j ∈ J } are unknown baseline hazards. Such a generalization is useful,
for instance, if some discrete explanatory variables do not appear to have a multiplicative
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effect on the hazard function. The primary interest of the stratified model is usually
confined to the within stratum comparison of specific risk factors while attempting to
adjust for the strata effect. In standard implementations of the stratified PH model
the elements in the set {λ0j : j ∈ J } are assumed unrelated, which may be inefficient,
incurring some loss of information, especially for highly stratified data. Furthermore,
the classical semiparametric approach based on the partial likelihood does not allow for
prediction of new data, which is of interest, for instance, when the stratifying variable
is a time indicator related to the definition of cohorts.

In this paper a Bayesian semiparametric temporally–stratified PH model that ac-
counts for spatial association is proposed. The spatial association is taken into account
by considering spatial frailty terms in the model. In order to borrow strength across the
temporal strata, a Bayesian nonparametric model for the set of stratum–specific hazards
{λ0j : j ∈ J } is proposed. We are unaware of any approaches, Bayesian or otherwise,
allowing for evolution of baseline survival in time or space in the PH model context.
He and Lawless (2003) consider a likelihood–based approach for bivariate survival data.
Hennerfeind et al. (2006) consider flexible models for geostatistical or lattice frailties
incorporating additive effects, but enforce a static baseline hazard function λ0(t). The
marginal transformation approach of Li and Lin (2006) also considers a static hazard.
Cai et al. (2007) allow for varying hazards λ0j(t), but consider a marginal approach,
similar to a stratified analysis on j.

Recently, dependent priors have been explored for modeling spatially or longitudi-
nally dependent distributions based on stick–breaking priors, most famously the Dirich-
let process (DP) prior (Ferguson 1974), Polya trees (Trippa et al. 2011) and more general
tailfree processes (Jara and Hanson 2011). A random probability measure G, defined
on a measurable space (Θ,B), follows a DP with parameters (M, G0), where M ∈ R+

0

and G0 is a probability measure on (Θ,B), written as G | M, G0 ∼ DP (MG0), if
the trajectories of the process can be almost surely (a.s.) represented by the stick–
breaking construction (Sethuraman 1994), G(B) =

∑∞
i=1 wiδθi(B), B ∈ B, where δθ(·)

is the Dirac measure at θ, wi = Vi

∏
j<i(1 − Vj), with Vi | M

iid∼ Beta(1,M), and

θi | G0
iid∼ G0. Motivated by the results of MacEachern (1999, 2000), Gelfand et al.

(2005) generalize the support points θi to stochastic processes {θi(s) : s ∈ S}. Kottas
et al. (2008) consider an extension of this model for a spatial epidemiological application.
De Iorio et al. (2004) consider a related model with ANOVA–like rather than spatial
or temporal dependence. Griffin and Steel (2006) consider an alternative model where
also the weights wi(s) vary in space or time. Reich and Fuentes (2007) and Dunson
et al. (2007) extend the stick–breaking priors to the multivariate spatial and regression
settings, respectively, developing related approaches based on augmenting the weights
{wi}∞i=1 with spatially– or covariate–weighted kernel functions. Other approaches can
be found, for instance, in Dunson and Park (2008), Chung and Dunson (2009), Duan
et al. (2007), Gelfand et al. (2007) and Taddy (2008).

As implemented, the dependent generalizations of stick–breaking priors have focused
more on regression with a spatially varying component, y(s) = µ(s) + x(s)′β + e(s),
where µ(s) follows some development of a dependent stick–breaking prior, the x(s) are
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covariates, and the e(s) are iid white noise, typically N(0, σ2); see e.g. expressions (1)
in Kottas et al. (2008), (6) in Griffin and Steel (2006), (1) in Dunson et al. (2007),
and (4) in Reich and Fuentes (2007). The inclusion of e(s) is actually required to
use modifications of the now well–developed computational theory available for fitting
Dirichlet process mixture (DPM) models. In these applications and elsewhere, the DP
is usually convolved with a smooth, typically normal kernel φ(· | µ, σ2), resulting in a
continuous measure with density f(· | G, σ2) =

∫
R

φ(· | µ, σ2)dG(µ). This essentially
amounts to requiring a nugget effect in the spatial or covariate process, but practically
translates into a process that behaves similarly to a finite mixture model with component
variances fixed at σ2 and locations or weights varying smoothly in space or time. This
built–in linear structure implies that dependent stick–breaking priors lend themselves
naturally to accelerated failure time models in a survival analysis context, but not
necessarily to PH, proportional odds, or other types of survival models that relate
survival to covariates in a complex way (Hanson 2006; Zhao et al. 2009). An early (non–
dependent) approach that took advantage of such structure was the DPM treatment of
the accelerated failure time model by Kuo and Mallick (1997), where they viewed their
model as “smoothing” the discrete realization G with a known continuous kernel (e(s)
above). An approach to PH models based on the extended gamma process (Ishwaran
and James 2004) takes advantage of the fact that the DP is simply a normalized gamma
process. With considerable effort, this could lead to dependent stick–breaking versions
of the PH model, but has not been pursued as of yet.

In this paper, we propose a temporally–stratified PH model with spatial frailties.
The time–dependent baseline hazards {λ0j : j ∈ J } are indirectly modeled using a
dependent tailfree process prior on the set of associated baseline distributions {F0j :
j ∈ J }. The model includes several interesting special cases (e.g. purely stratified,
temporally static) that can be tested versus the alternative model allowing for temporal
baseline evolution, and allows for the estimation of survival and hazard curves for future
years. The remainder of the paper is organized as follows. Section 2 gives a detailed
description of the proposed model, including theoretical properties of the proposal such
as its full Kullback–Leibler support. Section 3 provides the computational details related
to MCMC implementation of the model. Section 4 offers the analysis of simulated data
and a detailed analysis of data from the Surveillance Epidemiology and End Results
(SEER) database of the National Cancer Institute on patients in Iowa diagnosed with
breast cancer. A final discussion concludes the article.

2 The proposal

2.1 The stratified conditional proportional hazards model

Let Tijk ∈ IR+ be the time to the event of interest for the kth subject, diagnosed in the
jth year in the ith county, with i = 1, . . . , I, j = 1, . . . , J , and k = 1, . . . , nij . Let xijk

be a p–dimensional vector of explanatory covariates associated with the kth individual,
diagnosed in the jth year in the ith county. Finally, let γi be the frailty term associated
with the ith county. We assume that, given the spatial effect γi ∈ IR, the observations
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Tijk are independent, following a temporally–stratified proportional hazards model with
conditional density f (· | xijk, j, γi), that is,

Tijk | xijk, β, j, γi
ind.∼ f (· | xijk, β, j, γi) , (1)

where

f (t | xijk, β, j, γi) = exp{x′ijkβ + γi}λ0j(t) exp
[
− exp{x′ijkβ + γi}

∫ t

0

λ0j(u)du

]
. (2)

Here, λ0j(·) = f0j(·)/S0j(·) denotes the baseline hazard for the jth year, with f0j and
S0j = 1−F0j being the year–specific baseline density and survival function, respectively.
We assume common county–specific frailty terms across time and that

γ = (γ1, . . . , γI) | H ∼ H,

where H is a probability distribution supported on RI . Several parametric and nonpara-
metric options could be considered for H (see, e.g. Jara et al. 2009). As the modeling of
the H distribution is not the main aspect of the present proposal, we restrict ourselves
to Gaussian alternatives. Following Banerjee et al. (2003), we focus on a version of
the commonly used intrinsic conditionally autoregressive (CAR) prior of Besag et al.
(1991). Here, frailty terms are conditionally specified as

γi|λ, {γj}j 6=i
ind.∼ N(γ̄i, (λdi)−1) ,

where di denotes the number of counties adjacent to county i, and γ̄i is the sample mean
of the di county effects in {γj}j 6=i adjacent to county i. Alternatively, an exchangeable
model is also considered by assuming

γi|λ iid∼ N(0, λ−1),

where N(µ, σ2) stands for the normal distribution with mean µ and variance σ2.

The model assumes a common baseline distribution F0j across the counties within
a year. Several strategies could be considered to model the set of baseline distributions
F = {F0j : j ∈ J }, where J = {1, . . . , J}. One extreme model strategy would be
to assume a common baseline distribution F0j ≡ F0, j ∈ J . At the other extreme,
the unknown probability distributions could be considered as independent parameters
and to place independent priors F0j | Hj ∼ Hj , j ∈ J , related at the level of the
hyper–parameters. For many applications, the first case is too restrictive by assuming
essentially one baseline population, and the latter could be too inefficient by borrowing
little strength from potentially related information sources. Instead, we consider a
Bayesian nonparametric dependent model which allows linking the elements in F at
an intermediate level and the degree of dependence among the random distributions is
governed by the year indicator. Specifically, we assume

F = {F0j : j ∈ J } | h, Πθ, c, κ, ρ ∼ ARDTFP
(
h,Πθ,Ac,κ,ρ

)
, (3)

where ARDTFP refers to an autoregressive dependent tailfree process with parameters
(h, Πθ,Ac,κ,ρ). To better explain our proposal, we start with a review of tailfree and
dependent tailfree processes next.
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2.2 Tailfree and dependent tailfree processes

Tailfree processes are stochastic processes that can be defined to have trajectories on
the space of probability distributions (see, e.g. Freedman 1963; Fabius 1964; Ferguson
1974). A tailfree random probability measure F with support on the positive real line,
IR+, is defined by allocations of random probabilities to increasingly refined partitions
of IR+. Let E = {0, 1} and Em be the m–fold Cartesian product E × · · · ×E. Further,
set E∗ =

⋃∞
m=0 Em. Consider the sequence of partitions of IR+ given by π1 = {B0, B1},

π2 = {B00, B01, B10, B11}, . . ., such that, for every m ∈ IN and every ε = ε1 · · · εm ∈ E∗,
Bε = Bε0 ∪ Bε1 and Bε0 ∩ Bε1 = ∅. Assume that Bε0 lies below Bε1 and that Bε is a
left–open right–closed interval unless ε is a string of ones only. Throughout the paper,
we use the convention that ε = ε1 · · · εm−10 = 0 and ε = ε1 · · · εm−11 = 1, if m = 1.
Let Π = {π1, π2, . . .} and we further assume that the partitions form a rich class in the
sense that Π = ∪∞l=1πl is a generator of the Borel σ–field of IR+.

Definition 1. Let Π be a sequence of binary partitions as before. A random probability
measure F on (IR+,B(IR+)) is said to be a tailfree random probability measure with
respect to the set of partitions Π, if there exists a collection Y = {Yε : ε ∈ E∗} of
[0, 1]–valued random variables such that the following hold:

(i) The vectors (Y0, Y1), (Y00, Y01, Y10, Y11), . . . , are mutually independent.

(ii) For every ε = ε1 · · · εm ∈ E∗, Yε1···εm−10 + Yε1···εm−11 = 1 a.s.

(iii) For every ε = ε1 · · · εm ∈ E∗, the random probability measure F is related to Y
through the relations

F (Bε) =
m∏

l=1

Yε1···εl
.

Tailfree processes admit Polya trees and Dirichlet processes as important special
cases. Polya trees assign independent beta distributions to the elements in the collection
{Yε0}ε∈E∗ . The Dirichlet process is tailfree with respect to any sequence of partitions,
the only prior process that has this property. A tailfree prior can be constructed such
that the random probability measures generated by it are absolutely continuous with
respect to a given finite measure with probability one (Dubins and Freedman 1967;
Kraft 1964; Metivier 1971).

Jara and Hanson (2011) proposed a class of dependent tailfree processes by model-
ing the tailfree conditional probabilities as transformed mean–zero Gaussian processes
with continuous index set Z ⊂ IRq. We briefly provide some detail important to the
exposition that follows. The following definition is a modification of the one of Jara and
Hanson (2011). Let ΠZ = {Πz : z ∈ Z} be a set of dyadic partitions, where, as before,
Πz is a sequence of binary partitions of IR+, for every z ∈ Z.
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Definition 2. Let ΠZ be a set of sequence of binary partitions as before, h : IR −→ [0, 1]
be a strictly increasing continuous function, A = {Vε0 : ε ∈ E∗} be a set of covariance
functions, and P(IR+) be the set of Borel probability measures on (IR+,B(IR+)). Let
{F (z, ·) : z ∈ Z} be a P(IR+)–valued stochastic process on an appropriate probability
space (Ω, C, P ) such that, for almost every ω ∈ Ω, the following hold:

(i) The sets {ηε0(z, ω) : z ∈ Z}, for every ε = ε1 · · · εm−10 ∈ E∗, are realizations
of mutually independent mean–zero Gaussian processes with associated covariance
functions Vε0.

(ii) For every z ∈ Z and every ε0 = ε1 · · · εm−10 ∈ E∗, Yε0(z, ω) = h {ηε0(z, ω)} and
Yε1(z, ω) = 1− Yε0(z, ω).

(iii) For every z ∈ Z and every ε = ε1 · · · εm ∈ E∗,

F (z, ω) (Bz
ε ) =

m∏

l=1

Yε1···εl
(z, ω).

Such a process {Fz = F (z, ·) : z ∈ Z} will be referred to as a dependent tailfree process
with parameters

(
h, ΠZ ,A)

, and denoted DTFP
(
h,ΠZ ,A)

.

Equivalent to the case of tailfree processes for single probability measures, the DTFP
can be centered at a collection of parametric distributions Fθ = {Fθz : z ∈ Z}. For in-
stance, the elements in Fθ can be of the form LL(µ(z), σ2(z)), where LL(µ, σ2) stands
for the log–logistic distribution with location parameter µ and scale parameter σ2. In
fact, if h is taken to be the cumulative distribution function of any absolutely continuous
random variable with distribution symmetric around 0 and, for every z ∈ Z, the parti-
tion sets in Πz are of the form Bz

ε =
(
F−1

θz
(k/2m), F−1

θz
([k + 1]/2m)

]
, with F−1

θz
(·) being

the quantile function of Fθz and k the decimal representation of ε = ε1 · · · εm ∈ E∗,
then the process {Fz : z ∈ Z} is centered around Fθ, that is, E(Fz) = Fθz , for every
z ∈ Z. In order to make explicit the dependence of the set of sequences of partitions
on the centering parameters θ = {θz : z ∈ Z}, the notation ΠZ,θ is used.

Similar to tailfree processes for single probability measures, if h is taken as before,
the dependent tailfree process can easily be constrained in order to have trajectories
such that, for every z ∈ Z, F−1

z (0.5) = F−1
θz

(0.5) a.s., that is, such that every random
probability distribution in {Fz : z ∈ Z} has the same median as the corresponding
centering distribution Fθz with probability one, facilitating the interpretation of the
centering parameters in regression models. This can easily be done by letting η0(z, ·) = 0
a.s., for every z ∈ Z.

The form of the covariance functions in A completely defines the process and de-
termines important properties. For instance, Jara and Hanson (2011) showed that its
specification determines whether the trajectories of the process have a density with re-
spect to Lebesgue measure, the continuity properties of the process and the support
of the process. We discuss these relevant properties in the context of the temporally–
dependent tailfree process in the next section.
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2.3 The autoregressive dependent tailfree process

We define a temporally–dependent tailfree process with discrete index set J ⊆ IN , by
considering first–order autoregressive mean–zero Gaussian processes in the definition of
the DTFP. For every ε0 = ε1 · · · εm−10 ∈ E∗, let κε0 ∈ (−1, 1) be an autoregressive
parameter and set κ = {κε0 : ε0 ∈ E∗}. Let ρ : IN −→ IR+ be a monotonic increasing
function and c a positive constant. For every ε0 = ε1 · · · εm−10 ∈ E∗, let V c,κε0,ρ

ε0 (j, j′) =
2κ
|j−j′|
ε0 [cρ(mε0)]−1, ∀j, j′ ∈ J , be an autoregressive covariance function, where mε0 is

the length of the string ε0.

Definition 3. Let ΠJ ,θ be a set of sequence of binary partitions as before, h : IR −→
[0, 1] be a strictly increasing continuous function, ρ : IN −→ IR+ be a monotonic in-
creasing function, Ac,κ,ρ = {V c,κε0,ρ

ε0 : ε0 ∈ E∗} be the set of autoregressive covariance
functions, as previously defined, and P(IR+) be the set of Borel probability measures
on (IR+,B(IR+)). Let {F (j, ·) : j ∈ J } be a P(IR+)–valued stochastic process on an
appropriate probability space (Ω, C, P ) such that, for almost every ω ∈ Ω, the following
hold:

(i) The sets {ηε0(j, ω) : j ∈ J }, for every ε0 = ε1 · · · εm−10 ∈ E∗, are realizations
of mutually independent mean–zero first–order autoregressive Gaussian processes
with associated covariance functions V c,κε0,ρ

ε0 .

(ii) For every j ∈ J and every ε0 = ε1 · · · εm−10 ∈ E∗, Yε0(j, ω) = h {ηε0(j, ω)} and
Yε1(j, ω) = 1− Yε0(j, ω).

(iii) For every j ∈ J and ε = ε1 · · · εm ∈ E∗,

F (j, ω)
(
Bj

ε

)
=

m∏

l=1

Yε1···εl
(j, ω).

Such a process {Fj = F (j, ·) : j ∈ J } will be referred to as the autoregressive dependent
tailfree process with parameters

(
h,ΠJ ,θ,Ac,κ,ρ

)
, and denoted ARDTFP

(
h,ΠJ ,θ,Ac,κ,ρ

)
.

From Proposition 4 in Jara and Hanson (2011), it immediately follows that if, for
every c ∈ IR+, the function ρ is taken such that

∑∞
l=1 ρ(l)−1 < ∞, then with proba-

bility one the trajectories of the ARDTFP are in the space of the probability measures
supported on IR+ and are absolutely continuous w.r.t. Lebesgue measure. Under the as-
sumption of the almost sure continuity of the Gaussian process involved in the definition
of the DTFP, Jara and Hanson (2011) show its large Kullback–Leibler support. Since
the assumption of almost sure continuity does not hold for the autoregressive Gaussian
processes with discrete index J , we provide a proof of the full Kullback–Leibler support
of the ARDTFP. The following theorem is proved in Appendix A.

Theorem 1. Let {Fj : j ∈ J } be an ARDTFP
(
h, ΠJ ,θ,Ac,κ,ρ

)
, where h(·) = exp{·}/

(1 + exp{·}) is the logistic transformation and the set of sequences of partitions ΠJ ,θ
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is created, as before, based on the collection of centering probability distributions Fθ =
{Fθj

: j ∈ J }. If the function ρ(·) is taken such that
∑∞

l=1 ρ(l)−1/2 < ∞, then for any
set of probability distributions {Gj : j ∈ J } such that Gj ∈ P(IR+) and DKL(Gj , Fθj ) <
∞, ∀j ∈ J , with DKL(Gj , Fθj

) being the Kullback–Leibler divergence between Gj and
Fθj

,
P {ω ∈ Ω : DKL(Gj , F (ω, j)) < δ,∀j ∈ J } > 0,

for every δ > 0.

Since the predictive distribution of the ARDTFP at each j ∈ J does not have a
closed form, exact calculations cannot be performed with a fully specified ARDTFP.
This justifies the use of a partially specified or finite version we consider in the appli-
cations, where the tailfree process is terminated at level M , which we denote {Fj : j ∈
J } | M, h, ΠJ ,θ,Ac,κ,ρ ∼ ARDTFPM

(
h,ΠJ ,θ,Ac,κ,ρ

)
. Following, Jara and Hanson

(2011), we typically consider M ≈ log2(n/N), where n is the sample size and N is 5 to
10. As is usually assumed for partially specified Polya tree priors, on sets in the finest
partition πj

M the random Fj is assumed to follow the parametric distribution Fθj
(see,

e.g. Hanson 2006).

It may be difficult in practice to specify a single set of distributions with which
to center the ARDTFP and, once specified, this set may affect inferences due to the
partition dependence. One way to mitigate both problems is to specify a mixture of
prior distributions. A mixture of ARDTFP is induced for {Fj : j ∈ J } by allowing
parameters of the centering distributions θ and/or the precision parameter c to be
random, that is,

{Fj : j ∈ J } | M, h, ΠJ ,θ,Ac,κ,ρ ∼
∫

ARDTFPM
(
h,ΠJ ,θ,Ac,κ,ρ

)
dQ(θ, c),

where Q refers to the joint prior for θ and c.

3 Posterior computation

In this section we present results useful for the posterior computation in the temporally–
stratified PH model using a partially specified ARDTFP. Some notation is needed to
simplify computation. Set EM = {ε1 · · · εl−10 ∈ El : l = 1, . . . , M}. For every j ∈ J ,
set

Yj = {ηε0(j) ≡ ηε0(j, ·) : ε0 ∈ EM} ,

and set Y = {Yj : j ∈ J }. Further, for every j ∈ J , set

pθ,M,Y,h[k, j] = F0j(Bj
ε1···εM

) =
M∏

l=1

Yε1···εl
(j, ·),

=
M∏

l=1

[
h

(
ηε1···εl−10(j)

)](1−εl) [
1− h

(
ηε1···εl−10(j)

)]εl ,
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where ε1 · · · εM is the binary representation of k − 1, k ∈ {1, . . . , 2M}. Finally, set
νM,θ,j(t) = Int

(
2MFθj

(t) + 1
)
.

From expressions (1), (2) and (3), it follows that, under the assumption of non–
informative censoring, the conditional likelihood function is given by

L (β, γ,Y, θ) =
I∏

i=1

J∏

j=1

nij∏

k=1

Lijk (β, γi,Yj , θj) ,

=
I∏

i=1

J∏

j=1

nij∏

k=1

[(
exp{x′ijkβ + γi} f0j(tijk)

1− F0j(tijk)

)δijk

×

{1− F0j(tijk)}exp{(x′ijkβ+γi)}
]
, (4)

where δijk = 0 if the time of the event of interest for the kth subject, diagnosed in the
jth year and in the ith county, is right-censored and δijk = 1 otherwise, and

f0j(t) = 2Mfθj (t)

{
M∏

l=1

Yε1···εl
(j, ·)

}
,

= 2Mfθj (t)

{
M∏

l=1

[
h

(
ηε1···εl−10(j)

)](1−εl) [
1− h

(
ηε1···εl−10(j)

)]εl

}
,

= 2Mfθj (t) {pθ,M,Y,h [νM,θ,j(t), j]} ,

and

F0j(t) =





νM,θ,j(t)−1∑

l=1

pθ,M,Y,h [l, j]



 + pθ,M,Y,h [νM,θ,j(t), j]

{
2MFθj (t)− νM,θ,j(t) + 1

}
.

To explore the posterior distribution of β, γ, λ,Y, c, κ, θ, a Metropolis within Gibbs sam-
pling approach (Tierney 1994) is considered, based on sampling from the full conditional
distributions p(β | γ, λ,Y, c, κ, θ,D), p(γ | λ, β,Y, c, κ, θ,D), p(λ | γ, β,Y, c, κ, θ,D),
p(Y | γ, λ, β, c, κ, θ,D), p(κ | γ, λ, β,Y, c, θ,D), p(c | γ, λ, β,Y, κ, θ,D) and p(θ | β, γ,Y, c,
κ,D), where D = {(tijk, δijk) : i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , nij}. In the rest
of this section, we provide some detail on the distinctive full conditional distributions
and the implementation of the MCMC algorithm. A description of the omitted full
conditionals and algorithms is given in Appendix B.

3.1 Updating the autoregressive process parameters

From the properties of autoregressive processes, it follows that the conditional prior
for ηε0(j) | {ηε0(k) : k 6= j}, c, κε0, ε0 ∈ EM , is a normal distribution with mean and
variance depending on whether j is an extreme or interior point of the index set J ,

ηε0(j) | {ηε0(k) : k 6= j}, c, κε0 ∼ N(µ̃j , σ̃
2
j ), (5)
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where

µ̃j =





κε0ηε0(j + 1) if j = 1,
κε0

1−κ2
ε0

[ηε0(j − 1) + ηε0(j + 1)] if j 6= 1 and j 6= J,

κε0ηε0(j − 1) if j = J,

and

σ̃2
j =

{ 2
cρ(mε0)

(1− κ2
ε0) if j = 1 or j = J,

2
cρ(mε0)

[
1−κ2

ε0
1+κ2

ε0

]
if j 6= 1 and j 6= J.

Therefore, by the conditional independence assumption and Bayes’ rule, the full con-
ditional distribution for ηε0(j) only depends on data at time j, j ∈ J , and is given
by

p (ηε0(j) | · · · ) ∝
I∏

i=1

nij∏

k=1

Lijk (β, γi,Yj , θj) φ
(
ηε0(j) | µ̃j , σ̃

2
j

)
,

where φ(· | µ, σ2) stands for the density of a normal distribution with mean µ and
variance σ2, respectively. Since the full conditional for ηε0(j) is not recognizable, a
Metropolis–Hastings (MH) step (Tierney 1994) or slice sampling (Neal 2003) may be
used to update ηε0(j). In our implementation, a random walk MH step is performed,
where the candidates are generated from a normal distribution η∗ε0(j) ∼ N(ηε0(j), s2),
with s2 being an appropriate positive constant. The candidate is accepted with proba-
bility given by

min

{
1,

∏I
i=1

∏nij

k=1 Lijk

(
β, γi,Y∗j , θj

)
φ

(
η∗ε0(j) | µ̃j , σ̃

2
j

)
∏I

i=1

∏nij

k=1 Lijk (β, γi,Yj , θj)φ
(
ηε0(j) | µ̃j , σ̃2

j

)
}

,

where Y∗j is equal to Yj but with ηε0(j) replaced by η∗ε0(j). In our experience, s = 0.5
is a good starting point yielding acceptance rates ranging from 40% to 60%.

3.2 Updating the autocorrelation parameters

From the definition of the ARDTFP, it follows that the joint distribution for ηε0 =
{ηε0(j) : j ∈ J }, given κε0, c and ρ, is the following multivariate normal distribution

p (ηε0 | κε0, c, ρ) = (2π)−J/2 |Cε0|−1/2 exp
{
−1

2
η′ε0C

−1
ε0 ηε0

}
, (6)

where C−1
ε0 is a tridiagonal matrix given by

C−1
ε0 =

cρ(mε0)
2




d1,ε0 −bε0

−bε0 d2,ε0 −bε0

−bε0 d2,ε0 −bε0

. . . . . . . . .
−bε0 d2,ε0 −bε0

−bε0 d1,ε0




,
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with d1,ε0 = 1 + κ2
ε0

(1−κ2
ε0)

, bε0 = κε0
(1−κ2

ε0)
, and d2,ε0 = 1 + 2 κ2

ε0
(1−κ2

ε0)
, respectively, and

|Cε0| =
(

2
cρ(mε0)

)J (
1− κ2

ε0

)J−1
.

Notice that the tridiagonal form of the inverse of Cε0 implies that the quadratic form
in expression (6) can be written as follows

η′ε0C
−1
ε0 ηε0 =

cρ(mε0)
2 (1− κ2

ε0)





J∑

j=1

[ηε0(j)− κε0ηε0(j − 1)]2



 ,

where the convention ηε0(0) = 0 is used. It follows that if independent uniform priors
are placed on κε0, ε0 ∈ EM , κε0 ∼ U(−1, 1), then its full conditional distribution is
given by

p (κε0 | · · · ) ∝
(
1− κ2

ε0

)−(J−1)/2
exp



−

cρ(mε0)
(1− κ2

ε0)




J∑

j=1

[ηε0(j)− κε0ηε0(j − 1)]2





 . (7)

Similarly, if independent normal N
(
µκε0 , σ

2
κε0

)
priors are placed on the Fisher transfor-

mation of κε0, ε0 ∈ EM , (1/2) log
(

1+κε0
1−κε0

)
, then its full conditional distribution is given

by

p (κε0 | · · · ) ∝
(
1− κ2

ε0

)−(J−1)/2−1

(1 + κ2
ε0)

×

exp



−

cρ(mε0)
(1− κ2

ε0)




J∑

j=1

[ηε0(j)− κε0ηε0(j − 1)]2





×

exp




−

[
log

(
1+κε0
1−κε0

)
− 2µκε0

]2

8σ2
κε0





. (8)

If in the ARDTFP specification it is assumed that κε0 = κ, for every ε0 ∈ EM , the
previous expressions (7) and (8) are replaced by

p (κ | · · · ) ∝ (
1− κ2

)− (J−1)(2M−1)
2 ×

exp



−

∑

ε0∈EM


 cρ(mε0)

(1− κ2)




J∑

j=1

(ηε0(j)− κηε0(j − 1))2








 , (9)
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and

p (κ | · · · ) ∝ (
1− κ2

)− (J−1)(2M−1)
2 −1 (

1 + κ2
)−1 ×

exp



−

∑

ε0∈EM


 cρ(mε0)

(1− κ2)




J∑

j=1

(ηε0(j)− κηε0(j − 1))2








×

exp




−

(
log

(
1+κ
1−κ

)
− 2µκ

)2

8σ2
κ





, (10)

respectively. Since expressions (7), (8), (9) and (10) are not recognizable, an MH step
or slice sampling may be used to update the autocorrelation parameters. We have
found that a Gaussian random walk on the scale of the Fisher transformation of κε0,
using a standard deviation of 0.5, yields an adequate mixing of the chain in several
applications of the model. Notice that if the median function of the process is fixed
to be the median of the centering distributions, τ0 is not updated, and expressions (9)
and (10) still apply but with EM = {ε1 · · · εl−10 ∈ El : l = 2, . . . , M}. Notice also that
similar expressions arise when a common autocorrelation parameter is assumed for all
the Gaussian processes assigned to the same level of the partition κε0 = κmε0 , where,
as before, mε0 denotes the length of the string ε0.

3.3 Updating the centering parameters

Different specifications of the ARDTFP regarding the centering distributions can be
considered. In the more general model used in the applications, an unstructured collec-
tion of log–logistic distributions is considered, such that Fθ = {Fθj : j ∈ J }, where the
density of Fθj is given by

fθj (t) = exp{αj + ϑj}texp{αj}−1
[
1 + exp{ϑj}texp{αj}

]−2

, (11)

with θj = (αj , ϑj) ∈ IR2. If, for instance, independent normal priors are placed on αj

and ϑj , αj | µα, σ2
α

iid∼ N(µα, σ2
α) and ϑj | µϑ, σ2

ϑ
iid∼ N(µϑ, σ2

ϑ), then the full conditional
distribution is not recognizable and is given by

p (αj , ϑj | · · · ) ∝
{

I∏

i=1

nij∏

k=1

Lijk (β, γi,Yj , θj)

}
φ

(
αj | µα, σ2

α

)
φ

(
ϑj | µϑ, σ2

ϑ

)
. (12)

A similar expression arises if a common centering distribution is assumed, that is, if
θj = θ, for every j ∈ J . In the latter case, all observations are involved in the likelihood
contribution to the full conditionals. Random walk MH steps were used to update the
centering parameters using appropriate normal candidate generating distributions. As
the centering parameters (αj , ϑj) are typically highly correlated, we suggest a bivariate
Gaussian random-walk update with initial covariance matrix obtained from a parametric
log–logistic fit of the data.
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3.4 Updating the precision parameter

If a gamma prior is placed on the precision parameter of the ARDTFP, c | τ1, τ2 ∼
Γ(τ1/2, τ2/2), its full conditional distribution has a closed form given by

c | · · · ∼ Γ

(
J

(
2M − a

)
+ τ1

2
,
∆ + τ2

2

)
, (13)

where

∆ =
∑

ε0∈EM





ρ(mε0)
(1− κ2

ε0)




J∑

j=1

[ηε0(j)− κε0ηε0(j − 1)]2





 ,

and a = 1 for the regular model and a = 2 for the ARDTFP where the median is fixed
to the median of the centering distributions. In the latter case, EM = {ε1 · · · εl−10 ∈
El : l = 2, . . . , M}.

4 Illustrations

We consider simulated and real–life examples that emphasize the application of the semi-
parametric temporally–stratified PH model. We use simulated datasets to illustrate the
performance of the proposed approach. We consider data from nonstandard and evolv-
ing baseline distributions. Through the real–life data analyses, we emphasize different
aspects of the inferential problem and show the different particular cases that arise from
our proposal. The models considered in the next sections were fitted using compiled
FORTRAN 90 functions, which are available upon request to the authors. Functions
implementing the ARDTFP will be incorporated into the library “DPpackage” (Jara
et al. 2011) of the R program (R Development Core Team 2011).

4.1 Analysis of simulated data

In order to illustrate the behavior of the ARDTFP, we consider simulated data for
one county I = {1} over ten years J = {1, . . . , 10}. Each baseline survival function
was assumed to be a mixture of two normals with weights changing linearly in time.
Specifically, we assume that S0j(t) = 1 − (j/11)Φ(t|5, 1) − (1 − j/11)Φ(t|10, 1), where
Φ stands for the CDF of a standard normal distribution. We generated n1j = 100
observations for each time point, using quantiles of equally–spaced probability, that is,

t1jk = F−1
0j (k/(n1j + 1)) ,

where j ∈ J and k = 1, . . . , n1j . The data thus approximate their expected order
statistics and are a convenient “perfectly representative” sample.

We fitted the ARDTFP model, by assuming κε0 = κ, for every ε0 ∈ E∗, and place
an N(0, 3) prior on the Fisher transformation of κ. We further considered a common
centering distribution, not indexed by time, that is, Fθj ≡ Fθ, for every j ∈ J . The



160 Autoregressive Dependent Tailfree Process

common centering distribution was the log–logistic distribution with density given by
expression (11). We further assume h(·) = exp{·}/(1 + exp{·}), ρ(l) = l2, c ∼ Γ(10, 1),
α ∼ N

(
0, 103

)
and ϑ ∼ N

(
0, 103

)
. We also considered an improper prior for the

centering parameters p(α, ϑ) ∝ 1 and obtained similar results to the ones reported here.
We fitted two versions of the ARDTFP by considering M = 4 and M = 5.

In order to illustrate the advantage of the model that borrows strength across sub–
populations, we also fitted a purely stratified model by assuming independent tailfree
priors for each of the baseline distributions, that is, an ARDTFP with κε0 = 0, for
every ε0 ∈ E∗. Each model was fitted using the MCMC updating scheme described
in Section 3. In each case, a burn–in period of 2,000 was followed by a run of 100,000
iterations, on which posterior inference was based. Time series plots of the stored
output and standard tests (not shown), as implemented in the BOA R library (Smith
2007), suggested convergence of the chains. The models were compared for predictive
ability using the so called log pseudo marginal likelihood (LPML) developed by Geisser
and Eddy (1979). In the context of the temporally–stratified PH model, the LPML
for model M is defined as LPMLM =

∑I
i=1

∑J
j=1

∑nij

k=1 pM

(Dijk | D−(i,j,k)
)
, where

D−(i,j,k) is the data matrix that results after excluding the kth observation of the jth
year in the ith county, Dijk, and pM

(Dijk | D−(i,j,k)
)

is the predictive density based on
all of the data except the ijkth observation, evaluated at the observed Dijk, referred
to as conditional predictive ordinate (CPO). The simple method suggested by Gelfand
and Dey (1994) to obtain estimates of the CPO statistics from MCMC output was used
here.

Table 1 shows the LPML statistics for the the two versions of the ARDTFP model
and for the purely stratified versions of the model. The results show that the number
of levels M does not have an important effect in terms of prediction. In all cases, the
ARDTFP model does significantly better than the purely stratified model. Borrow-
ing strength across these slowly–changing densities improves prediction markedly. The
ARDTFP does a good job in estimating these evolving densities, especially considering
that only 100 observations from each stratum were considered. The posterior mean
closely approximated the true density of each stratum, which was entirely enclosed in
95% pointwise credible intervals. The posterior means and 95% pointwise credible in-
tervals under the partially specified ARDFP with M = 5, are shown in Figure 1. In all
cases, the posterior mean (dashed line) is almost indistinguishable from the true density
(solid line).

4.2 Analysis of the Iowa SEER data

The data

The Surveillance, Epidemiology, and End Results (SEER) program of the National Can-
cer Institute may be the most authoritative source of information on cancer incidence
and survival in the United States. SEER provides county–level cancer data on an annual
basis for public use. We apply our proposed model to the analysis of 1989–1998 SEER
Iowa breast cancer survival data. The data include information on a cohort of 20,315
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Independent tailfree ARDTFP
Strata M = 4 M = 5 M = 4 M = 5

1 −182.1 −183.9 −175.7 −173.9
2 −199.6 −201.6 −191.3 −189.6
3 −210.7 −213.0 −200.3 −200.6
4 −217.8 −220.2 −207.7 −207.6
5 −220.5 −223.2 −210.2 −210.4
6 −220.3 −223.0 −209.9 −210.0
7 −216.8 −219.5 −206.6 −206.3
8 −208.7 −211.2 −199.7 −199.7
9 −196.6 −198.9 −189.0 −188.8
10 −178.7 −180.3 −172.8 −173.0

Global −2051.9 −2074.7 −1963.1 −1959.9

Table 1: Simulated data: Log pseudo marginal likelihood (LPML) values for the
ARDTFP and independent tailfree models. The LPML statistic is given for M = 4
and M = 5, and for each strata and the complete data in each case.

women in Iowa, who were diagnosed with malignant breast cancer starting in 1989 and
ending in 1998, with follow–up continued through the end of 2003. Only deaths due to
metastasis of cancerous nodes in the breast were considered to be events, while the rest
(including death from metastasis of other types of cancer, or from other causes) were
considered to be censored observations. By the end of 2003, 8,396 of the patients had
died of breast cancer, while the remaining 11,919 women were censored, either because
they survived till the end of the study period, died of other causes, or were lost to
follow–up.

For each individual, the survival time in months (1 to 180) and county of residence at
diagnosis is recorded. Several individual–level covariates were also available, including
race (white or black), age at diagnosis, number of primaries (physiologically independent
cancers diagnosed), and the stage of the disease: local (confined to the breast), regional
(spread beyond the breast tissue), or distant (metastasis). We created a dummy variable
“cpri”, which equals 1 for women who have more than one independent cancer diagnosed,
and equals 0 for those who have breast cancer only. We treated “local” as baseline, and
created two dummy variables for “regional” and “distant,” respectively.

Table 2 shows the summary statistics for follow–up time and covariates across the
10 years. The diagnosis age, number of primaries, and two stage dummies are roughly
balanced across years. The follow–up time decreases and the proportion of censoring
increases for the recent years’ cohorts. Table 2 also shows the year–specific 25th per-
centiles of survival time in months, which indicate the estimated time in months past
which 75% will survive for each year. The 25th survival percentiles increase across years,
from 52 months in 1989 to 69 months in 1998.
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Year
Variable Level Statistic 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
Status Event Count 1135 1032 988 976 889 811 755 688 574 547

% 60.2 53.6 50.1 47.3 44.0 40.4 37.1 34.0 27.2 24.1
Censored Count 752 895 983 1087 1131 1198 1282 1334 1535 1722

% 39.9 46.5 49.9 52.7 56.0 59.6 62.9 66.0 72.8 75.9
Number of 1 Count 1353 1415 1465 1528 1486 1482 1503 1519 1624 1723
primaries % 71.7 73.4 74.3 74.1 73.6 73.8 73.8 75.1 77.0 75.9

>1 Count 534 512 506 535 534 527 534 503 485 546
% 28.3 26.6 25.7 25.9 26.4 26.2 26.2 24.9 23.0 24.1

Stage Local Count 1148 1195 1274 1381 1378 1332 1373 1375 1438 1509
% 60.8 62.0 64.6 66.9 68.2 66.3 67.4 68.0 68.2 66.5

Regional Count 612 630 571 565 545 556 546 513 539 621
% 32.4 32.7 29.0 27.4 27.0 27.7 26.8 25.4 25.6 27.4

Distant Count 127 102 126 117 97 121 118 134 132 139
% 6.7 5.3 6.4 5.7 4.8 6.0 5.8 6.6 6.3 6.1

Follow-up time Mean 112.6 111.8 106.7 101.0 94.6 89.0 81.0 72.4 66.0 57.2
(months) St. Dev. 61.6 57.4 52.2 47.2 41.8 36.2 32.0 27.7 21.9 17.6

Age (years) Mean 65.8 64.6 65.4 65.0 64.7 64.8 65.1 65.0 64.7 64.7
St. Dev. 14.4 15.2 14.6 14.6 14.7 14.5 14.6 14.9 14.5 14.4

25th survival percentiles 52 56 59 59 60 64 62 58 70 69

Table 2: SEER data: Summary statistics for follow-up time and covariates by year.

The models

Several versions of the temporally–stratified PH model given by expressions (1), (2)
and (3) were considered for the analysis of the Iowa SEER data. Because ultimately we
analyze lattice data (counties in Iowa), each model was augmented with frailty terms,
spatial or exchangeable, and assuming λ ∼ Γ(0.1, 0.1). Models considered cover the
complete range of dependence in the baseline survival functions. On one extreme, in
Model Class 0, the temporal cohort effect is ignored by assuming a common baseline
survival function S0j ≡ S0, ∀j ∈ J and a single tailfree prior on S0. On the other
extreme, in Model Class 1, a completely stratified model was considered by assuming
independent tailfree priors for the baseline survival function of each strata S0j , j ∈ J . In
this case, independent centering parameters for each group θj = (αj , ϑj) were assumed.
Note that the latter model is equivalent to the ARDTFP with κε0 = 0, for every ε0 ∈ E∗.

Three intermediate ARDTFP priors were considered varying in the complexity
of the centering family. Model Class 2 considers an ARDTFP with common log–
logistic centering distribution. We assume the autocorrelation parameter to vary with
the level of the partition by considering κε1···εl−10 = κl, l = 1, . . . ,M , and further

assume κ1, . . . , κM
iid∼ U(−1, 1). Model Class 3 considers an ARDTFP where the

log–logistic centering distributions have different and independent parameters, that is,
{F θj : j ∈ J }, where the θj ’s are independent vectors. Finally, Model Class 4 considers
an ARDTFP where the log–logistic centering distributions have different but dependent
parameters following an autoregressive process, that is, {Fθj : j ∈ J }, θj = (αj , ϑj),
where {αj : j ∈ J } and {ϑj : j ∈ J } are independent autoregressive processes with
covariance function given by τ−1

α κ
|j−j′|
α and τ−1

ϑ κ
|j−j′|
ϑ , respectively. We extended the
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model by assuming τα, τϑ
iid∼ Γ(3, 1), τα, τϑ

iid∼ Γ(0.1, 0.1) or τα, τϑ
iid∼ Γ(0.001, 0.001),

and κα, κϑ
iid∼ U(−1, 1).

For all models, we fixed the median of the process to coincide with the median
of the set of centering probability distributions. In all cases, we assume M = 4,
h(·) = exp{·}/ (1 + exp{·}), ρ(l) = l2 and c ∼ Γ(5, 1). We considered both the im-
proper prior p(α1, . . . , αJ , ϑ1, . . . , ϑJ) ∝ 1, as well as proper but vague prior (αj , ϑj)

iid∼
N2

(
02, 103I2

)
for the centering parameters. Independent normal N(0, 103) priors were

assumed for the regression coefficients, as well as an improper prior p(β) ∝ 1. The
models were fitted using the corresponding variant of the algorithm described in Sec-
tion 3. Despite the high dimension of the models, the MCMC chains mixed reasonably
well. For each model, 40,000 iterations were retained for posterior estimation following
a burn–in of 20,000 iterations. Models were compared using the LPML and the deviance
information criterion (DIC), as presented by Spiegelhalter et al. (2002).

The results

The results were robust to the prior specification across models. Table 3 shows the DIC
and LPML for the models under consideration. Both criteria indicate that the Model
Class 0 has the poorest model fit. Thus, introducing temporally varying baseline sur-
vival functions improves goodness of fit and prediction. Furthermore, DIC and LPML
favor the temporally dependent structure the most (Model Classes 2 – 4). The LPML
differs on whether temporally evolving (Model Class 4) versus exchangeable (Model
Class 3) underlying log–logistic parameters is beneficial; either is better than one over-
all log–logistic baseline (Model Class 0 and 2) or stratified types of analyses assuming
no temporal dependence (Model Class 1). Both DIC and LPML indicate the same

Model Class Frailty distribution DIC LPML
0 (Regular TFP, F0j ≡ F0 ∼ TFP, j ∈ J ) CAR 101259.5 –50637.7

i.i.d. 101286.4 –50653.9

1 (Independent TFP, F0j
ind.∼ TFP, j ∈ J ) CAR 101087.7 –50556.7

i.i.d. 101062.3 –50542.3
2 (ARDTFP with common centering) CAR 101318.0 –50668.6
(F θ

j = F θ, j ∈ J ) i.i.d. 101290.2 –50651.9
3 (ARDTFP with unstructured centering) CAR 101074.5 –50546.5

i.i.d. 101053.0 –50534.6
4 (ARDTFP with AR centering) CAR 101083.3 –50561.2

i.i.d. 101062.1 –50551.1

Table 3: SEER data: Deviance information criteria (DIC) and log-pseudo marginal
likelihood (LPML) for the models under consideration.

trends for goodness of fit, with the models with iid log–logistic parameters and autore-
gressive conditional probability parameters (Model Class 3) outperforming the models
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with iid log–logistic parameters and iid conditional probability parameters (Model Class
1), which outperform the models with autoregressive log–logistic parameters and au-
toregressive conditional probability parameters (Model Class 4), which outperform the
models with common log–logistic parameters and autoregressive conditional probabil-
ity parameters (Model Class 2). Allowing iid log–logistic parameters on the baseline
survival functions across years seems important to model fit. Furthermore, temporally
dependent conditional probability parameters contribute more to goodness of fit, fol-
lowed by temporally independent centering parameters.

Within each model, LPML and DIC indicate that exchangeable frailty terms provide
better prediction than CAR frailties. The frailty terms offer a contribution to improve
model prediction and fit, while the spatial arrangement of these frailty terms seems not
helpful in improving model fit over the exchangeable pattern. This may be because the
variance among data is mainly captured by temporal cohort effects; after adjusting for
the temporal effect captured in temporally evolving baseline survival functions, there is
little spatial story left. Therefore, although the spatial pattern is important in improving
goodness of fit in the simple frailty models (Model Class 0), it is not helpful after allowing
temporally different baseline survival (Model Classes 1–4) for this dataset. Overall,
the iid frailty model with iid log-logistic parameters and autoregressive conditional
probability parameters (the iid frailty model in Model Class 3) has the best model fit
according to LPML and DIC.

Since U(−1, 1) priors were considered for all autocorrelation parameters, (κα, κη)
and (κ2, . . . , κJ), we may formally test Model Class 3 versus Model Class 1 via the
hypothesis H0 : κ2 = · · · = κJ = 0. Although the 95% credible intervals of κ3 and
κ4 from Model 3 are centered at 0, the 95% credible interval for κ2 is (0.61, 0.95)
indicating a significant difference from 0. The second level of the tailfree divides IR+

into four pieces, and significant κ2 indicates more gross, large-scale positive dependence
in baseline survival than κl, l > 2. These data require the temporal evolution allowed
by Model Class 3 over the purely independent stratification of Model Class 1. When
autocorrelation structure is introduced to the log–logistic parameters along with the
tailfree conditional probability parameters (Model Class 4), all 95% credible intervals of
{κα, κη, κ2, · · · , κM} cover 0. Therefore we can neither reject H0 : κα = κη = 0 (Model
Class 4 can be reduced to Model Class 3), nor reject H0 : κα = κη = κ2 = · · · = κM = 0
(Model 4 can be reduced to Model 1). Consistently, LPML favors Model Class 3 over
Model Class 1, which outperforms Model Class 4.

Table 4 compares posterior medians and equal–tailed 95% credible intervals for main
effects (components of β) under Model 3 assuming exchangeable frailties to those ob-
tained under the standard semiparametric partial likelihood–based PH model with iid
frailties. The standard results were obtained using the survival package in R (R De-
velopment Core Team 2011). As is often the case with main effects (which are typically
well–identified), the estimates change little across models with the possible exception
of the “centered age” variable. The best fit ARDTFP model indicates that all of the
predictors are significant at the 0.05 level. Higher age at diagnosis increases the hazard;
e.g., a twenty-year increase in age is associated with an e0.0444×20 ≈ 2.43–fold increase
in hazard rate. After adjusting for the age at diagnosis, disease stage and the county
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of residence, the hazard of dying from breast cancer before any time t is e0.19 ≈ 1.21
times the hazard for women having more than one independent cancer diagnosed versus
women having only breast cancer. Using women with local stage of disease as the ref-
erence, the hazard of women of the same age who live in the same county and have the
same number of independent cancers diagnosed will be e0.68 ≈ 1.97 times the hazard
if their cancer is detected at the regional stage, and e2.13 ≈ 8.41 times the hazard if
detected at the distant stage. Figures 2–11 show fitted survival densities for women

Coefficient ARDTFP PH Partial likelihood PH
β1 (centered age) 0.0444 (0.0440, 0.0449) 0.0478 (0.0460, 0.0495)
β2 (number of primaries) 0.19 (0.14, 0.24) 0.20 (0.15, 0.25)
β3 (regional stage) 0.68 (0.63, 0.73) 0.68 (0.63, 0.73)
β4 (distant stage) 2.13 (2.06, 2.20) 2.15 (2.08, 2.22)

Table 4: SEER data: Posterior medians (95% equal–tailed credible intervals) for the
regression coefficients in the ARDTFP PH Model Class 3. The point estimates (95%
confidence intervals) under the partial likelihood–based PH model with iid frailties are
also presented.

aged 65 years at study entry (the mean in our dataset), with one primary, for three
disease stages under the exchangeable frailty version of Model Class 3 and assuming a 0
value for the spatial frailty term across 10 years. These fitted densities are overlaid on
histograms of all observed survival times for study participants with entry ages 55 to 75.
Since 11,919 of our 20,315 observations are censored, to incorporate both the censored
and uncensored observations we take the Kaplan–Meier survival function estimates and
convert them back to an approximate histogram (Huzurbazar 2005). In all these plots,
the predicted density curve shapes mirror the data appropriately, even though the pre-
dictive densities correspond to a frailty of γ = 0, whereas the histograms are averaged
over all of Iowa. This confirms that the proposed temporally–stratified PH model using
an ARDTFP correctly captures the variability of the data, and thus should have good
predictive ability.

Figures 12 and 13 provide the fitted predictive densities and survival curves for mean
age and three disease stages. At each stage, the curves show similar patterns across the
10 years. Iowan breast cancer mortality is decreasing in time, with the darkest lines
(year 1989-1992) having the lowest survival rates, and the two lightest lines (years 1997
and 1998) having the best survival rates. This also confirms the dependence of the
DTFP parameters in our final model.

In simpler frailty–based models, Banerjee and Carlin (2003) note fairly level mor-
tality until about 1990, when a rather steep decline is apparent (their Figure 4). They
suggest that this coincides with the recent rise in the use of mammography by American
women. This decline also coincides with Iowa’s Care for Yourself program, a part of
the larger federal government’s National Breast and Cervical Cancer Early Detection
Program, established in 1991. The model they fit is based on independent CAR frailties,
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one for each year, entering into the linear predictor of the Cox model. This model forces
the overall shape of the hazard curve to be similar across time. In Figure 12 we see that
although the overall shape is similar across time, there are notable differences in modal
location, which would not be captured by conventional approaches. Predictive density
and/or hazard plots were not included in either Banerjee et al. (2003) or Banerjee and
Carlin (2003).

5 Concluding remarks

We have proposed a method to improve the precision in the estimation of a temporally–
stratified PH model with spatial frailties. The proposal borrows strength across tempo-
ral strata by considering a dependent tailfree process prior to model temporally evolving
baseline survival functions. The proposed model includes at the extremes purely strat-
ified and common baseline survival functions as special cases.

The choice of the AR process in the definition of the dependent model is primarily
based on its computational simplicity. However, a theoretical result related to the
large support of the proposed prior shows that the resulting model covers a wide range
of dependence to capture temporal cohort effects, including a stochastic order of the
baseline survival functions in time. If strong prior information regarding the behavior
of the baseline survival functions is available, like the one of stochastic order, a more
focussed probability model for related probability distributions could be considered
(see, e.g., Gelfand and Kottas 2001; Karabatsos and Walker 2007). However, these
approaches cannot be naturally extended to make predictions for future time points.

Although our experience with the proposed MCMC algorithm is satisfactory, the
study of more efficient and automatic algorithms for the proposed model is of interest.
Specifically, the calibration of the MH proposals can be avoided by using local (Haario
et al. 2001; Atchadé and Rosenthal 2005; Haario et al. 2006) or global (Gasemyr 2003;
Cai et al. 2008; Giordani and Kohn 2010; Keith et al. 2008; Holden et al. 2009) adaptive
algorithms that update the proposal distribution “on the fly” as the chain evolves. The
evaluation of these algorithms is the subject of ongoing research.

Beyond developing and implementing useful new statistical models, our primary goal
was to find spatial–longitudinal structures that can best explain the Iowa SEER data,
and best predict mortality of patients. Temporally dynamic baseline survival antici-
pates decreasing mortality trends due to early detection and prevention, e.g. possibly
stemming from Iowa’s Care for Yourself program. Note also that the proportion of
primaries roughly increases across the decade (see, Table 2), as does the proportion of
local stage diagnoses – both are indicators of earlier detection and diagnosis.

Finally, several extensions of the proposed model can be considered. The extension
to handle multivariate outcomes is of interest. The extension of the model to handle
both temporal and spatial stratification is also the subject of ongoing research. We are
currently working on a version of the model that takes into account potential measure-
ment error of the failure and/or censoring times.
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Appendix A: Proof of Theorem 1

Notice that, for every j ∈ J and every ω ∈ Ω, G0
j = Gj o F−1

θj
and G(j, ω) =

F (j, ω) o F−1
θj

are probability measures defined on [0, 1], and that the partitions in-
duced by every Fθj , j ∈ J , correspond to the same canonical binary partition of [0, 1].
Since DKL is invariant under one–to–one transformations of the sample space, it follows
that

P {ω ∈ Ω : DKL(Gj , F (ω, j)) < δ,∀j ∈ J } =
P

{
ω ∈ Ω : DKL(G0

j , G(ω, j)) < δ, ∀j ∈ J }
.

Further, notice that

{
ω ∈ Ω : DKL(G0

j , G(ω, j)) < α, ∀j ∈ J } ⊇


ω ∈ Ω :

∑

j∈J
DKL(G0

j , G(ω, j)) < δ



 ,

and, therefore,

P
{
ω ∈ Ω : DKL(F 0

j , F (ω, j)) < δ,∀j ∈ J } ≥ P



ω ∈ Ω :

∑

j∈J
DKL(G0

j , G(ω, j)) < δ



 .

Now, by the martingale convergence theorem, for every j ∈ J , there exists a collection
of numbers {y0

ε1···εl
(j) = F 0

j (Bj
ε1···εl | Bj

ε1···εl−1) : ε1 · · · εl ∈ E∗, l ∈ IN} from [0, 1] such
that, with probability one, the density of G0

j w.r.t. Lebesgue measure is given by

g0
j (z) = lim

m→∞

[
2m

m∏

l=1

y0
ε1···εl

(j)

]
,

where the limit is taken through a sequence ε1ε2 · · · which corresponds to the dyadic
expansion of z ∈ [0, 1]. Since

∑∞
l=1 ρ(l)−1/2 < ∞ by assumption, Proposition 4 in Jara

and Hanson (2011) and the result by Kraft (1964) imply the existence of the density of
G(j, ω) w.r.t. Lebesgue measure, for almost every ω ∈ Ω. Therefore, it similarly follows
that

g(j, ω)(z) = lim
m→∞

[
2m

m∏

l=1

Yε1···εl
(j, ω)

]
,

for almost every ω. Borrowing the trick from Ghosal et al. (2006), used to show the
large support of Polya trees, we note that for any N ≥ 1,

DKL

(
G0

j , G(j, ω)
)

= Aj,ω
N + Bj

N − Cj,ω
N ,

for almost every ω ∈ Ω, where

Aj,ω
N = Eg0

j

[
log

{
N∏

l=1

y0
ε1···εl

(j)
Yε1···εl

(j, ω)

}]
,
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Bj
N = Eg0

j

[
log

{ ∞∏

l=N+1

2y0
ε1···εl

(j)

}]
,

and

Cj,ω
N = Eg0

j

[
log

{ ∞∏

l=N+1

2Yε1···εl
(j, ω)

}]
,

with Eg0
j

being the conditional expectation with respect to the distribution of (ε1ε2 · · · ),
the dyadic expansion of z, which is distributed according to the density g0

j . By the
definition of the dependent ARDTFP, {Aj,·

N : j ∈ J } and {Cj,·
N : j ∈ J } are independent

random functions for every integer N ≥ 1.

Now notice that, by the Markov inequality,

P



ω ∈ Ω :

∑

j∈J

∣∣∣Cj,ω
N

∣∣∣ ≥ δ

3





≤ 3δ−1
∑

j∈J
E

∣∣∣Cj,·
N

∣∣∣ ,

≤ δ−1
∑

j∈J
E

[
Eg0

j

( ∞∑

l=N+1

|log (2Yε1···εl
(j, ·))|

)]
,

≤ δ−1
∑

j∈J
Eg0

j

[ ∞∑

l=N+1

max
εl∈{0,1}

{E |log (2Yε1···εl
(j, ·))|}

]
,

≤ δ−1
∑

j∈J

[ ∞∑

l=N+1

max
ε1···εl−1∈{0,1}l−1

{
E

∣∣log
(
2Yε1···εl−10 (j, ·))∣∣}

]
,

≤ δ−1
∑

j∈J

[ ∞∑

l=N+1

ϕ (cρ (l))

]
,

where ϕ (cρ (l)) = E
∣∣log

(
2Yε1···εl−10(j, ·)

)∣∣. By Proposition 3 in Jara and Hanson

(2011), for every j ∈ J , Yε1···εl−10(j, ·) L−→ U , l −→∞, where U is a Beta(cρ (j) , cρ (j))
random variable. It follows that, by Lemma A.1 in Ghosal et al. (2006), ϕ (cρ (l)) =
O

(
[cρ (l)]−1/2

)
as l −→ ∞. Since

∑∞
l=1 ρ (l)−1/2

< ∞ by assumption,
∑∞

l=1 ϕ (cρ (l))
is a convergent series and, therefore, there exists an integer NC such that

P



ω ∈ Ω :

∑

j∈J

∣∣∣Cj,ω
NC

∣∣∣ ≥ δ

3



 ≤ 3δ−1

∑

j∈J

[ ∞∑

l=NC+1

ϕ (cρ (l))

]
< 1,

i.e.,

P



ω ∈ Ω :

∑

j∈J

∣∣∣Cj,ω
NC

∣∣∣ <
δ

3



 > 0. (A.1)
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By Lemma 2 in Barron (1985), for every j ∈ J , there exists an integer N j
B such that∣∣∣Bj

Nj
B

∣∣∣ < δ
3J . It follows that

∑

j∈J

∣∣∣Bj
N

∣∣∣ <
δ

3
, (A.2)

where N = max
(
NC , {N j

B , j ∈ J }
)
. Finally, the set





(
Yε1···εN

(j, ·), j ∈ J , ε1 · · · εN ∈ {0, 1}N
)

:
∑

j∈J
Aj,·

N < δ/3



 ,

is a nonempty open set in IR2JN−1; it is open by the continuity of the relevant map while
it is nonempty as

(
y0

ε1···εN
(j), j ∈ J , ε1 · · · εN ∈ {0, 1}N

)
belongs to this set. Thus, by

the nonsingularity of the multivariate logistic normal distribution, which is induced by
the nonsingularity of the multivariate normal distribution of the AR Gaussian processes
and by the continuity of the logistic transformation, it follows that

P



ω ∈ Ω :

∑

j∈J
Aj,ω

N <
δ

3



 > 0. (A.3)

Thus, from relations (A.1), (A.2) and (A.2), it follows that for any δ > 0, there is some
N > 1 such that

P
{
ω ∈ Ω : DKL

(
G0

j , G(j, ω)
)

< δ,∀j ∈ J }

≥ P



ω ∈ Ω :

∑

j∈J
DKL

(
G0

j , G(j, ω)
)

< δ



 , (A.4)

= P



ω ∈ Ω :

∑

j∈J

[
Aj,ω

N + Bj
N − Cj,ω

N

]
< δ



 ,

≥ P



ω ∈ Ω :

∑

j∈J
A

(j,ω)
N <

δ

3



P



ω ∈ Ω :

∑

j∈J

∣∣∣Cj,ω
N

∣∣∣ <
δ

3



 ,

> 0,

which completes the proof of the theorem.

Appendix B: Complementary MCMC details

Updating the regression coefficients

We updated β using a random walk MH step (Tierney 1994). The covariance matrix of
the candidate generating distribution is initially taken from the asymptotic variance of
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the regression coefficients, obtained fitting the parametric non–frailty model. We then
“refined” the covariance matrix by running a crude MH random walk sampler for the
full model for 5000 steps. The resulting empirical covariance matrix V was then used
to generate the candidates from a normal distribution β∗ ∼ Np(β, kV), where k is an
appropriate positive constant, which were accepted with probability given by

min
{

1,
L (β∗, γ,Y)
L (β, γ,Y)

}
.

Updating the frailty terms

The full conditional distribution for each frailty term is not recognizable. Therefore,
the γi’s can be updated using slice sampling or an MH step. In our implementation, a
random walk MH algorithm was considered, where the candidates were generated from
a normal distribution γ∗i ∼ N(γi, s

2
γi

), with sγi being a given constant which can be
adjusted at each county to obtain an appropriate acceptance rate. We accept γ∗i with
probability

min



1,

[∏J
j=1

∏nij

k=1 Lijk (β, γ∗i ,Yj , θj)
]
p (γ∗i | λ, γl, l 6= i)

[∏J
j=1

∏nij

k=1 Lijk (β, γi,Yj , θj)
]
p (γ∗i | λ, γl, l 6= i)



 ,

where

p (γi | λ, γl, l 6= i) =
{

φ
(
γi | 0, λ−1

)
, if an exchangeable prior is assumed,

φ
(
γi | γ̄i, [diλ]−1

)
if a CAR prior is assumed ,

di is the number of neighbors of county i and γ̄i is the mean of the di adjacent frailties.
Since there are a lot of frailties, a common standard deviation is chosen sγi ≡ sγ for all
i, that balances overall frailty acceptance rates to be around 40%.

Updating the scale parameter of the frailty distribution

Under γ1 . . . , γI | λ ∼ CAR(λ), if a gamma prior is placed on λ, λ | τ1,λ, τ2,λ ∼
Γ (τ1,λ/2, τ2,λ/2), then the full conditional distribution for λ has a closed form and is
given by

λ | · · · ∼ Γ

(
τ1,λ + I − 1

2
,
τ2,λ +

∑I
i=1 diγi(γi − γ̄i)

2

)
,

where, as before, di is the number of neighbors of county i and γ̄i is the mean of the di

adjacent frailties.

Similarly, if the same prior is used for λ, under (γ1, . . . , γI) | λ ∼ Nn(0, λ−1II), then
the full conditional distribution is also a gamma distribution given by

λ | · · ·Γ
(

τ1,λ + I

2
,
τ2,λ +

∑I
i=1 γ2

i )
2

)
.
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Figure 1: Simulated data: The posterior mean and 95% pointwise credible interval
under the partially specified ARDFP with M = 5 are displayed as dashed lines for each
strata. The true density in each case is displayed as a solid line.
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Figure 2: SEER data: Censored histograms of raw survival in months for diagnosis ages
55–75, one diagnosed independent cancer, and “local” stage (left), “regional” (middle),
or “distant” (right), with fitted predictive density curves from the best fitting ARDTFP
model overlaid for 1989.
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Figure 3: SEER data: Censored histograms of raw survival in months for diagnosis ages
55–75, one diagnosed independent cancer, and “local” stage (left), “regional” (middle),
or “distant” (right), with fitted predictive density curves from the best fitting ARDTFP
model overlaid for 1990.
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Figure 4: SEER data: Censored histograms of raw survival in months for diagnosis ages
55–75, one diagnosed independent cancer, and “local” stage (left), “regional” (middle),
or “distant” (right), with fitted predictive density curves from the best fitting ARDTFP
model overlaid for 1991.
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Figure 5: SEER data: Censored histograms of raw survival in months for diagnosis ages
55–75, one diagnosed independent cancer, and “local” stage (left), “regional” (middle),
or “distant” (right), with fitted predictive density curves from the best fitting ARDTFP
model overlaid for 1992.
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Figure 6: SEER data: Censored histograms of raw survival in months for diagnosis ages
55–75, one diagnosed independent cancer, and “local” stage (left), “regional” (middle),
or “distant” (right), with fitted predictive density curves from the best fitting ARDTFP
model overlaid for 1993.
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Figure 7: SEER data: Censored histograms of raw survival in months for diagnosis ages
55–75, one diagnosed independent cancer, and “local” stage (left), “regional” (middle),
or “distant” (right), with fitted predictive density curves from the best fitting ARDTFP
model overlaid for 1994.
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Figure 8: SEER data: Censored histograms of raw survival in months for diagnosis ages
55–75, one diagnosed independent cancer, and “local” stage (left), “regional” (middle),
or “distant” (right), with fitted predictive density curves from the best fitting ARDTFP
model overlaid for 1995.
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Figure 9: SEER data: Censored histograms of raw survival in months for diagnosis ages
55–75, one diagnosed independent cancer, and “local” stage (left), “regional” (middle),
or “distant” (right), with fitted predictive density curves from the best fitting ARDTFP
model overlaid for 1996.



T. Hanson, A. Jara and L. Zhao 185

10 20 30 40 50 60 70 80 90

age: 55 ~ 75, stage = Local, year=1997

survival time in months

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30

10 20 30 40 50 60 70 80 90

age: 55 ~ 75, stage = Regional, year=1997

survival time in months

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

10 20 30 40 50 60 70 80 90

age: 55 ~ 75, stage = Distant, year=1997

survival time in months

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Figure 10: SEER data: Censored histograms of raw survival in months for diagnosis ages
55–75, one diagnosed independent cancer, and “local” stage (left), “regional” (middle),
or “distant” (right), with fitted predictive density curves from the best fitting ARDTFP
model overlaid for 1997.
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Figure 11: SEER data: Censored histograms of raw survival in months for diagnosis ages
55–75, one diagnosed independent cancer, and “local” stage (left), “regional” (middle),
or “distant” (right), with fitted predictive density curves from the best fitting ARDTFP
model overlaid for 1998.



T. Hanson, A. Jara and L. Zhao 187

0 50 100 150 200

0.
00

20
0.

00
25

0.
00

30
0.

00
35

survive time (months)

pr
ed

ic
tiv

e 
de

ns
ity

local stage

0 50 100 150 200

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

survive time (months)

pr
ed

ic
tiv

e 
de

ns
ity

regional stage

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

survive time (months)

pr
ed

ic
tiv

e 
de

ns
ity

distant stage

year 1989
year 1990
year 1991
year 1992
year 1993
year 1994
year 1995
year 1996
year 1997
year 1998

Figure 12: SEER data: Predictive densities for age 65, breast cancer only, and disease
stages “local” (upper left), “regional” (upper right), and “distant” (lower left) across
200 months.
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Figure 13: SEER data: Predictive survival curves of age 65, breast cancer only, and
disease stages “local” (upper left), “regional” (upper right), and “distant” (lower left)
across 200 months.


