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Abstract 

 
In this paper, we consider the signals approach as an early-warning-system to detect crises. 
Crisis detection from a signals approach involves Type I and II errors which are handled 
through a utility function. We provide a Bayesian model and we test the effectiveness of the 
signals approach in three data sets: i) Currency and banking crises for 76 currency and 26 
banking crises in 15 developing and 5 industrial countries between 1970 and 1995, ii) costly 
asset price booms using quarterly data ranging from 1970 to 2007, and iii) public debt crises in 
Europe in 11 countries in the European Monetary Union  from the introduction of the Euro 
until November 2011. The Bayesian model relies on a vector autoregression for indicator 
variables, and incorporates dynamic factors, time-varying weights in the latent composite 
indicator and special priors to avoid the proliferation of parameters. The Bayesian vector 
autoregressions are extended to a semi-parametric context to capture non-linearities. Our 
evidence reveals that our approach is successful as an early-warning mechanism after allowing 
for breaks and nonlinearities and, perhaps more importantly, the composite indicator is better 
represented as a flexible nonlinear function of the underlying indicators.  
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1. Introduction 

Predicting crises is important as, among other things, the cost of crises is considerable. Caprio 
and Klingebiel (1996) estimated that average bailout amounts to 10 percent of GDP  and 
cumulative losses in output are, approximately, 5.6 percent of GDP (Hoggarth et al., 2002). Lo 
Duca et al. (2017) estimate that output losses from financial crises in the European Union 
amount, on average, to 8% of GDP, and Laeven and Valencia (2012) estimate that during 
banking crises across a large sample of countries worldwide output losses amounted on average 
to 23% of GDP. The cost of crises necessitates to have indicators of systemic risk that allow 
sufficient time for policy makers to engage in countercyclical measures. 

The signals approach, as an EWM for crises, goes back to the path-breaking paper of 
Kaminsky et al. (1998), followed by Kaminsky and Reinhart (1999). Its applications include 
EWMs for: (i) debt crises (see Knedlik and von Schweinitz, 2012), (ii) asset price bubbles (see 
Alessi and Detken, 2011), (iii) banking crises (see Borio and Drehmann, 2009), and even (iv) 
currency crises (see Edison, 2003). Meanwhile, binary choice models predict a binary crisis 
variable in the spirit of Frankel and Rose (1996); Berg and Pattillo (1999); Kamin et al. (2001); 
Bussière and Fratzscher (2006). Other authors use the Markov-switching technique in an 
attempt to provide better forecasting performance compared to binary choice models or the 
signals approach (Abiad, 2003; Mariano et al., 2004; Kittelmann et al., 2006; Knedlik and 
Scheufele, 2008). However, the interpretation of the regimes in economic terms is somewhat 
problematic.4  Another related approach is presented in Gomez-Puig and Sosvilla-Riverro 
(2016). 

In an important paper, El-Shagi, Knedlik, and von Schweinitz (2013, EKS throughout) 
test the null hypothesis of no correlation between indicators and crisis probability in three 
applications of the signals approach to different crisis types. The topic is of considerable 
interest given the 2008-2009 subprime crisis. Constructing indicators and signals that can 
provide an Early Warning Mechanism is, subsequently, of considerable importance for policy 
authorities, systemic banks and other authorities like central banks.  

In this paper, we consider the signals approach as an EWM to detect crises. We provide 
a novel Bayesian model and we test the effectiveness of the signals approach in three data sets. 
The adopted Bayesian approach has several advantages over the traditional approaches. For 
instance, it overcomes the so-called over-fitting issue and has an increased flexibility. 
However, the most important feature of the Bayesian approach is the fact that it mixes various 
pieces of information, such as sample information, prior information etc., so as to construct a 
representation which accounts for the stochastic nature of the variables. More precisely, the 
principal reason for choosing a Bayesian model is that it takes fuller account of the many 
uncertainties that are associated with the model and the parameters of interest. We use a 
Bayesian modeling approach organized around the Sequential Monte Carlo (SMC) and Markov 
Chain Monte Carlo (MCMC) procedures. See, for instance, Wasserman (2004), Robert (2001) 
and Carlin and Louis (2000). The reader should keep in mind that the approach in EKS is non-
parametric, whereas our analysis is based on flexible functional forms using artificial neural 
networks. Therefore, our approach is semi-parametric and allows for breaks and non-
linearities. 
The Bayesian model relies on a Vector Autoregression for indicator variables, it incorporates 
dynamic factors and special priors to avoid the proliferation of parameters. The Bayesian 
Vector Autoregression model is extended to a semi-parametric context to capture non-
linearities in economic time series. Crisis detection from a signals approach involves Type I 
and II errors which are handled through a utility function. Our evidence reveals that non-linear 

                                                 
4 For an extensive review, see EKS and the references therein. 
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models are quite successful as early-warning systems but linear models, even after allowing 

for breaks, are not so successful. This is important for policy making as well as future work on 
crises and their timely detection. To understand how the present paper contributes to the 
literature and can help in terms of future research we need to mention the following. For 
example, Guerreiro (2014) argues that “[s]ince it is always difficult to analyze a crisis on the 

spot, the likely roots of interest rate differentials in EMU are still an open question” and finds 
that persistent balance of payments disequilibria trigger interest rate increases, debt crises, and 
subsequent implementation of strict programmes in the context of bailouts. Heryán and 
Tzeremes (2017) document that commercial banks react to monetary policy shocks differently 
in crisis periods. Specifically, the bank lending channels in old EMU countries have become 
more sensitive to changes in M2 than in short-term interest rates during the subprime crisis but 
the bank lending channels in new EU countries are more sensitive to short-term market interest 
rates. This perplexes the issue of contagion of crises and the nature of crises in the EU. The 
role of nonlinearities has been examined formally by Basak, Das and Rohit (2017) who find 
that, under nonlinearity, it becomes harder to absorb shocks and hence an economy is more 
likely to tumble into a crisis. In a related study, Ureche-Rangau and Burietz (2013) find a 
statistically significant link between the amount of capital injections provided by European 
governments following the subprime crisis to bail out banks and maintain stability. Moreover, 
they find that ECB interventions do not produce statistically significant results, while the 
outcome of guarantees is rather inconclusive, depending on estimation techniques. Drakos and 
Kouretas (2015) document a nonlinearity in the Taylor rule showing that there is a structural 
break in the implementation of the monetary policy of ECB during the peak of the financial 
crisis. Specifically, they show that the ECB monetary policy followed the Taylor rule before 
the crisis but not so in the post-crisis period. Qin and Luo (2016) consider capital account 
openness as an EWM for banking crises in the G20 countries from 1989 to 2010. Their results 
indicate that the capital account openness has significant predictive power for systemic banking 
crises, and the impact is closely related with economic development (real GDP per capita). The 
authors demonstrate that the particular EWM has good in-sample and out-of-sample 
performance, and it is robust for different sampling periods. 
Several econometric models have been proposed to develop an EWM. Fuertes and Kalotychou 
(2006) applied pooled logit models to predict debt crises in emerging economies. Caggiano et 
al. (2016) used both binomial and multinomial logit econometric models in the context of 
building EWMs for systemic banking crises. Billio et al. (2016) proposed an entropy-based 
EWM for systemic risk. Cheng and Zhao (2019) provide an alternative system based on input-
output analysis as cross-holding of claims and obligations among financial institutions can be 
treated in the context of input-output linkages and, therefore, model the financial system and 
contagion by using the classic Leontief framework. It is instructive that the authors examine 
the effect of two policies -capital injections and forced mergers of financial institutions. The 
authors mention that “capital injections is an effective instrument for mitigating financial 

contagion [...]. However, forced mergers is not always effective. Although forced mergers help 

to recapitalize financial institutions, they also lead to restructuring of the whole financial 

system, and this restructuring mechanism may influence systemic risk.” This outcome is quite 
important not only because capital injections are effective albeit costly but mostly because a 
restructuring of the financial system necessitates a re-examination of systemic risk and EWMs. 
This is likely to introduce structural breaks and nonlinearities that change in a significant way 
the operation of EWMs. Thus, EWMs need to account for such breaks and nonlinearities. An 
operational way to do so is provided in the present paper, using a novel semi-parametric 
Bayesian Vector Autoregressive Model. 

 
The paper is structured as follows: Section 2 offers some preliminary information on 
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the model. Section 3 presents the statistical model. Section 4 sets out the empirical analysis and 
an examination of spurious predictive power is taken up in Section 5. Section 6 offers some 
concluding remarks. 

2. Preliminaries 

We follow EKS who test the null hypothesis of no correlation between indicators and crisis 
probability in three applications of the signals approach to different crisis types using the 
bootstrap. Suppose time periods are denoted by 𝑡 ∈ {1, … , 𝑇}, countries by 𝑛 ∈ {1, … , 𝑁} and 
there are indicator variables 𝑋𝑡𝑛,𝑚, 𝑚 ∈ {1, … , 𝑀}. If there has been a crisis in country 𝑛 and 
period 𝑡 we have 𝐶𝑡𝑛 = 1 and zero, otherwise. Define an early warning signal with early 
warning horizon as:  

 𝑊𝑡𝑛 = {1, if ∃𝑘 ∈ {1, … , ℎ}:  𝐶𝑡+𝑘,𝑛 = 1,0, otherwise.  (1) 

 
Therefore, 𝑊𝑡𝑛 is an indicator which is equal to one if, for a given country, it can predict 
whether there is a crisis at a future date 𝑡 + 𝑘 for some 𝑘 ∈ {1, … , ℎ} where ℎ  is the time 
horizon.  
For each indicator variable there is a threshold 𝜏𝑚 so that we have a binary signal:  
 𝑆𝑋𝑡𝑛,𝑚 = 𝕀(𝑋𝑡𝑛,𝑚 ≥ 𝜏𝑚). (2) 

 
Therefore, we have a division of the observations into four subsets A, B, C, and D. The 
possibilities are shown in Table 1.  
 

PLEASE INSERT TABLE 1 AROUND HERE 

 

The noise-to-signal ratio (NSR) is defined as  

 𝑁𝑆𝑅 = 𝐵/(𝐵 + 𝐷)𝐴/(𝐴 + 𝐶). (3) 

 
Moreover, a utility function based on Type I and Type II errors can be defined (Bussière and 
Fratzscher, 2008; Alessi and Detken, 2011):  

 𝑈(𝜃) = min( 𝜃, 1 − 𝜃) − 𝜃 𝐶𝐴 + 𝐶 − (1 − 𝜃) 𝐵𝐵 + 𝐷. (4) 

 
An indicator with 𝑁𝑆𝑅 > 1 or 𝑈(𝜃) < 0 can be ignored. The parameter 𝜃 ∈ (0,1) can be 
set by the decision maker to balance the costs from the Type I and Type II errors. The objective 
is to find the thresholds {𝜏𝑚, 𝑚 = 1, … , 𝑀} so that NSR is minimized or utility is maximized. 
Finally, one can define a composite indicator  

 𝐶𝐼 = ∑ 𝜔𝑚𝑀
𝑚=1 𝑆𝑋𝑚 . (5) 

 
The key advantage of the composite indicators approach is that it does not rely on a particular 
model. However, there are some statistical problems. More precisely, El-Shagi, Knedlik, and 
von Schweinitz (2013, pp. 79, and 81-82) argue that: 

• One can fix parameter 𝜃 in advance (to 0.4, say) or, instead, provide conditional 
probabilities of a crisis given a particular range of the indicator variables.  

• However, they also notice that spurious correlation may arise particularly when the 
threshold values are adjusted to maximize in-sample fit.  
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• Optimally adjusted thresholds in-sample, may produce some degree of out-of-sample 
correlation, even if in-sample fit is due entirely to chance. 

 
This is used here to set forth the state of the art and suggest ways for improvement. 

Besides the moving block bootstrap and the conditional probability bootstrap, El-Shagi, 
Knedlik and von Schweinitz (2013) use a Panel VAR bootstrap following Bai and Ng (2005). 
They assume that every indicator has a global and a national component, and both follow an 
individual VAR process. The objective of all three approaches is to test the null hypothesis that 
the utility or noise-to-signal ratio for individual indicators could have been achieved by chance 
and test for the null hypothesis that a composite indicator (based on the noise-to-signal ratio or 
utility optimization) of the whole set of indicators in one application could have been the result 
of a random process. They reevaluate the economic findings of Kaminsky and Reinhart (1999), 
Alessi and Detken (2011) and Knedlik and von Schweinitz (2012) and assess the statistical 
significance of their results, concentrating on specific findings. Against this background, EKS 
then present general results on the application of the signals approach, and the results of the 
different tests for four applications are presented.  

Potential problems with this approach, despite its attractiveness and usefulness are the 
following: (i) The bootstrap has only an asymptotic justification, making it problematic with 
typical sample sizes in applied econometrics. (ii) The bootstrap or the panel-VAR-bootstrap do 
not allow for possible structural breaks inside or outside the sample. (iii) The probabilities that 
results could have been the result of a random process or chance reflects a sampling-theory 
probability, not a posterior probability given the data at hand. In view of these problems, it is 
interesting to examine whether a Bayesian approach, along with a new estimation and inference 
methodology could, potentially, be useful in predicting crises. This is not merely a new formal 
approach to EWMs but rather an attempt to re-examine the ability of EWMs to predict crises 
when richer models are considered using a different methodological approach. Our 
methodological advance extends to “endogenizing” the composite indicator in that weights are 
estimated from the data, and, in fact, the composite indicator need not be an affine function of 
underlying indicators. In practice, we use a flexible specification incorporating artificial neural 
network components involving the underlying indicators.  

3. Statistical model 

The problem, from the perspective of our study, is that the model should be flexible and 
realistic. “Flexible” means that we should allow for at least some non-parametric components, 
and “realistic” means that structural breaks and causality must be accounted for. Suppose that 
for country 𝑛 ∈ ℕ = {1, … , 𝑁}, time period 𝑡 ∈ 𝕋 = {1, … , 𝑇}, and 𝑚 ∈ 𝕄 = {1, … , 𝑀}the 

relevant indicator variables 𝑿𝑡(𝑛) = {𝑋𝑡𝑛,𝑚 ∀𝑛 ∈ ℕ ∀𝑚 ∈ 𝕄}, follow a factor VAR model or 
more precisely a Factor-Augmented Panel Vector Autoregression (FA-PVAR). Conditional on 1 ≤ 𝐺 < 𝑛 global factors 𝒇𝑡 we have:  

 𝑿𝑡(𝑛) = 𝑨𝑛(𝐿)𝒇𝑡 + 𝒗𝑡(𝑛),  ∀𝑛 ∈ ℕ, (6) 
 
where 𝑨𝑛(𝐿) represents a matrix polynomial in the lag operator, 𝐿.5 The global 𝐺 × 1 factor 𝒇𝑡 follows a VAR process:  
 𝒇𝑡 = 𝑩(𝐿)𝒇𝑡 + 𝑪(𝐿)𝑋𝑡∗ + 𝝃𝑡, (7) 

                                                 
5For a variable 𝒙𝑡, 𝐿𝑙𝒙𝑡: = 𝒙𝑡−𝑙. Moreover, 𝑨𝑛(𝐿): = 𝑨𝑜𝒇𝑡 + 𝑨1𝒇𝑡−1 + 𝑨2𝑓𝑡−2+. . . +𝑨𝑙𝒇𝑡−𝑙 
, where the matrices 𝑨𝑗 have dimension 𝑀 × 𝐺 , for 𝑗 = 0,1, … , 𝑙.  
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where 𝑋𝑡∗  is an aggregation or composite indicator function of {𝑿𝑡(𝑛), 𝑛 ∈ ℕ}  whose 
specification will be taken up later. For the error term we assume  
 𝝃𝑡 ∼ 𝒩(𝟎, Σ𝝃) ∀𝑡 ∈ 𝕋. (8) 

 
This is a novel feature relative to EKS. For the individual country-specific components 

we assume:  
 𝒗𝑡(𝑛) = 𝑫(𝐿)𝒗𝑡(𝑛) + 𝒄𝑡(𝑛) + 𝜺𝑡(𝑛), (9) 

where 𝒄𝑛, 𝑛 ∈ ℕ  represent country-specific effects. Relative to EKS we assume that the 
country-specific effects can be also time-varying. These country-specific effects have the 
following structure:  

 𝒄𝑡(𝑛) = 𝒄𝑡−1(𝑛) + 𝟏𝑀 ⋅ 𝛾𝑏(𝑛)𝐷𝑏,𝑡(𝑛) + 𝜻𝑡(𝑛) ∀𝑡 ∈ 𝕋, ∀𝑛 ∈ ℕ (10) 

 

where 𝐷𝑏,𝑡(𝑛) = 1 if there is a structural break at date 𝑡 for country 𝑛, and zero otherwise. The 

number of breaks we allow is 𝑏 ∈ 𝔹 = {1, … , �̄�} where �̄� ≪ 𝑇. Moreover, 𝟏𝑀 is an 𝑀 × 1 

vector of ones indicating that the structural break(s) occurs simultaneously for all terms in 𝒄𝑡(𝑛)
. 

Although different breaks at different periods can be accommodated econometrically, this 
approach is probably excessive for the number of time series and observations, in most 
applications.  

For the error terms we assume:  

 𝜻𝑡(𝑛) ∼ 𝒩(𝟎, Σ𝜻(𝑛)), 𝜺𝑡(𝑛) ∼ 𝒩(𝟎, Σ𝜺(𝑛)) ∀𝑛 ∈ ℕ. (11) 

 
For the aggregation or compositite indicator function we assume a stochastic weighting 

scheme:  

 𝑋𝑡∗ = ∑ 𝛼𝑡,𝑛𝑛∈ℕ 𝑿𝑡(𝑛) + 𝑢𝑡: = 𝜶𝑡′𝑿(𝑡) + 𝑢𝑡  ∀𝑡 ∈ 𝕋, (12) 

where 𝑿(𝑡): = {𝑋𝑡(𝑛), 𝑡 ∈ 𝕋}, the weights 𝛼𝑡,𝑛 ≥ 0, ∀𝑛 ∈ ℕ and ∑ 𝛼𝑡,𝑛𝑛∈ℕ = 1 ∀𝑡 ∈ 𝕋. The 
weighting scheme assumes that the representation is not exact as we have the error term 𝑢𝑡. 
Dynamics in (12) can be accommodated using an AR(𝑅) process for the error term:  

 𝑢𝑡 = ∑ 𝜌𝑟𝑅
𝑟=1 𝑢𝑡−𝑟 + 𝜖𝑡,  𝜖𝑡 ∼ 𝒩(0, 𝜎𝜖2) ∀𝑡 ∈ 𝕋. (13) 

 
As we explain below, we use 𝑅 = 2. The prior for 𝜌𝑟s is flat across the real line. For the 
weights 𝜶𝑡 = (𝛼𝑡,𝑛, 𝑛 ∈ ℕ) we assume that they are time-varying:  
 𝜶𝑡 = 2𝜶𝑡−1 − 𝜶𝑡−2 + 𝒗𝜶,𝑡, (14) 

where  
 𝒗𝜶,𝑡 ∼ 𝒩𝑛(𝟎, 𝜆2𝑰), ∀𝑡 ∈ 𝕋. (15) 

 
The process in (14) imposes a (spline) non-parametric structure on 𝜶𝑡, which assumes 

that they are smooth (but unknown) functions of time. The control of smoothness, as in splines, 
is controlled by the common parameter 𝜆. This specification has been used by Koop and Poirier 
(2004) and Koop, Poirier, and Tobias (2005), see for example equation (2.2) in the second 
study. The prior emerges from the consideration that given ordered data {𝑥𝑡, 𝑡 = 1, … , 𝑛} we 
seek a function 𝑓(𝑥) so that the following criterion is minimized: 𝑛−1 ∑ (𝑛𝑡=1 𝑥𝑡 − 𝑓(𝑥𝑡))2 +
                                                 
6We have 𝑩(𝐿)𝑓𝑡 = 𝑩1𝒇𝑡−1 + 𝑩2𝒇𝑡−2+. .., and similarly for 𝑪(𝐿) and 𝑫(𝐿) below. 
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𝜆 ∫ 𝑓′′ (𝑥)2𝑑𝑥. The resulting function is a spline (Wahba, 1990, page xiv).  
The parameter is assumed common for simplicity. We do not assume that this parameter 

is specified in advance. In fact, it has a prior of the form:7 

 
�̄�𝜆𝜆2 ∼ 𝜒2(�̄�𝜆), (16) 

where �̄�𝜆 and �̄�𝜆 are set to 0.1 and 1 respectively, so that the prior is vague to allow that it can 
be dominated by the data.  

From (11) it is evident that we must impose structure on the many covariance matrices 

involved. Let us denote generically Σ𝜻(𝑛)
 and Σ𝜺(𝑛)

, 𝑛 ∈ ℕ by Σ(𝑛). Consider the Cholesky 

decomposition Σ(𝑛) = 𝑯(𝑛)′𝑯(𝑛)  and the lower diagonal elements of 𝑯(𝑛)  by the vector 𝒉(𝑛). If the matrices have dimension, say 𝑑 × 𝑑 the vector has dimension 𝑑𝒉 = 𝑑(𝑑+1)2 . To 

address the problem of proliferation of parameters in large systems, we have to impose 
restrictions that these matrices are not too “dissimilar” across countries but, of course, not the 
same. This can be accomplished through the following prior:  

 𝒅𝑛,𝑛′: = 𝒉(𝑛) − 𝒉(𝑛′) ∼ 𝒩𝑑𝒉(𝟎, 𝜔2𝑰) ∀𝑛 ≠ 𝑛′ ∈ ℕ. (17) 
 

Parameter 𝜔 controls the degree of similarity and, like before, we adopt a prior of the 
form:  

 
�̄�𝜔𝜔2 ∼ 𝜒2(�̄�𝜔), (18) 

where �̄�𝜆 and �̄�𝜆 are set to 0.1 and 1 respectively. All univariate scale parameters (like 𝜎𝜀) 
have the same prior.  Ιn practice, we also impose the constraint8 
 ||𝒅𝑛,𝑛′|| ≤ 𝑀∗, (19) 

for some constant large enough, such as 𝑀∗ = 104  which has been found to be satisfied 
always in the applications we examine.  

For the VAR model in (6) suppose for simplicity  
 𝑿𝑡(𝑛) = 𝑨𝑛(𝐿)𝒇𝑡 + 𝒖𝑡(𝑛) = 𝑨𝑜(𝑛)𝒇𝑡 + 𝑨1(𝑛)𝒇𝑡−1 + 𝒗𝑡(𝑛) ∀𝑛 ∈ ℕ, (20) 

 
so that we have a single lag but the current-period factors appear in the VAR. This can be a 
very large system even when the number of indicators, the number of countries and the number 
of factors is quite moderate. This necessitates to deal with the proliferation of these parameters 
in a formal way. EKS deal with the problem along the way of Bai and Ng (2005) who extract 
principal components and then estimate each equation in (20) using OLS. Of course, nothing 
is wrong, in principle, with this way to proceed as it simplifies estimation considerably. The 
problem is that the estimates may have a large variance, thus invalidating testing their null 
hypothesis in a precise way.  

A Bayesian way to deal with the proliferation of parameters is to use a so-called LASSO 
prior (Hans, 2009, Park and Casella, 2008, Tibshirani, 1996) on the parameters of 𝜷𝑨 =vec[𝑨𝑜(𝑛), 𝑨1(𝑛)]. LASSO priors are well-known to result in parsimonious representations and 
better forecasting results. For (9) if 𝑫 = [𝑫1, … , 𝑫𝑙∗], 𝜷𝑫 = vec(𝑫) and similarly for 𝑪 and 𝑩 we can, again, use a LASSO prior to deal with the excessive number of parameters in (9). 
The model in (10) is already comprehensive as it allows for random-walk behavior and a 
number of breaks. We impose an upper limit on the number of breaks, �̄� = 5. For (13) we set 
after some preliminary investigation that 𝑅 = 2 is adequate. Our prior for 𝜎𝜖2 is similar to (16) 

                                                 
7This is, in fact, a gamma prior. Its interpretation is that from a sample of size �̄�𝜆  from 𝒩(0, 𝜆2) we obtain a sum of squares equal to �̄�𝜆.  
8Here, we use the 𝐿∞- norm in ℜ𝑑𝒉. 
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and (18) with the same hyper-parameters.  
Under these conditions the model in (6) along with (7)-(14) can be estimated jointly as 

a system to account for all our assumptions. For example, 𝜷 = [𝜷′𝑨, 𝜷′𝑩, 𝜷′𝑪, 𝜷′𝑫]′ can be 
given a single LASSO prior to account for model selection in both VARs in (6) and (9).  
Lag selection for the polynomials of the lag operators 𝑨(𝐿), 𝑩(𝐿), 𝑪(𝐿)  and 𝑫(𝐿)  is 
performed implicitly through the vector 𝜷 which tends to avoid (and thus putting zero weight 
on) higher lags. We use a maximum of four lags in all cases. The LASSO has been quite 
effective in restricting the number of lags to no more than two, making it unnecessary to embark 
on further model comparison using the unknown combination of number of lags for the four 
matrix polynomials of the lag operator. The LASSO prior has a particularly simple form:  

 𝑝(𝜷) ∝ ∏ exp(dim(𝜷)
𝑗=1 − 𝜆𝜷|𝛽𝑗|). (21) 

 
This is a Laplace distribution for vector 𝜷  depending on the single “smoothing 

parameter” 𝜆𝜷 > 0. In log form we have a penalty function for the parameters, of the form 𝒫(𝜷) = −𝜆𝜷 ∑ |dim(𝜷)𝑗=1 𝛽𝑗| so the larger the parameter the more we want to penalize non-zero 𝛽𝑗s. Our prior for this parameter is exponential:  

 𝑝(𝜆𝜷) = �̄� exp( − �̄�𝜆𝜷). (22) 
 
Setting �̄� = 0.1𝑇−1  the prior expectation of 𝜆𝜷  is 10𝑇  . Alternatively, we may keep the 
parameters 𝜆𝜷, 𝜆2 and 𝜔2  fixed, and choose them to optimize the out-of-sample utility or 
NSR.  

As we are particularly concerned with the linear form of (12) we extend it to allow for 
a semi-parametric approach as follows:  

 
𝑋𝑡∗ = ∑ 𝛼𝑡,𝑛𝑛∈ℕ 𝑋𝑡(𝑛) + 𝑔 ({𝑿𝑡(𝑛), 𝑛 ∈ ℕ}) + 𝑢𝑡≡ 𝜶𝑡′𝑿(𝑡) + 𝑔 ({𝑿𝑡(𝑛), 𝑛 ∈ ℕ}) + 𝑢𝑡  ∀𝑡 ∈ 𝕋, (23) 

where 𝑔(⋅) is an unknown non-linear function of the underlying indicators. A reasonable 
approach is to use an artificial neural network (ANN) function, due to its good global 
approximation properties (Hornik, Stinchcombe, and White, 1989):  

 𝑔 ({𝑋𝑡(𝑛), 𝑛 ∈ ℕ}) = ∑ 𝜑𝐼∗
𝑖=1 (𝑿(𝑡)′𝜷𝑖,1𝐴𝑁𝑁)𝛽𝑖,2𝐴𝑁𝑁, (24) 

 

where, again, 𝑿𝑡: = {𝑋𝑡(𝑛), 𝑛 ∈ ℕ} , and 𝜷𝐴𝑁𝑁: = {𝜷𝑖,1𝐴𝑁𝑁, 𝛽𝑖,2𝐴𝑁𝑁, 𝑖 = 1, . . . , 𝐼∗}  are unknown 

parameters, and 𝐼∗ is the order of the ANN. Parameters 𝜷𝑖𝐴𝑁𝑁 are embedded in the previous 𝜷 vector so that a LASSO prior can be used to impose parsimony restrictions in (24). The 
activation function is 𝜑(𝑧) = tanh( 𝑧), 𝑧 ∈ ℜ  which is commonly used in the literature 
(Cheng and Titterington, 1994).  

Although (6) is standard in the literature, the assumption of linearity in (7) can be put 
into question and affect seriously the results. Suppose  

 [𝑩(𝐿) ⋮ 𝑪(𝐿)] [𝒇𝑡𝑋𝑡∗] = 𝒛𝑡 ∀𝑡 ∈ 𝕋. (25) 
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Then we can modify semi-parametrically (7) as follows9:  

 𝒇𝑡 = Γ𝒛𝑡 + ∑ Φ𝐽∗
𝑗=1 (𝒛𝑡′𝜷𝑗𝒇,1)𝛽𝑗𝒇,2 + 𝜉𝑡,  𝑡 ∈ 𝕋, (26) 

where Φ(⋅) is a vector function consisting of tanh functions of its elements, as in (24). The 
linear terms, viz. Γ𝒛𝑡 correspond exactly to (7), i.e. Γ𝒛𝑡  ≡ 𝑩(𝐿)𝒇𝑡 + 𝑪(𝐿)𝑋𝑡∗. The additional 
terms allow for a semi-parametric specification along the lines of an artificial neural network 
(ANN). For simplicity we have the same ANN order 𝐽∗  and, again, parameters 𝜷𝑗𝒇,1 ∈ℜdim(𝒛𝑡) and 𝛽𝑗𝒇,2 (∀𝑗 = 1, … , 𝐽∗) can be made part of the overall, grand vector 𝜷 with an 
overall LASSO prior as in (21). The functional form of the likelihood / posterior for 
implementing SMC is described in Appendix A. 

4. Empirical analysis 

4.1. Data 

Following EKS we examine three crises:  
i) Currency and banking crises (Kaminsky and Reinhart, 1999). The signals approach 

is first proposed and applied to a total of 76 currency and 26 banking crises in 15 developing 
and 5 industrial countries between 1970 and 1995. 16 different monthly indicators capturing 
monetary stress, vulnerability of the banking sector, prices and competitiveness are employed 
as indicator variables.  

ii) Costly asset price booms (Alessi and Detken, 2011). The study applies the signals 
approach to costly asset price booms in 18 OECD countries. Asset price booms are identified 
by high growth of asset prices in at least four consecutive quarters. High- and low-cost booms 
are distinguished by using deviations from potential growth in the years following the boom. 
Using quarterly data ranging from 1970 to 2007, the authors identify 29 high-cost and 16 low-
cost booms until 2002.  

“89 indicators constructed from different transformations of 18 underlying quarterly 

indicators are used. Because of the confidentiality of equity, housing and aggregate asset 

prices provided by the BIS to Alessi and Detken, we are only able to use 15 of these 18 

variables. Since some transformations are based on multivariate systems, we are limited to a 

total of 50 instead of 89 different indicators. Most of the 15 underlying indicators are available 

from the OECD Economic Outlook and Main Economic Indicators; domestic credit can be 

found in the IMF’s International Financial Statistics (IFS); private credit, corrected for 
structural breaks, was provided by the authors” (El-Shagi, Knedlik, and von Schweinitz, 2013, 
p. 81).  

iii) Public debt crises in Europe (Knedlik and von Schweinitz, 2012) is on the European 
debt crisis. It analyzes 11 countries in the European Monetary Union (EMU), from the 
introduction of the Euro until November 2011. A public debt crisis is defined using the spreads 
of government bond yields over the yield of the average AAA-rated country in the EMU. “A 
total of 20 monthly indicators out of five different categories (fiscal indicators, competitiveness 
and domestic demand, asset prices, labor, private and foreign debt) are used. All of them are 
publicly available from EuroStat, ECB, the OECD Main Economic Indicators, the IMF’s IFS 
and Morgan Stanley Capital International (MSCI). Because [of] data availability requirements 
[...] we can only use 17 of the originally proposed indicators” (El-Shagi, Knedlik, and von 

                                                 
9As we have Gaussian hidden units, global approximation results are provided by Hartman, 
Keeler and Kowalski (1990). 
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Schweinitz, 2013, p.81).  

4.2. Statistical inference and results 

The model in the previous section (6)-(13) along with the prior distributions is estimated using 
Markov Chain Monte Carlo (MCMC) organized around Sequential Monte Carlo (or Particle 
Filtering) techniques (Doucet, Godsill, and Andrieu, 2000, Fearnhead and Clifford, 2003, and 
Lopes and Tsay, 2011 for a review). These techniques deal effectively with the underlying 
dynamics of unobserved factors, especially in the case of the non-linear models in (24) and 
(26). Such models can be estimated using standard techniques such as the Gibbs sampler (e.g. 
Tierney, 1994) but such techniques are known to converge very slowly for our purposes.10  

Our Sequential Monte Carlo method is described in Technical Appendices A and B. 
We use 15,000 MCMC iterations omitting the first 5,000 to mitigate start up effects and 107 
particles. Convergence of MCMC was tested successfully by visual means as well as using 
Geweke’s (1992) diagnostic. 

 When the indicators are on a common scale (say logs in standard units -with mean 
subtracted and divided by the standard deviation) the assumption of a common threshold 𝜏 is, 
probably, more appropriate. Thus, we have one parameter (𝜏) that can be used in optimizing 
out-of-sample utility or NSR. The other parameters can be 𝜆, 𝜔 and 𝜆𝜷 although it is more 
reasonable to try vague priors as in (16), (18) and (22). Moreover, we can have linear or semi-
parametric models as in (24) and (23). In this respect it is more reasonable to start from (24) 
and (23) and let the data decide whether the parsimony of linear models is justified in terms of 
out-of-sample utility or NSR. The procedure can be made fully automatic if we “endogenize” 𝜏 so that all models and parameters can be estimated at once. The prior for 𝜏 is  
 𝑝(𝜏) ∝ 𝕀[𝑎,𝑏](𝜏), (27) 

 
where 𝑎 and 𝑏 are set to 10th and 90th sample percentiles of the variables involved when they 
are standardized so that their minimum is 0 and their maximum is 1. As the prior is flat 
imposition of prior information is minimal. The utilities are calculated for 𝜃 = 0.5. For the 
results of Alessi and Detken (2011), we choose 𝜃 = 0.4 in line with these authors. This is a 
reasonable value to balance the costs of Type I and Type II errors.  

The mapping from the parameter vector of utility or NSR is highly non-linear but, in 
the context of SMC and MCMC, for each parameter draw we can compute easily utility or 
NSR. These measures are, in turn, averaged over the posterior draws to produce draws for 
utility or NSR themselves. The problem is (i) what is the posterior probability that a particular 
indicator is included, and (ii) whether it is included in a linear or non-linear way.  

The results for currency and banking crises are reported in Table 2. For the costly asset 
price boom are reported in Table 3. In Table 4 we report results for the debt crisis. A formal 
evaluation of spurious predictive power is undertaken in section 6.  
 

PLEASE INSERT TABLES 2, 3 AND 4 AROUND HERE 

 

For the most part, the results of EKS are confirmed using our approach although our 
models end up being quite parsimonious. Non-linearities through the semi-parametric 

                                                 

10 All computations are performed in Fortran 77 making extensive use of netlib and IMSL software libraries. The 
platform is an Intel® CoreTM i9 – 7900X CPU @ 3.30 GHz, RAM 32 GB running Windows 10 and the gnu compiler 
for Fortran 77. With 15,000 MCMC iterations omitting the first 5,000 to mitigate start up effects and 107 particles 
computations take, on the average, 38.77 minutes of CPU time. 
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specifications in (24) and (23) prevail for certain variables although this is clearly not 
universally true. Posterior distributions of out-of-sample utility and NSR are presented in 
Figures 1 and 2. These figures are constructed using the out-of-sample draws for utility and 
NSR of the Composite Indicator.  

 
PLEASE INSERT FIGURES 1 AND 2 AROUND HERE 

 
The posterior distributions of out-of-sample utility and NSR show that the indicator 

variables and the Composite Indicator are quite useful from a Bayesian perspective, coupled 
with the semi-parametric specifications and the priors that we have used. Compared to EKS 

the reduction in NSR is considerable owing to the model-selection priors. Posterior statistics 
for important parameters are reported in Table 5.  

 
PLEASE INSERT TABLE 5 AROUND HERE 

 

4.3 Sensitivity analysis 

The standard argument against any Bayesian analysis is, of course, the specific use of 
priors. In this sub-section we address this concern by varying the fundamental hyperparameters 
of our model. Hyperparameters �̄�𝜆  and �̄�𝜔  in (16) and (18) are varied uniformly in the 
interval (0.1, 10). For the same priors, hyperparameters �̄�𝜆 and �̄�𝜔 are varied uniformly in the 
interval (0.01, 10). Hyperparameter �̄� in (22) is varied uniformly between 0.1𝑇−1 and 2𝑇−1. 
We consider 1,000 different configurations11 and we repeat the SMC procedure taking 10,000 
iterations away from the converged results using the baseline prior. To minimize computational 
effort, we use 105 particles. For selected configurations the results were virtually identical 
with 107 particles.  

In Tables 6a and 6b we report absolute percentage changes in key summaries of the 
posterior distributions of utility and NSR, respectively, for the different data sets. The absolute 
percentage changes are relative to posterior means using the baseline prior. These percentage 
changes refer to all 1,000 alternative prior configurations. 

Evidently the changes are minor, if not trivial, testifying that the data dominate our 
baseline priors: Only trivial changes in utility or NSR are observed if we change the prior 
configuration.  

 
PLEASE INSERT TABLES 6a AND 6b AROUND HERE 

 

5. Spurious predictive power? 

As in Kaminsky (2006) and EKS, we use banking crises as an additional indicator for currency 
crises along with currency crises as an indicator for banking crises. The test of in-sample 
performance is based on the entire Kaminsky (2006) dataset. As in EKS, to assess out-of-
sample performance we produce recursive crisis forecasts for the period January 1996 to June 
2003. In Alessi and Detken (2011), the authors used quarterly data from 1970 to 2007, and 
identified 29 high-cost and 16 low-cost booms until 2002. As in EKS, we use the period 
2002.Q2 – 2007.Q4 for out-of-sample prediction. 

                                                 
11 The number of alternative configurations is set to 1,000 to minimize computational effort without sacrificing 
thorough sensitivity analysis. 



12 
 

Knedlik and von Schweinitz (2012), focus on the European debt crisis and analyze 11 countries 
in the European Monetary Union, from the introduction of the Euro until November 2011. 
Since the crises are near the end of the sample, we follow EKS in performing out-of-sample 
analysis along the cross-sectional dimension. 
To study spurious predictive power, possibly due to idiosyncrasies caused by in-sample fit, we 
re-estimate the models under leave-one-observation-out scenarios, where observations 
correspond to crises (Kaminsky, 2006 and Alessi and Detken, 2011) or countries (Knedlik and 
von Schweinitz, 2012). 
Instead of using the bootstrap, we rely on the predictive distribution. Given data 𝑿1:𝑇 observed 
in the period 1 to T, latent variables 𝜦1:𝑇 and other time-invariant parameters 𝜽, suppose we 
need to predict an observation 𝑿𝑜  which has not been used in estimation. The predictive 
distribution is:  

 𝑝(𝑿𝑜|𝑿1:𝑇) = ∫ 𝑝(𝑿𝑜 , 𝜦1:𝑇 , 𝜽|𝑿1:𝑇)𝑑𝜦1:𝑇𝑑𝜽, (28) 

 
which we can re-write as: 

 𝑝(𝑿𝑜|𝑿1:𝑇) = ∫ 𝑝(𝑿𝑜|𝜦1:𝑇 , 𝜽, 𝑿1:𝑇)𝑝(𝜦1:𝑇 , 𝜽|𝑿1:𝑇)𝑑𝜦1:𝑇𝑑𝜽. (29) 

 

Provided we have access to the posterior and thus we have draws {𝜦1:𝑇(𝑠) , 𝜽(𝑠), 𝑠 = 1, … , 𝑆} 

from the distribution whose density is 𝑝(𝜦1:𝑇, 𝜽|𝑿1:𝑇), an accurate approximation to the 
posterior predictive density is: 

 𝑝(𝑿𝑜|𝑿1:𝑇) ≅ 𝑆−1 ∑ 𝑝(𝑿𝑜|𝜦1:𝑇(𝑠) , 𝜽(𝑠), 𝑿1:𝑇).𝑆𝑠=1  (30) 

From the decomposition 𝒑(𝜦𝟏:𝑻, 𝜽|𝑿𝟏:𝑻) ∝ 𝒑(𝜦𝟏:𝑻|𝜽, 𝑿𝟏:𝑻)𝒑(𝜽|𝑿𝟏:𝑻), the latent variables can 
be drawn conditionally on the parameters, and the parameters can be drawn using the 
Metropolis-Hastings algorithm described in Technical Appendix B. For this approximation, we 
do not even need to apply MCMC again as the existing samples can be re-weighted to 
approximate the new posterior using sampling-importance-resampling (SIR). The length of the 
re-sample is set to 3,000. Moreover, 𝒑(𝑿𝒐|𝜦𝟏:𝑻, 𝜽, 𝑿𝟏:𝑻), is available in closed form, due to 
our normality assumptions. 

For normal data, 𝑳𝑷𝑺𝒐 = 𝒍𝒐𝒈𝒑(𝑿𝒐|𝑿𝟏:𝑻) behaves like minus a mean squared error and is 
known as log predictive score (LPS, Geweke and Amisano, 2010, 2011). Suppose 𝑿∗ is an 
observation whose LPS is maximum relative to all other observations in the full sample, and 
let 𝑳𝑷𝑺∗ = 𝒍𝒐𝒈𝒑(𝑿∗|𝑿𝟏:𝑻). We define the relative log predictive score as: 

 𝑅𝐿𝑃𝑆 = 𝐿𝑃𝑆𝑜 − 𝐿𝑃𝑆∗. (31) 
 
If an observation 𝑿𝑜 can be predicted with relative accuracy, then RLPS should not be too 
different from zero and, in fact, the relative predictive score: 
 
 𝑅𝑃𝑆 = exp(𝐿𝑃𝑆𝑜 − 𝐿𝑃𝑆∗) (32) 

 
provides evidence in favor of the hypothesis that an observation 𝑿𝑜 can be predicted equally 
well compared to the most-well-predicted observation in the full sample. Since RPS is a ratio 𝑅𝑃𝑆 < 1  is evidence against predictability whereas 𝑅𝑃𝑆 > 1  supports predictability. 
Choosing the observation whose LPS is maximum relative to all other observations in the full 



13 
 

sample is, perhaps, too restrictive. An alternative is to use: 
 

 𝐿𝑃𝑆𝑎 = 𝑇−1 ∑ 𝑙𝑜𝑔𝑝(𝑿𝑡|𝑿𝑠=1,…,𝑇,𝑠≠𝑡)𝑇𝑡=1 , (33) 

 
which is the average log predictive score in the full sample (so it is designed to provide an in-
sample measure of fit to compare with out-of-sample accuracy). In turn, we can define a 
modified RPS as 𝑅𝑃𝑆 = exp(𝐿𝑃𝑆𝑜 − 𝐿𝑃𝑆𝑎) . Observations with 𝑅𝑃𝑆 < 1  cannot be 
predicted as well as in-sample observations whereas observations with 𝑅𝑃𝑆 ≥ 1  can be 
predicted at least as better than observations in the estimation sample.  
We compare the predictive performance of the latent summary indicator in (12) and (26) using 
this out-of-sample construction. If the summary indicator performs well by chance or because 
of spurious dependencies, then RPS should be much lower than 0.32 or 0.37. Whenever RPS 
exceeds, roughly, 2.71 or 3.16, this12 would provide overwhelming evidence in favor of out-
of-sample performance despite relatively poor in-sample performance. Although rare, this 
finding cannot be precluded on a priori grounds. 

In Table 7, we report the range and median value of RPS for each of the three different 
datasets for the linear and nonlinear models. Evidently, for the linear models, RPS is very close 
to zero for all data sets, indicating that such models fall short of expectations regarding 
predictive power. The nonlinear models perform better as median RPS are 0.73 for currency 
crises, 0.65 for banking crises and 0.87 for asset price booms. These values are well within the 
bounds we discussed before. The minimum values of RPS are less than the bounds showing 
that certain crises cannot be predicted. This is not unexpected as a model cannot do a perfect 
job in terms of prediction. Therefore, we compute also the 5% quantiles for RPS which are 
0.39, 0.41 and 0.44 respectively for nonlinear models. For linear models the 5% quantiles are 
still quite small. In this sense, the nonlinear models perform out-of-sample as well as within-
sample and, therefore, predictive power is not spurious. This provides, in turn, direct evidence 
that the results reported in section 4 are not spurious. 
 

PLEASE INSERT TABLE 7 AROUND HERE 

 
A more stringent test of predictive power due to possibly spurious correlations is 

provided by comparing directly the in-sample and out-of-sample posterior distributions of 
utility and NSR. If the in-sample and predictive distributions are quite different, then we have 
evidence that the in-sample fit does not assure good predictive performance. In econometrics, 
this is quite common but the question here is whether we can trust the in-sample results from 
the predictive perspective. Additionally, we provide posterior predictive densities of utility and 
NSR which are of fundamental interest in predicting crises. Our results are reported in Figures 
3 and 4 for utility and NSR respectively. A direct comparison with Figures 1 and 2 shows that 
in terms of location and spread, the in-sample and predictive posteriors are not very different 
although, of course, they differ somewhat in terms of shape. This suggests that, roughly, the 
posteriors are not very different and, therefore, we cannot attribute predictive ability to pure 

chance or spurious in-sample correlations. Under spurious in-sample correlations the in-
sample and predictive posterior densities of utility and NSR should have been quite different. 
 

PLEASE INSERT FIGURES 3 AND 4 AROUND HERE 

 

                                                 
12 According to Kass and Raftery (1994) these bounds should be 1/𝑒 ≅ 0.37 and 𝑒 ≅ 2.71. However, these 
bounds apply to Bayes factors. Here, they are used as rough bounds to determine the “significance” of RPS. 
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6. Conclusion  

In this paper we use a Bayesian approach to early warning mechanisms. We allow for 
dynamics, variable selection through LASSO, and time-varying coefficients in the crisis 
indicator. We provide a Bayesian model and we test the effectiveness of the signals approach 
in three data sets: i) Currency and banking crises for 76 currency and 26 banking crises in 15 
developing and 5 industrial countries between 1970 and 1995, ii) costly asset price booms using 
quarterly data (1970 - 2007), and iii) public debt crises in 11 countries in the European 
Monetary Union  from the introduction of the Euro until November 2011. The Bayesian model 
relies on a vector autoregression for indicator variables, and incorporates dynamic factors, 
time-varying weights in the latent composite indicator and special priors to avoid the 
proliferation of parameters. Our EWM is, essentially, a dynamic latent variable that 
summarizes all relevant information from the model to predict a crisis. This is a novel approach 
and works quite well in practice. We find that non-linear models perform better in terms of 
predictive ability using formal Bayes techniques organized around posterior predictive 
distributions and log predictive scoring for measures associated with crisis forecasting (utility 
and signal-to-noise ratio). 

The so-called signals approach has certain characteristics compared to traditional early 
warning systems. In this work, we augmented previous applications of signals and early 
warning mechanisms with a Bayesian approach, extended to a semi-parametric context to 
capture non-linearities in economic time series. For all applications considered, we found that 
the major previous findings are indeed valid but with a more parsimonious approach, whereas 
the applications showed that non-linear models are quite successful as early-warning systems, 

when linear models - even after allowing for breaks - are not so successful. According to our 
findings, the proposed model is fully capable of capturing the non-linear crises episodes in a 
timely manner. Therefore, our approach could be thought of as EWM for crisis detection, which 
in turn could have important policy implications. In brief, the early identification of bubbles is 
of outmost importance for policy makers and central bankers as it could prevent: (i) the 
potential collapse of an economy or an economic sector through regulatory interventions in the 
relevant markets; (ii) the catastrophic spillover effects in the national or global economy 
through interest / exchange rate setting.  

Constructing indicators and signals that can provide an EWM is, subsequently, of 
considerable importance for policy authorities, systemic banks and other authorities like central 
banks and could be a fruitful topic for further investigation. We find it particularly interesting 
that a semi-parametric Bayesian approach that allows for breaks, potential non-linearities, and 
a latent variable approach to crisis detection is successful in out-of-sample detection of crises. 
Natural by-products of our analysis include posterior distributions of utility and noise-to-signal 
ratio which summarize all statistical uncertainty about these quantities. As a Bayesian 
extension of the signals approach in EKS, the new model is more flexible and more easily 
adaptable to specific applications through both the specification of the underlying VAR as well 
as the priors used. The dynamic latent variable for crisis detection is a useful summary of the 
model that does not sacrifice the inherent ability of the signals approach to detection of crises. 
Another novel feature of our approach is that the weights in the dynamic latent variable 
signaling a crisis are estimated from the data so that their relative importance is “endogenized”. 
Naturally, a number of indicators is found to perform poorly in terms of crisis detection. 
However, the ones that perform well are easy to determine via the optimal weighting scheme 
as well as by using the flexible neural networks specification of the composite indicator. 
Therefore, we can allow for very general forms of nonlinearity in predicting crises.  

As the underlying model is based on a Factor-Augmented Panel Vector Autoregression 
(FA-PVAR) with a LASSO prior to prohibit proliferation of parameters, several aspects of the 
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model are easy to modify or extend in a modular way. A possible extension of great interest 
would be to “endogenize” the selection of thresholds for the underlying economic and financial 
indicators but also the critical parameter 𝜃 that is conventionally set by the user in the signals 
approach. This can provide substantial benefits in terms of utility (balancing type I and II 
errors) or NSR. As our model is semi-parametric flexible nonlinear components can be easily 
introduced in the composite indicator which, to the best of our knowledge, is a novel feature 
relative to the existing literature. The relative success of the new model over non-parametric 
approaches based on the bootstrap (as in EKS) owes much to the LASSO priors used in the 
basic FA-PVAR and the hierarchical modelling treatment of the various large covariance 
matrices involved in the model. Our sensitivity analysis showed that “parsimony priors” 
imposed on the various blocks of parameters did not affect the reported results in any 
substantial way. Therefore, another potentially fruitful avenue for future research might be an 
empirical Bayes approach to select the priors in advance, based on sample information, rather 
than perform sensitivity analysis. This, clearly, has both attractive and negative aspects but it 
might prove a more operational approach provided that it works. 
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TECHNICAL APPENDIX A. Derivation of likelihood / 

posterior 
 
We summarize the model below. 
Conditional on 1 ≤ 𝐺 < 𝑛 global factors 𝒇𝑡 we have:  
 𝑿𝑡(𝑛) = 𝑨𝑛(𝐿)𝒇𝑡 + 𝒗𝑡(𝑛),  ∀𝑛 ∈ ℕ, (A.1) 

 
For the error term we assume:  
 𝝃𝑡 ∼ 𝒩(0, Σ𝝃) ∀𝑡 ∈ 𝕋. (A.2) 

 
For the individual country-specific components we assume:  
 𝒗𝑡(𝑛) = 𝑫(𝐿)𝒗𝑡(𝑛) + 𝒄𝑡(𝑛) + 𝜺𝑡(𝑛), (A.3) 

These country-specific effects have the following structure:  

 𝒄𝑡(𝑛) = 𝒄𝑡−1(𝑛) + 𝟏𝑀 ⋅ 𝛾𝑏(𝑛)𝐷𝑏,𝑡(𝑛) + 𝜻𝑡(𝑛) ∀𝑡 ∈ 𝕋, ∀𝑛 ∈ ℕ (A.4) 

 

where 𝐷𝑏,𝑡(𝑛) = 1 if there is a structural break at date 𝑡 for country 𝑛, and zero otherwise.  

For the error terms we assume:  

 𝜻𝑡(𝑛) ∼ 𝒩(𝟎, Σ𝜻(𝑛)), 𝜺𝑡(𝑛) ∼ 𝒩(𝟎, Σ𝜺(𝑛)) ∀𝑛 ∈ ℕ. (A.5) 

 
For the aggregation function we have a stochastic weighting scheme:  

 𝑋𝑡∗ = ∑ 𝛼𝑡,𝑛𝑛∈ℕ 𝑋𝑡(𝑛) + 𝑢𝑡: = 𝜶𝑡′𝑿(𝑡) + 𝑢𝑡  ∀𝑡 ∈ 𝕋, (A.6) 

where 𝑿(𝑡): = {𝑋𝑡(𝑛), 𝑡 ∈ 𝕋} , the weights 𝛼𝑡,𝑛 ≥ 0, ∀𝑛 ∈ ℕ  and ∑ 𝛼𝑡,𝑛𝑛∈ℕ = 1 ∀𝑡 ∈ 𝕋 . 
Dynamics in (12) can be accommodated using an AR(𝑅) process for the error term:  
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 𝑢𝑡 = ∑ 𝜌𝑟𝑅
𝑟=1 𝑢𝑡−𝑟 + 𝜖𝑡,  𝜖𝑡 ∼ 𝒩(0, 𝜎𝜖2) ∀𝑡 ∈ 𝕋. (A.7) 

 
For the weights 𝜶𝑡 = (𝛼𝑡,𝑛, 𝑛 ∈ ℕ) we assume that they are time-varying:  
 𝜶𝑡 = 2𝜶𝑡−1 − 𝜶𝑡−2 + 𝒗𝜶,𝑡, (A.8) 

where  
 𝒗𝜶,𝑡 ∼ 𝒩𝑛(𝟎, 𝜆2𝑰), ∀𝑡 ∈ 𝕋. (A.9) 

 
We derive the posterior for date t as we will apply SMC to compute the likelihood / posterior. 
 
From (6) and (9) we have: 𝑿𝑡(𝑛) − 𝑫(𝐿)𝑿𝑡(𝑛) = (𝑰 − 𝑫(𝐿))𝑨𝑛(𝐿)𝒇𝑡 + 𝒄𝑡(𝑛) + 𝜺𝑡(𝑛),  ∀𝑛 ∈ ℕ.          (A.10) 
Therefore 𝑝(𝑿𝑡(𝑛)|𝑿𝑡,𝑙𝑎𝑔𝑠(𝑛) , 𝒇𝑡 , 𝒄𝑡(𝑛), 𝜽) ∝ |Σ𝜺(𝑛)|−12 exp (− 12  𝑼𝑡(𝑛)′𝜮𝜀−1𝑼𝑡(𝑛)),      (A.11) 

where 𝑿𝑡,𝑙𝑎𝑔𝑠(𝑛)
 denotes lagged values of 𝑿𝑡(𝑛)

 and 𝜃 denotes the “structural” parameters in 

the following matrices / vectors / scalars: 𝑫, {𝑨𝑛}, 𝜮𝜺, 𝑩, 𝑪, 𝜎𝜀2, 𝝆, 𝜆, {𝛾𝑏(𝑛)}, 𝜮𝜻 , 

and 𝑼𝑡(𝑛) = 𝑿𝑡(𝑛) − 𝑫(𝐿)𝑿𝑡(𝑛) − (𝑰 − 𝑫(𝐿))𝑨𝑛(𝐿)𝒇𝑡 − 𝒄𝑡(𝑛)
.            (A.12) 

If we define 𝑿(𝑡) = [𝑿𝑡(𝑛), ∀𝑛 ∈ ℕ], we have 𝑝(𝑿(𝑡)|𝑿𝑙𝑎𝑔𝑠(𝑡) , 𝒇𝑡, {𝒄𝑡(𝑛), ∀𝑛 ∈ ℕ}, 𝜽) = ∏ 𝑝(𝑿𝑡(𝑛)|𝑿𝑡,𝑙𝑎𝑔𝑠(𝑛) , 𝒇𝑡, 𝒄𝑡(𝑛), 𝜃).𝑛∈ℕ      (A.13) 

From (7) we obtain: 𝑝(𝒇𝒕|𝒇𝑡,𝑙𝑎𝑔𝑠, 𝑋𝑡∗, 𝜽) ∝ |𝜮𝝃|−𝑛2 exp (− 12  ∑ 𝑼𝑓𝑡(𝑛)′𝜮𝝃−1𝑼𝑓𝑡(𝑛)𝑛∈ℕ ),            (A.14) 

where 𝑼𝑓𝑡(𝑛) = [𝑰 − 𝑩(𝐿)]𝒇𝑡 − 𝑪(𝐿)𝑋𝑡∗. 

From (12) we obtain: 𝑝(𝑋𝑡∗|𝜶𝑡 , 𝑋𝑡,𝑙𝑎𝑔𝑠∗ , 𝑿(𝑡) , 𝜽) ∝ 𝜎𝜀−1 exp (− 12𝜎𝜀2 [𝑋𝑡∗ − 𝜶𝑡′ 𝑋(𝑡) − 𝜌(𝐿)𝑿𝑡∗ + 𝜌(𝐿)𝜶𝑡′ 𝑿(𝑡)]), (A.15) 

where 𝜌(𝐿) represents the lag polynomial in (13). 
From (14) and (15) 𝑝(𝜶𝑡|𝜶𝑡,𝑙𝑎𝑔𝑠, 𝜆) ∝ 𝜆−𝑛2 exp (− 12𝜆2 ∑ [𝛼𝑡,𝑛−2𝛼𝑡−1,𝑛+𝛼𝑡−2,𝑛]2𝑛∈ℕ ).          (A.16) 

From (10) we obtain: 𝑝(𝒄𝑡(𝑛)|𝒄𝑡,𝑙𝑎𝑔𝑠(𝑛) , 𝛾𝑏(𝑛), 𝐷𝑏,𝑡(𝑛), 𝜮𝜻(𝑛)) ∝ |𝜮𝜻(𝑛)|−12 exp (− 12 𝑼𝑐𝑡(𝑛)′𝛴𝜁−1𝑼𝑐𝑡(𝑛)),     (A.17) 

where 𝑼𝑐𝑡(𝑛) = 𝒄𝑡(𝑛) − 𝒄𝑡−1(𝑛) − 𝟏𝑀𝛾𝑏(𝑛)𝐷𝑏,𝑡(𝑛)
. Suppose 𝒄(𝑡) = [𝒄𝑡(𝑛)  ∀𝑛 ∈ ℕ]. Then, we have: 𝑝(𝒄(𝑡)|𝒄(𝑡,𝑙𝑎𝑔𝑠), {𝛾𝑏(𝑛) ∀𝑛 ∈ ℕ}, {𝐷𝑏,𝑡(𝑛) ∀𝑛 ∈ ℕ}, {𝜮𝜻(𝑛) ∀𝑛 ∈ ℕ}) ∝∏ 𝑝(𝒄𝑡(𝑛)|𝒄𝑡,𝑙𝑎𝑔𝑠(𝑛) , 𝛾𝑏(𝑛), 𝐷𝑏,𝑡(𝑛), 𝜮𝜻(𝑛))𝑛∈ℕ .                   (A.18) 

The likelihood function is ℓ(𝜃; 𝒀(𝑡), 𝜦𝑡) ∝ 𝑝(𝑿(𝑡)|𝑿𝑙𝑎𝑔𝑠(𝑡) , 𝒇𝑡 , {𝒄𝑡(𝑛), ∀𝑛 ∈ ℕ}, 𝜃) ∙ 𝑝(𝒇𝒕|𝒇𝑡,𝑙𝑎𝑔𝑠, 𝑋𝑡∗, 𝜃) ∙ 𝑝(𝑋𝑡∗|𝜶𝑡, 𝑋𝑡,𝑙𝑎𝑔𝑠∗ , 𝑿(𝑡) , 𝜃) 
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∙ 𝑝(𝜶𝑡|𝜶𝑡,𝑙𝑎𝑔𝑠, 𝜆)𝑝(𝒄(𝑡)|𝒄(𝑡,𝑙𝑎𝑔𝑠), {𝛾𝑏(𝑛) ∀𝑛 ∈ ℕ}, {𝐷𝑏,𝑡(𝑛) ∀𝑛 ∈ ℕ}, {𝜮𝜻(𝑛) ∀𝑛 ∈ ℕ}), (A.19) 

where all densities have been defined above up to normalizing constants and 𝒀(𝑡) denotes all 
available data up to time 𝑡. 
To compute the likelihood, we have to integrate out the latent variables 𝜦𝑡 = {𝒇𝑡, 𝜶𝑡, 𝒄𝑡 ∀𝑡 ∈𝕋}. The latent variables are integrated out using SMC – particle-filtering. Therefore, we can 
obtain a consistent (as the number of particles increases) estimator of ℓ(𝜃; 𝒀(𝑡)). The overall 
posterior density is 𝑝(𝜽|𝒀) = 𝑝(𝜽) ∙ ∏ ℓ(𝜽; 𝒀(𝑡))𝑡∈𝕋 ,                             (A.20) 

where 𝑝(𝜽) is the prior, and 𝒀 = {𝒀(𝑡)  ∀𝑡 ∈ 𝕋}.  

To implement MCMC we use ℓ(𝜽; 𝒀(𝑡), 𝜦𝑡) treating 𝜦𝑡 as a block. Moreover, parameters 𝜽 
are drawn using the MCMC described in Appendix B.  
It remains to determine the number of factors G and the structural breaks. Given the dates of 
structural breaks we compute the posterior 𝑝(𝜽|𝒀) for several values of 𝐺 ∈ {1, … , �̅�}, 
where  �̅� is set to 5. In turn, we compute the marginal likelihood 𝑝(𝒀|𝐺) which is a by-
product of MCMC. 
 
Procedure DBR: Determination of Breaks 

 
To determine the dates of structural breaks we proceed as follows. The number of breaks we 
allow is 𝑏 ∈ 𝔹 = {1, … , �̄�} where �̄� ≪ 𝑇. We need to determine whether 𝐷𝑏,𝑡 = 1 or zero 
for a given date 𝑡∗. We compute the marginal likelihood for 𝑡∗ ∈ {𝑇𝑜 , 𝑇𝑜 + 1, … , 𝑇} where 𝑇𝑜 > 1 is the minimal starting value for t given our lag structure and the maximum value of 
the marginal likelihood determines 𝑡∗. Then we apply SMC again, to determine two dates 𝑡1∗ < 𝑡2∗ and we recompute the marginal likelihood. If it is lower than the marginal likelihood for a 
single break at 𝑡∗ we stop, otherwise we move on to the case of three breaks 𝑡1∗ < 𝑡2∗ < 𝑡3∗. In 
all cases we examined, we have one or two breaks. This procedure, determines simultaneously 
the optimal number of factors 𝐺 as well and the timings of breaks. 
 
Below we provide pseudo code that implements the approach. 
 
Table A1. Pseudo Code 

__________________________________________________________________________ 
 

1) For 𝐺 = {1, … , �̅�} do: 
2) Determine number of breaks and their timings using procedure DBR above. 
3) Integrate out the latent variables, {𝜦𝑡, 𝑡 = 1, … , 𝑇}, as a block using SMC following 

the steps in Table B1. 
4) Obtain an unbiased estimator of 𝑝(𝜽|𝒀) in (A.20). 
5) Use MCMC to obtain draws {𝜽(𝑠), 𝑠 = 1, … , 𝑆}  from (A.20) using the Particle 

Metropolis-adjusted algorithm in (B.17) – (B.17). 
6) Increase 𝐺 by one, until the marginal likelihood falls. 

___________________________________________________________________________ 
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TECHNICAL APPENDIX B 

Particle filtering 

The particle filter methodology can be applied to state space models of the form:  
 𝑦𝑇 ∼ 𝑝(𝑦𝑡|𝑠𝑡), 𝑠𝑡 ∼ 𝑝(𝑠𝑡|𝑠𝑡−1), (B.1) 

 
where 𝑠𝑡 is a state variable. For general introductions see Andrieu et al. (2010, pp. 272, 277), 
Gordon et al. (1993), Doucet et al. (2001) and Ristic et al. (2004). Given the data 𝑌𝑡  the 
posterior disribution 𝑝(𝑠𝑡|𝑌𝑡)  can be approximated by a set of (auxiliary) particles {𝑠𝑡(𝑖), 𝑖 = 1, . . . , . 𝑁} with probability weights {𝑤𝑡(𝑖), 𝑖 = 1, . . . , 𝑁} where ∑ 𝑤𝑡(𝑖)𝑁𝑖=1 = 1. The 

predictive density is approximated by  

 

𝑝(𝑠𝑡+1|𝑌𝑡) = ∫ 𝑝 (𝑠𝑡+1|𝑠𝑡)𝑝(𝑠𝑡|𝑌𝑡)𝑑𝑠𝑡≃ ∑ 𝑝𝑁
𝑖=1 (𝑠𝑡+1|𝑠𝑡(𝑖))𝑤𝑡(𝑖), (B.2) 

 

where 𝑤𝑡(𝑖) = 𝑝(𝑠𝑡(𝑖)|𝑌𝑡)∑ 𝑝(𝑠𝑡(𝑗)|𝑌𝑡) 𝑁𝑗=1 . 
An approximation for the filtering density is  

 

𝑝(𝑠𝑡+1|𝑌𝑡) ∝ 𝑝(𝑦𝑡+1|𝑠𝑡+1)𝑝(𝑠𝑡+1|𝑌𝑡)≃ 𝑝(𝑦𝑡+1|𝑠𝑡+1) ∑ 𝑝𝑁
𝑖=1 (𝑠𝑡+1|𝑠𝑡(𝑖))𝑤𝑡(𝑖). (B.3) 

 

Particle filtering propagates {𝑠𝑡(𝑖), 𝑤𝑡(𝑖), 𝑖 = 1, … , 𝑁}  to the next step, viz. {𝑠𝑡+1(𝑖) , 𝑤𝑡+1(𝑖) , 𝑖 =1, … , 𝑁} but this often suffers from a weight degeneracy problem. If parameters 𝜽 ∈ Θ ∈ ℜ𝑘 

are available, as is often the case, we follow Liu and West (2001). In this context, parameter 
learning takes place via a mixture of multivariate normal distributions:  

 𝑝(𝜽|𝑌𝑡) ≃ ∑ 𝑤𝑡(𝑖)𝑁
𝑖=1 𝑁(𝜽|𝑎𝜽𝑡(𝑖) + (1 − 𝑎)�̄�𝑡, 𝑏2𝑉𝑡), (B.4) 

where �̄�𝑡 = ∑ 𝑤𝑡(𝑖)𝑁𝑖=1 𝜽𝑡(𝑖)
, and 𝑉𝑡 = ∑ 𝑤𝑡(𝑖)𝑁𝑖=1 (𝜽𝑡(𝑖) − �̄�𝑡)(𝜽𝑡(𝑖) − �̄�𝑡)′. The constants 𝑎 and 

b are related to shrinkage and are determined via a discount factor 𝛿 ∈ (0,1) as 𝑎 = (1 −𝑏2)1/2  and 𝑏2 = 1 − [(3𝛿 − 1)/2𝛿]2.  See also Casarin and Marin (2007). Andrieu and 
Roberts (2009), Flury and Shephard (2011) and Pitt et al. (2012) suggested the Particle 
Metropolis-Hastimgs (PMCMC) technique which uses an unbiased estimator of the likelihood 
function �̂�𝑁(𝑌|𝜽) as 𝑝(𝑌|𝜽) as the latter is often not available in closed form. Given the 
current state of the parameter 𝜽(𝑗)  and the current estimate of the likelihood, say 𝐿𝑗 =�̂�𝑁(𝑌|𝜽(𝑗)), a candidate 𝜽𝑐 is drawn from 𝑞(𝜽𝑐|𝜽(𝑗)) yielding 𝐿𝑐 = �̂�𝑁(𝑌|𝜽𝑐) . Then, we set 𝜽(𝑗+1) = 𝜽𝑐 with the Metropolis - Hastings probability:  

 𝐴 = min {1,  𝑝(𝜽𝑐)𝐿𝑐𝑝(𝜽(𝑗))𝐿𝑗 𝑞(𝜽(𝑗)|𝜽𝑐)𝑞(𝜽𝑐|𝜽(𝑗))}, (B.5) 

otherwise we repeat the current draws: {𝜽(𝑗+1), 𝐿𝑗+1} = {𝜽(𝑗), 𝐿𝑗}. Hall, Pitt and Kohn (2014) 
propose an auxiliary particle filter which rests upon the idea that adaptive particle filtering (Pitt 
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et al., 2012) used within PMCMC requires far fewer particles than the standard particle filtering 
algorithm to approximate 𝑝(𝑌|𝜽). From Pitt and Shephard (1999) we know that auxiliary 
particle filtering can be implemented easily once we can evaluate the state transition density 𝑝(𝑠𝑡|𝑠𝑡−1). When this is not possible, Hall, Pitt and Kohn (2014) present a new approach when, 
for instance, 𝑠𝑡 = 𝑔(𝑠𝑡−1, 𝑢𝑡) for a certain disturbance. In this case we have  

 𝑝(𝑦𝑡|𝑠𝑡−1) = ∫ 𝑝 (𝑦𝑡|𝑠𝑡)𝑝(𝑠𝑡|𝑠𝑡−1)𝑑𝑠𝑡, (B.6) 

 
 𝑝(𝑢𝑡|𝑠𝑡−1; 𝑦𝑡) = 𝑝(𝑦𝑡|𝑠𝑡−1, 𝑢𝑡)𝑝(𝑢𝑡|𝑠𝑡−1)/𝑝(𝑦𝑡|𝑠𝑡−1). (B.7) 

 
If we can evaluate 𝑝(𝑦𝑡|𝑠𝑡−1) and simulate from 𝑝(𝑢𝑡|𝑠𝑡−1; 𝑦𝑡) the filter would be fully 
adaptable (Pitt and Shephard, 1999). One can use a Gaussian approximation for the first-stage 
proposal 𝑔(𝑦𝑡|𝑠𝑡−1) by matching the first two moments of 𝑝(𝑦𝑡|𝑠𝑡−1). So in some way we 
find that the approximating density 𝑝(𝑦𝑡|𝑠𝑡−1) = 𝑁(𝔼(𝑦𝑡|𝑠𝑡−1), 𝕍(𝑦𝑡|𝑠𝑡−1)). In the second 
stage, we know that 𝑝(𝑢𝑡|𝑦𝑡, 𝑠𝑡−1) ∝ 𝑝(𝑦𝑡|𝑠𝑡−1, 𝑢𝑡)𝑝(𝑢𝑡) . For 𝑝(𝑢𝑡|𝑦𝑡, 𝑠𝑡−1) we know it is 
multimodal so suppose it has 𝑀 modes are �̂�𝑡𝑚, for 𝑚 = 1, … , 𝑀. For each mode we can use 
a Laplace approximation. Let 𝑙(𝑢𝑡) = 𝑙𝑜𝑔[𝑝(𝑦𝑡|𝑠𝑡−1, 𝑢𝑡)𝑝(𝑢𝑡)]  . From the Laplace 
approximation we obtain:  

 𝑙(𝑢𝑡) ≃ 𝑙(�̂�𝑡𝑚) + 12 (𝑢𝑡 − �̂�𝑡𝑚)′𝛻2𝑙(�̂�𝑡𝑚)(𝑢𝑡 − �̂�𝑡𝑚). (B.8) 

 
Then we use a a mixture approximation:  

 
𝑔(𝑢𝑡|𝑥𝑡, 𝑠𝑡−1) = ∑ 𝜆𝑚𝑀

𝑚=1 (2𝜋)−𝑑/2|Σ𝑚|−1/2 exp {12 (𝑢𝑡− �̂�𝑡𝑚)′Σ𝑚−1(𝑢𝑡 − �̂�𝑡𝑚}, (B.9) 

where Σ𝑚 = −[𝛻2𝑙(�̂�𝑡𝑚)]−1  and 𝜆𝑚 ∝ exp{𝑙(𝑢𝑡𝑚)} with ∑ =𝑀𝑚=1 1. This is done for each 
particle 𝑠𝑡𝑖. This is known as the Auxiliary Disturbance Particle Filter (ADPF).  
An alternative is the independent particle filter (IPF) of Lin et al. (2005). The IPF forms a 
proposal for 𝑠𝑡 directly from the measurement density 𝑝(𝑦𝑡|𝑠𝑡) although Hall, Pitt and Kohn 
(2014) are quite right in pointing out that the state equation can be very informative. In standard 
particle filtering, particles are simulated through the state density 𝑝(𝑠𝑡𝑖|𝑠𝑡−1𝑖 ) and they are re-
sampled with weights determined by the measurement density evaluated at the resulting 
particle, viz. 𝑝(𝑦𝑡|𝑠𝑡𝑖).  
The ADPF is simple to construct and rests upon the following steps:  
 
Table B1. Pseudo Code for Particle Filtering 

___________________________________________________________________________ 
For 𝑡 = 0, … , 𝑇 − 1 given samples 𝑠𝑡𝑘 ∼ 𝑝(𝑠𝑡|𝑌1:𝑡) with mass 𝜋𝑡𝑘 for 𝑘 = 1, . . . , 𝑁.  
1) For 𝑘 = 1, … , 𝑁 compute 𝜔𝑡|𝑡+1𝑘 = 𝑔(𝑦𝑡+1|𝑠𝑡𝑘)𝜋𝑡𝑘, 𝜋𝑡|𝑡+1𝑘 = 𝜔𝑡|𝑡+1𝑘 / ∑ 𝜔𝑡|𝑡+1𝑖𝑁𝑖=1  .  

2) For 𝑘 = 1, … , 𝑁 draw �̃�𝑡𝑘 ∼ ∑ 𝜋𝑡|𝑡+1𝑖𝑁𝑖=1 𝛿𝑠𝑡𝑖 (𝑑𝑠𝑡).  

3) For 𝑘 = 1, … , 𝑁 draw 𝑢𝑡+1𝑘 ∼ 𝑔(𝑢𝑡+1|�̃�𝑡𝑘, 𝑦𝑡+1) and set 𝑠𝑡+1𝑘 = ℎ(𝑠𝑡𝑘; 𝑢𝑡+1𝑘 ).  
4) For 𝑘 = 1, … , 𝑁 compute  

 𝜔𝑡+1𝑘 = 𝑝(𝑦𝑡+1|𝑠𝑡+1𝑘 )𝑝(𝑢𝑡+1𝑘 )𝑔(𝑦𝑡+1|𝑠𝑡𝑘)𝑔(𝑢𝑡+1𝑘 |�̃�𝑡𝑘, 𝑦𝑡+1) , 𝜋𝑡+1𝑘 = 𝜔𝑡+1𝑘∑ 𝜔𝑡+1𝑖𝑁𝑖=1 . (B.10) 

 
__________________________________________________________________________ 
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The estimate of likelihood from ADPF is  

 𝑝(𝑌1:𝑇) = ∏ (∑ 𝜔𝑡−1|𝑡𝑖𝑁
𝑖=1 )𝑇

𝑡=1 (𝑁−1 ∑ 𝜔𝑡𝑖𝑁
𝑖=1 ). (B.11) 

 

 

Particle Metropolis adjusted Langevin filters 

Nemeth, Sherlock and Fearnhead (2016) provide a particle version of a Metropolis adjusted 
Langevin algorithm (MALA). In Sequential Monte Carlo we are interested in approximating 𝑝(𝑠𝑡|𝑌1:𝑡, 𝜃). Given that  

 
𝑝(𝑠𝑡|𝑌1:𝑡, 𝜽)∝ 𝑔(𝑦𝑡|𝑥𝑡, 𝜽) ∫ 𝑓 (𝑠𝑡|𝑠𝑡−1, 𝜽)𝑝(𝑠𝑡−1|𝑦1:𝑡−1, 𝜽)𝑑𝑠𝑡−1, (B.12) 

 
where 𝑝(𝑠𝑡−1|𝑦1:𝑡−1, 𝜽) is the posterior as of time 𝑡 − 1. If at time 𝑡 − 1 we have a set of 
particles {𝑠𝑡−1𝑖 , 𝑖 = 1, … , 𝑁}  and weights {𝑤𝑡−1𝑖 , 𝑖 = 1, … . 𝑁}  which form a discrete 
approximation for 𝑝(𝑠𝑡−1|𝑦1:𝑡−1, 𝜽) then we have the approximation:  

 �̂�(𝑠𝑡−1|𝑦1:𝑡−1, 𝜽) ∝ ∑ 𝑤𝑡−1𝑖𝑁
𝑖=1 𝑓(𝑠𝑡|𝑠𝑡−1𝑖 , 𝜽). (B.13) 

 
See Doucet et al. (2001, 2014) for reviews. From (A.13) Fearnhead et al. (2008) make the 
important observation that the joint probability of sampling particle 𝑠𝑡−1𝑖  and state 𝑠𝑡 is: 

 𝜔𝑡 = 𝑤𝑡−1𝑖 𝑔(𝑦𝑡|𝑠𝑡, 𝜽)𝑓(𝑠|𝑠𝑡−1𝑖 , 𝜽)𝜉𝑡𝑖𝑞(𝑠𝑡|𝑠𝑡−1𝑖 , 𝑦𝑡, 𝜽) , (B.14) 

where 𝑞(𝑠𝑡|𝑠𝑡−1𝑖 , 𝑦𝑡, 𝜽) is a density function amenable to simulation,  
 𝜉𝑡𝑖𝑞(𝑠𝑡|𝑠𝑡−1𝑖 , 𝑦𝑡, 𝜽) ≃ 𝑐𝑔(𝑦𝑡|𝑠𝑡, 𝜽)𝑓(𝑠𝑡|𝑠𝑡−1𝑖 , 𝜽), (B.15) 

and 𝑐 is the normalizing constant in (A.12).  
In the MALA algorithm of Roberts and Rosenthal (1998)13 we form a proposal  

 𝜽𝑐 = 𝜽(𝑠) + 𝜆𝑧 + 𝜆22 𝛻log𝑝(𝜽(𝑠)|𝑌1:𝑇), (B.16) 

where 𝑧 ∼ 𝑁(0, 𝐼) which should result in larger jumps and better mixing properties, plus 
lower autocorrelations for a certain scale parameter 𝜆. Acceptance probabilities are  

 

𝑎(𝜽𝑐|𝜽(𝑠)) = min {1, 𝑝(𝜽𝑐|𝑌1:𝑇)𝑞(𝜽(𝑠)|𝜽𝑐)𝑝(𝜽(𝑠)|𝑌1:𝑇)𝑞(𝜽𝑐|𝜽(𝑠))}= min {1, 𝑝(𝑌1:𝑇|𝜽𝑐)𝑝(𝜽𝑐)𝑞(𝜽(𝑠)|𝜽𝑐)𝑝(𝑌1:𝑇|𝜽𝑠)𝑝(𝜽𝑠)𝑞(𝜽𝑐|𝜽(𝑠))}. (B.17) 

 
Using particle filters it is possible to create an approximation of the score vector using Fisher’s 
identity:  
                                                 
13The benefit of MALA over Random-Walk-Metropolis arises when the number of 
parameters 𝑛 is large. This happens because the scaling parameter 𝜆 is 𝑂(𝑛−1/2) for 
Random-Walk-Metropolis but it is 𝑂(𝑛−1/6) for MALA, see Roberts et al. (1997) and 
Roberts and Rosenthal (1998).  
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 𝛻 log 𝑝 (𝑌1:𝑇|𝜽) = 𝐸[𝛻 log 𝑝 (𝑠1:𝑇, 𝑌1:𝑇|𝜽)], (B.18) 
which corresponds to the expectation of  𝛻 log 𝑝 (𝑠1:𝑇 , 𝑌1:𝑇|𝜽) = 𝛻 log 𝑝 (𝑠1:𝑇−1, 𝑌1:𝑇−1|𝜽) + 𝛻 log 𝑔 (𝑦𝑇|𝑠𝑇 , 𝜽) + 𝛻 log 𝑓 (𝑠𝑇|𝑠𝑇−1, 𝜽), 
over the path 𝑠1:𝑇 . The particle approximation to the score vector results from replacing 𝑝(𝑠1:𝑇|𝑌1:𝑇 , 𝜽) with a particle approximation �̂�(𝑠1:𝑇|𝑌1:𝑇, 𝜽) . With particle i at time t-1 we can 
associate a value 𝛼𝑡−1𝑖 = 𝛻 log 𝑝 (𝑠1:𝑡−1𝑖 , 𝑌1:𝑡−1|𝜽) which can be updated recursively. As we 
sample 𝜅𝑖 in the APF (the index of particle at time 𝑡 − 1 that is propagated to produce the 𝑖th 
particle at time t) we have the update:  
 𝛼𝑡𝑖 = 𝑎𝑡−1𝜅𝑖 + 𝛻 log 𝑔 (𝑦𝑡|𝑠𝑡𝑖, 𝜽) + 𝛻 log 𝑓 (𝑠𝑡𝑖|𝑠𝑡−1𝑖 , 𝜽). (B.19) 

 
To avoid problems with increasing variance of the score estimate 𝛻 log 𝑝 (𝑌1:𝑡|𝜽) we can use 
the approximation:  
 𝛼𝑡−1𝑖 ∼ 𝑁(𝑚𝑡−1𝑖 , 𝑉𝑡−1) (B.20) 

 
The mean is obtained by shrinking 𝛼𝑡−1𝑖  towards the mean of 𝛼𝑡−1 as follows:  

 𝑚𝑡−1𝑖 = 𝛿𝛼𝑡−1𝑖 + (1 − 𝛿) ∑ 𝑤𝑡−1𝑖𝑁
𝑖=1 𝛼𝑡−1𝑖 , (B.21) 

where 𝛿 ∈ (0,1)  is a shrinkage parameter. Using Rao-Blackewellization one can avoid 
sampling 𝛼𝑡𝑖 and instead use the following recursion for the means:  

 
𝑚𝑡𝑖 = 𝛿𝑚𝑡−1𝜅𝑖 + (1 − 𝛿) ∑ 𝑤𝑡−1𝑖𝑁

𝑖=1 𝑚𝑡−1𝑖 + 𝛻 log 𝑔 (𝑦𝑡|𝑠𝑡𝑖, 𝜽)+ 𝛻 log 𝑓 (𝑠𝑡𝑖|𝑠𝑡−1𝜅𝑖 , 𝜽), (B.22) 

which yields the final score estimate:  

 𝛻 log �̂� (𝑌1:𝑡|𝜽) = ∑ 𝑤𝑡𝑖𝑁
𝑖=1 𝑚𝑡𝑖 . (B.23) 

As a rule of thumb Nemeth, Sherlock and Fearnhead (2016) suggest taking 𝛿 = 0.95 . 
Furthermore, they show the important result that the algorithm should be tuned to the 
asymptotically optimal acceptance rate of 15.47% and the number of particles must be selected 
so that the variance of the estimated log-posterior is about 3. Additionally, if measures are not 
taken to control the error in the variance of the score vector there is no gain over a simple 
random walk proposal. The marginal likelihood is given by: 

 𝑝(𝑌1:𝑇|𝜽) = 𝑝(𝑦1|𝜽) ∏ 𝑝𝑇
𝑡=2 (𝑦𝑡|𝑌1:𝑡−1, 𝜽), (B.24) 

 
where  

 
𝑝(𝑦𝑡|𝑌1:𝑡−1, 𝜽)= ∫ 𝑔 (𝑦𝑡|𝑠𝑡) ∫ 𝑓 (𝑠𝑡|𝑠𝑡−1, 𝜽)𝑝(𝑠𝑡−1|𝑌1:𝑇−1, 𝜽)𝑑𝑠𝑡−1𝑑𝑠𝑡, (B.25) 

provides, in explicit form, the predictive likelihood.  
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Table 1. Different cases 

  𝐶𝑡,𝑛 
  1 0 𝑆𝑡𝑛,𝑚 

1 A B 
0 C D 

 
Notes: Combination of crisis and signaling variable. The letters A, B, C, and D denote both the 
sets themselves and the number of elements in the respective sets.  
Source: El-Shagi, Knedlik, and von Schweinitz (2013, p. 80). 
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Table 2. Currency and Banking Crises 

 
 Currency crisis Banking crisis 
 P non-linearity P non-linearity 

Currency crisis — — 0.813 x 
M2 multiplier 0.0017  0.765  

Domestic credit 0.215  0.873  
Real interest rate 0.417  0.720 x 

Lending-deposit rate ratio 0.000  0.001  
Excess M1 balances 0.000  0.000  

M2 (%reserves) 0.000  0.122  
Bank deposits 0.000  0.000  

Exports 0.000  0.000  
Imports 0.000  0.000  

Terms of trade 0.002  0.000  
Real exchange rate 0.717  0.745 x 

Output 0.887 x 0.844 x 
Stock prices 0.220  0.873  

Deficit (%GDP) 0.781 x 0.045 x 
Banking crisis 0.891 — —  

Structural Breaks 3  3  
 
Notes: P denotes the posterior probability that an indicator is included. “Non-linearity” is 
denoted by “x” when present in the semi-parametric specification. 
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Table 3. Costly Asset Price Boom 

 
 P non-linearity 

LRN_lev 0.515  
LRR_lev 0.000  
SRN_lev 0.000  
SRR_lev 0.000  

SPREAD_lev 0.828 x 
SPREAD_-lev 0.000  

CPI_yoy 0.727 x 
CONS_yoy 0.701  
INV_yoy 0.708  

HINV_yoy 0.716  
REX_yoy 0.000  
M1_yoy 0.000  
M3_yoy 0.000  
PCR_yoy 0.815  
DCR_yoy 0.000  
CPI_cum 0.033 x 

CONS_cum 0.894 x 
INV_cum 0.788  

HINV_cum 0.000  
REX_cum 0.000  
M1_cum 0.000  
M3_cum 0.000  
PCR_cum 0.000  
DCR_cum 0.000  
GDPR_detr 0.825 x 
LRN_detr 0.904  
LRR_detr 0.000  
SRN_detr 0.000  
SRR_detr 0.000  
REX_detr 0.811  

CONStoGDP_detr 0.744 x 
INVtoGDP_detr 0.509  

HINVtoGDP_detr 0.689  
M1toGDP_detr 0.008  
M3toGDP_detr 0.715  

PCNtoGDP_detr 0.000  
DCNtoGDP_detr 0.000  

GDPR_HP 0.000  
LRN_HP 0.000  
LRR_HP 0.000  
SRN_HP 0.000  
SRR_HP 0.000  
REX_HP 0.000  

CONStoGDP_HP 0.000  
INVtoGDP_HP 0.774 x 

HINVtoGDP_HP 0.000  
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M1toGDP_HP 0.000  
M3toGDP_HP 0.000  

PCNtoGDP_HP 0.000  
DCNtoGDP_HP 0.000  
Structural Breaks 2  

 

Notes: P denotes the posterior probability that an indicator is included. “non-linearity” is 
denoted by “x” when present in the semi-parametric specification. 
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Table 4. Debt Crisis 

 

 Actual Counterfactual 

 P 
non-

linearity 
P 

non-
linearity 

Government debt 
(%GDP) 

0.000  0.000  

Government deficit 
(%GDP) 

0.000  0.000  

Interest payment 
(%gov expenditure) 

0.827  0.813  

Unit labor 
costs 

0.612  0.624  

Current 
account 

0.085  0.091  

Share in 
world trade 

0.000  0.000  

Unemployment rate 0.562  0.555  

Labor participation 
rate 

0.817  0.822  

Private debt 0.826 x 0.814 x 
Non-MFI 

debt 
0.891  0.896  

Household 
debt 

0.885 x 0.873 x 

Foreign assets 0.000  0.000  
Inflation 0.000  0.000  

Asset prices 0.000  0.000  
HICP-

competitiveness 
0.000  0.000  

GDP-deflated 
competitiveness 

0.005  0.000  

ULC-competitiveness 0.012  0.017  
10 continuous 

random variables 
—  0.000  

10 binary random 
variables 

—  0.007  

20 continuous and 
binary 

—  0.007  

Structural Breaks 3  3  

 
Notes: P denotes the posterior probability that an indicator is included. “non-linearity” is 
denoted by “x” when present in the semi-parametric specification. 
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Table 5. Posterior statistics 

 

parameter 
Currency 

Crisis 
Banking 

Crisis 
Asset Price 

Boom 
Debt  
Crisis 𝜆 

0.073 
(0.015) 

0.042 
(0.011) 

0.081 
(0.015) 

0.045 
(0.008) 𝜆𝜷−1 0.044 

(0.009) 
0.032 

(0.014) 
0.055 

(0.022) 
0.030 

(0.011) 𝜔 
0.313 

(0.132) 
0.022 

(0.008) 
0.019 

(0.007) 
0.025 

(0.006) 
 
Notes: Posterior means are reported. Figures in parentheses are posterior standard deviations. 
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Table 6a. Prior Sensitivity analysis:Utility 

 

 
Currency 

Crisis 
Banking 

Crisis 
Asset Price 

Boom 
Debt 
Crisis 

% abs. change in post. mean 
 

0.17 
 

 
0.21 

 

 
0.08 

 

 
0.067 

 
% abs. change in post. 

median 
0.13 

 
0.15 

 
0.11 

 
0.069 

 

% abs. change in post. s.d. 
 

0.16 
 

 
0.13 

 

 
0.07 

 

 
0.055 

 
 
Notes: Reported are % absolute changes in key summaries of the posterior distribution for Utility. For NSR, the 
respective figures are reported in parentheses. The percentage changes are computed as averages of the percentage 
changes in the baseline specification relative to the posterior means for each one of the 1,000 alternative prior 
configurations. 

 

Table 6b. Prior Sensitivity analysis:NSR 

 

 
Currency 

Crisis 
Banking 

Crisis 
Asset Price 

Boom 
Debt 
Crisis 

% abs. change in post. mean 0.14 0.14 0.05 0.082 
% abs. change in post. 

median 
0.10 0.10 0.09 0.077 

% abs. change in post. s.d. 0.11 0.07 0.05 0.031 
 
Notes: Reported are % absolute changes in key summaries of the posterior distribution for Utility. The percentage 
changes are computed as averages of the percentage changes in the baseline specification relative to the posterior 
means for each one of the 1,000 alternative prior configurations. 
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Table 7. Spurious predictive performance. 

 

 Currency crises Banking crises Asset price boom Debt crises 

linear model 

range of 
RPS 

0.0012 – 0.092 0.0033 – 0.081 0.00012 – 0.035 0.0051 – 0.017 

median 0.0071 0.0045 0.012 0.010 

non-linear model 

range of 
RPS 

0.282 – 1.023 0.133 – 1.018 0.212 – 1.044 0.372 – 0.970 

median 0.734 0.655 0.877 0.710 
 

Notes: RPS is the relative predictive score, defined as the ratio of predictive distributions 
evaluated at each observation in the hold-out sample. MCMC is implemented using re-
weighting of the MCMC draws in the full sample, using sampling-importance-resampling 
(SIR). The length of the re-sample is set to 3,000. 
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Figure 1. Posterior distribution of utility 
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Figure 2. Posterior distribution of NSR 
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Figure 3. Posterior predictive distribution of utility 
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Figure 4. Posterior predictive distribution of NSR 

 

 
 
 


