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Abstract This paper presents the development of an operating policy model for a multi-
reservoir system for hydropower generation by addressing forecast uncertainty along with
inflow uncertainty. The stochastic optimization tool adopted is the Bayesian Stochastic
Dynamic Programming (BSDP), which incorporates a Bayesian approach within the
classical Stochastic Dynamic Programming (SDP) formulation. The BSDP model
developed in this study considers, the storages of individual reservoirs at the beginning
of period t, aggregate inflow to the system during period t and forecast for aggregate inflow
to the system for the next time period t+1, as state variables. The randomness of the inflow
is addressed through a posterior flow transition probability, and the uncertainty in flow
forecasts is addressed through both the posterior flow transition probability and the
predictive probability of forecasts. The system performance measure used in the BSDP
model is the square of the deviation of the total power generated from the total firm power
committed and the objective function is to minimize the expected value of the system
performance measure. The model application is demonstrated through a case study of the
Kalinadi Hydroelectric Project (KHEP) Stage I, in Karnataka state, India.
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power generation . transition probability

1 Introduction

Reservoir operation problems may be characterized by two sources of uncertainties. The
first one is the natural uncertainty with respect to the actual realization of stream flow and
the second one is the uncertainty associated with the accuracy of forecasts. Climate change
and variability and lack of adequate runoff data are common sources that induce forecasting
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uncertainty in reservoir operation problems. Robust operating policies that are reasonably
insensitive to forecast errors should be developed for situations where the forecasting skills
are small due to impacts of climatic variability or due to lack of adequate data. A classical
Stochastic Dynamic Programming (SDP) model (Loucks et al. 1981) addresses the
uncertainty associated with inflow in reservoir operation. Significance of forecast
uncertainty has seldom been considered in reservoir operation models, although the system
performance measure may be significantly affected by the degree of uncertainty in
forecasts. Some reservoir operation models, which explicitly incorporate the forecast
uncertainty, are those by Dutta and Houck (1984) and Dutta and Burges (1984) who
incorporated forecast error in decision making through assuming that the statistical
properties of the errors remain invariant. Stedinger et al. (1984) developed a SDP model,
which employed the best forecast of the current period’s inflow to define a reservoir release
policy and to calculate the expected benefits from future operations. Karamouz (1988,
1990) suggested the use of Bayesian Decision Theory (BDT) in reservoir operation because
of the flexibility it provides in incorporating new information in the interpretation of the
flow probabilities. Karamouz and Vasiliadis (1992) proposed a Bayesian Stochastic
Dynamic Programming (BSDP) model, which incorporates a Bayesian approach within
the SDP formulation. BSDP differs from the classical SDP in the selection of state
variables. Bayesian Decision Theory incorporates new information available in a period by
updating prior probabilities to posterior probabilities. Such updating can significantly
reduce the effects of natural and forecast uncertainties in the model. Kim and Palmer (1997)
presented a Bayesian Stochastic Dynamic Programming (BSDP) model to investigate the
value of seasonal flow forecasts in hydropower generation. They used the BSDP model
proposed by Karamouz and Vasiliadis (1992), to derive monthly operating policies for
Skagit Hydropower System. The performance of BSDP derived policies is evaluated by
comparing the BSDP model with SDP model to examine the value of using the seasonal
flow forecasts in SDP.

The effect of forecast uncertainties on the performance of a system depends on (1) the
forecast models used, (2) the operating policy model, (3) objectives of operation and (4)
amount of inflow data available to estimate various flow probabilities. In this paper, an
operating policy model is developed for a multi-reservoir hydropower system to minimize
the expected deviations of the power generated from the firm power, by addressing inflow
and forecast uncertainty. The applicability of the model is demonstrated with the case study
of Kalinadi Hydroelectric Project Stage I, in Karnataka State, India. The performance of the
model is evaluated using different forecasts—forecasts of inflows resulting from an ANN
rainfall forecast, forecasts as mean values of monthly inflows and perfect forecasts of
inflows i.e., forecasts equal to actual historical inflows realized—in simulation and thereby
to evaluate the model’s capability to mitigate the impacts of forecast errors.

2 Description of a General Multi-Reservoir Hydropower System

A general, hypothetical multi-reservoir system with N number of reservoirs for hydropower
generation is shown in Figure 1. The intermediate catchment flow to a reservoir u, in period
t, is denoted by Qt

u. s
t
u denotes the storage in a reservoir u, at the beginning of time period t,

and Rt
u is the release from reservoir u, in time period t. The transformation of the storage stu

at the beginning of time period t, to the storage stþ1
u at the beginning of next period t+1, is

governed by mass balance, and is discussed later. It should be noted that in the system
shown in Figure 2, the release from reservoir u, Rt

u, where u=1, 2, 3, is a function of the
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catchment flow, Qt
u, and the storage in the reservoir u at the beginning and the end of period

t, i.e., stu and stþ1
u . For reservoir 4, the release Rt

4, is a function of the intermediate catchment
flow, Qt

4, the storage at the beginning and the end of period t, i.e., st4 and stþ1
4 and the

releases from upstream reservoirs, Rt
1; R

t
2; R

t
3. For a reservoir u, where u=5, 6,..., r,...N, the

release is a function of the intermediate catchment flow, Qt
u, the storage of the reservoir u at

the beginning and the end of period t, i.e., stu and stþ1
u , and the release from the immediate

upstream reservoir (u−1), Rt
u�1.

3 Model Features

The outline of the model is depicted in Figure 2. The Bayesian Stochastic Dynamic
Programming (BSDP) model considers, the storages of individual reservoirs at the
beginning of period t, aggregate inflow to the system during period t and forecast for
aggregate inflow to the system for the next time period t+1, as state variables. In order to
reduce the complexity of the model and to make the solution computationally tractable,
aggregate inflow is taken as a state variable, rather than accounting for one state variable
each corresponding to the inflow to an individual reservoir. The state variables are

Figure 1 A general multi-reser-
voir system for hydropower
generation.
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discretised into a number of class intervals and each class interval is represented by a
representative value. The vector of beginning-of-period storage class interval K and vector
of end-of-period storage class interval L have the number of elements equal to the number
of reservoirs in the system. The randomness of the inflow is addressed through a posterior
transition probability (Pt

imj), and the uncertainty in flow forecasts is addressed through both
the posterior flow transition probability (Pt

imj), and the predictive probability of forecasts
(Ptþ1

jn ). The posterior flow transition probability (Pt
imj), gives the probability that the flow

Qt+1 in time period t+ 1 belongs to the class interval j, given that the flow Qt in time period
t belongs to class interval i and the forecast Ht+1 for flow in the next time period t+1,
belongs to class interval m. The predictive probability of forecasts (Ptþ1

jn ), gives the
probability that the forecast Ht+2 for flow in the time period t+2 belongs to class interval n,
given that the flow Qt+1 in previous period t+1 belongs to class interval j. Time horizon for
which decisions need to be obtained is a year, with months taken as stages. The storage
class interval, ku in the reservoir u, at the beginning of period t transforms to storage class
interval lu at the end of period t, because of the inflow and release. The storage state
transformation is given by a simple mass balance at the reservoir. Since the storage state
transformation at a reservoir requires the inflow to that reservoir, the aggregate inflow to the
system during period t (Qt), is spatially disaggregated to inflows to individual reservoirs.
The release from a reservoir in time period t, is computed from the storage state

Figure 2 Block diagram of the operating policy model.
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transformation equation. The storage state transformation equation uses the representative
values of beginning-of-period (initial) and end-of-period (final) storages in time period t,
representative value of disaggregated inflow to the reservoir and the evaporation loss from
the reservoir in the time period t. The system performance measure, B (K, i, L, t), used in
BSDP model is the square of the deviation of the total power generated from the committed
and that from a hydropower generation model. The objective function of the BSDP model
is to minimize the expected value of the system performance measure, for a long-term
operation of the reservoir system. The system performance measure [B (K, i, L, t)] enters as
input to the BSDP recursive relationship discussed later. The recursive equation is solved
iteratively until a steady state is reached. The resulting release policy is called the steady
state policy, and is denoted by L*(K, i, m, t), which specifies the end-of-period storage for a
given state of the system in time period t.

4 Bayesian Stochastic Dynamic Programming (BSDP) Model

BSDP, developed by Karamouz and Vasiliadis (1992), is an extension of the classical
Stochastic Dynamic Programming (SDP) model (Loucks et al. 1981), in the sense that a
discrete first order Markov process is assumed to describe the transition of inflow in season
t to inflow in season t+1. In the BSDP model, the prior flow probabilities, P[Qt|Qt−1],
are continuously updated to new posterior flow probabilities, P[Qt|Ht,Qt−1], using the
Bayesian Decision Theory (BDT) (Mayer 1970) and are imbedded in the SDP algorithm.
Here Ht is the forecast for time t. Bayesian Decision Theory incorporates new information
by updating prior probabilities to posterior probabilities. Conventional decision making
in water resources systems with SDP using forecasted flow (Ht) does not consider
uncertainty resulting from forecast error. Use of posterior flow probability P[Qt|Ht,Qt−1]
with Bayesian decision theory, considers such uncertainty, as both Qt and Ht are involved
there. Thus, updating prior flow probabilities to posterior probability significantly reduce
the effects of forecast uncertainty in the model. The proposed BSDP model includes,
storages of the reservoirs at the beginning of the time period t, aggregate inflow to the
system during time period t, and forecast for aggregate inflow for the next period t+1, as
state variables.

4.1 State Variables

Because of the ‘curse of dimensionality’ associated with the dynamic programming, it is
therefore necessary to choose only those variables that influence the decision process the
most, to define the state of the system. For example, a single state variable may be used to
describe the aggregate inflow to the system, rather than using several state variables to
describe the inflow to each reservoir (Tejada-Guibert et al. 1993). Likewise, a single state
variable may be used to describe forecast for the aggregate inflow to the system, rather than
using several state variables to describe the inflow forecast to each reservoir. Alternatively,
if the individual inflow and forecast were considered, vectors of inflows and forecasts
would be the state variables. This would result in posterior inflow transition probabilities
and predictive probabilities for forecast of flows to individual reservoirs. This approach
makes the recursive relationship more complex and computationally less tractable. Keeping
this in view, St, the vector of reservoir storage at the beginning of period t, Qt, the aggregate
inflow to the reservoir system during period t, and Ht+1, forecast for the aggregate inflow to
the reservoir system during period t+1, are treated as the state variables.
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The state variables are discretised in the BSDP model. The discretisation of each state
variable is done by dividing the entire range of the variable into a number of class intervals,
not necessarily of equal length. It must be noted that the discretisation and assignment of
representative values for aggregate inflow are different from those for the other state
variables. As the storage transformation at individual reservoirs requires the representative
value of inflow to that reservoir, the aggregate inflow for a particular class interval has to
be spatially disaggregated to individual representative values. Salas et al. (1980) and
Loucks et al. (1981) have discussed some spatial disaggregation models and the particular
disaggregation model used in model application is conditional expectation method.

4.2 Stochastic Nature of the Inflow

Inflow is the most important hydrological variable influencing the reservoir operation,
which is random in nature. It is assumed that the inflow to the reservoir constitutes a simple
(or one step) Markov process. The probability P[Qt|Qt−1], is known prior to receiving
forecast for inflow, and therefore is called as the prior flow probability (Karamouz and
Vasiliadis 1992). Ht is the forecast corresponding to the inflow during period t, Qt. In
BSDP, inflow forecast for the next period t+1, is also a state variable, which is a new
information about the state of the system. Since forecast for time period t, Ht, is an
information relevant to Qt, it can be considered as an information about the state of the
system. The uncertainty about the accuracy of the forecasts, which is a characteristic of the
forecast system, is described by a family of conditional density functions 1[Ht|Qt], called as
the likelihood function. The likelihood P[Ht|Qt] can be obtained from the likelihood
function by integration. Using Bayes theorem, the prior probability, can be revised to
posterior probability whenever a new information related to the particular event is available.
Posterior probability is the probability obtained by combining prior probability with new
information. As inflow forecast for time period t, Ht, is a new information related to the
realization of inflow during time period t, Qt, the prior flow probability, P[Qt|Qt−1], can be
revised to posterior flow probability P[Qt|Ht, Qt−1], as follows:

P Qt Ht;Qt�1j½ � ¼ P Ht Qtj½ �:P Qt Qt�1j½ �P
Qt

P Ht Qtj½ �:P Qt Qt�1j½ � ð1Þ

Stated in words, the product of likelihood P[Ht|Qt] and prior flow probability P[Qt|Qt−1]
divided by product of likelihood and prior flow probability summed over the possible states
of inflow Qt, is the posterior flow probability P[Qt|Ht, Qt−1]. The likelihood P[Ht|Qt], which
provides the probabilistic description of the forecast error, incorporates the new information
into prior flow probability, P[Qt|Qt−1], and thereby revises it to the posterior flow
probability P[Qt|Ht,Qt−1]. The prior flow transition probability is the conditional probability
P Qtþ1 ¼ j Qt ¼ ij½ �, and is denoted by Pt

ij. This gives the probability that the inflow Qt+1, in
the time period t+1, will be within the class interval j, given that the inflow Qt, in the
present period t, is in the class interval i. The revised flow transition probability, called as
the posterior flow transition probability, is the conditional probability P Qtþ1 ¼ j Htþ1 ¼j½
m;Qt ¼ i:� and is denoted by Pt

imj. This gives the probability that the inflow Qt+1, in the
future period t+1, will be within the class interval j, given that the inflow forecast Ht+1, in
the future period t+1 is in the class interval m, and the inflow Qt, in the present period t, is
in the class interval i.

1470 Water Resour Manage (2007) 21:1465–1485



Another important assumption made is that the inflow series is a stationary stochastic
process. This implies that the transition probability matrix does not change from year to
year. This assumption assures a steady state operating policy from the model. The
conditional probability Pt

imj can be evaluated either by Bayes theorem or by relative
frequency approach.

4.3 Stochastic Nature of the Inflow Forecasts

The uncertainty about the accuracy of the forecast is called forecast error or forecast
uncertainty. The forecast uncertainty, which is a characteristic of the forecast system
(Karamouz and Vasiliadis 1992), is described by a probability distribution of forecast Ht

conditioned on inflow Qt. This is described, in general, by a family of conditional density
functions 1[Ht|Qt]: ∀ Qt. For any given forecast Ht, the likelihood function 1[Ht|Qt],
provides a probabilistic description of the forecast error. The likelihood P[Ht|Qt] can be
calculated from the conditional density functions, 1[Ht|Qt] by integration. The present study
involves discrete cases or states of inflow (Qt) and inflow forecasts (Ht). Thus, frequency
analysis is used to compute P[Ht|Qt], in the present case, with the historical river flow of the
past years and the forecasted values of the same time period. For a given Qt=j, the
probability of Ht= i, i.e., (P Ht ¼ i Qt ¼ jjð Þ) is computed by taking the ratio of
n Ht ¼ ið Þ \ Qt ¼ jð Þf g to n Qt ¼ jð Þf g, where n{E} denotes the number of occurrence of
event E.

The prior flow probability P[Qt|Qt−1], and likelihood P[Ht|Qt], being known, the
predictive probability of forecast, P[Ht|Qt−1] (probability with which forecast Ht, can be
predicted from inflow, Qt−1), can be determined from the Total Probability Theorem (Mayer
1970). In the recursive equation, which is discussed subsequently, the forecast in time
period t+2 is linked with the inflow in time period t+1, by the predictive probability of
forecast, Ptþ1

jn . The predictive probabilities for time periods t, t+1 and t+2 can be derived
using the Total Probability Theorem as follows,

P Ht Qt�1j½ � ¼
X
Qt

P Ht Qtj½ �:P Qt Qt�1j½ � ð2Þ

Stated in words, the product of likelihood P[Ht|Qt] and prior flow probability P[Qt|Qt−1]
summed over the possible states of inflow Qt is the predictive probability P[Ht|Qt−1].

Similarly,

P Htþ1 Qtj½ � ¼
X
Qtþ1

P Htþ1 Qtþ1j½ �:P Qtþ1 Qtj½ � ð3Þ

P Htþ2 Qtþ1j½ � ¼
X
Qtþ2

P Htþ2 Qtþ2j½ �:P Qtþ2 Qtþ1j½ � ð4Þ

The predictive probability P Htþ2 Qtþ1j½ �, denoted by Ptþ1
jn , is the conditional probability

P Htþ2 ¼ n Qtþ1 ¼ jj½ �. This gives the probability that the inflow forecast Ht+2, in the time
period t+2, will be within the class interval n, given that the inflow Qt+1, in the period
t+1, is in the class interval j.

Similar to the posterior flow transition probability matrix, the predictive probability
matrix also does not change from year to year. The conditional probability Ptþ1

jn can be
evaluated either by total probability theorem or by relative frequency approach.
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Two types of conditional probabilities have been discussed above Pt
imj and Ptþ1

jn . Pt
imj is

the revised flow transition probability, derived using Bayes theorem, by incorporating a
new information, Ht+1, an uncertain forecast for the next period t+1, to the prior flow
transition probability Pt

ij. The probability Ptþ1
jn , predicts the uncertain forecast for the next

period t+2, from the inflow during period t+1, Qt+1. This links the inflow in the period
t+1, to forecast in the next period t+2, in the BSDP recursive equation. Inclusion of the
probabilities, Pt

imj and Ptþ1
jn , in the recursive equation, enables addressing of the inflow and

forecast uncertainties in the optimization model.

4.4 Decision Interval and Decision Variable

Monthly time intervals are taken as decision intervals in this study. Release for power
generation from a reservoir during a month is the decision variable. The release is a
function of the inflow to the reservoir and the initial and final storages of the reservoir. This
can be explained with reference to Figure 1. The release from reservoir u, Rkuilut, where u=
1, 2, 3, is computed from the storage state transformation as follows:

Stþ1
lu

¼ Stku þ qtiu � Rkuilut � Ekulut ð5Þ

Rkuilut is the release (in volume units) from the upstream reservoir u, in period t, when the
initial storage is Stku , inflow is qtiu, final storage is Stþ1

lu
and the evaporation loss from the

reservoir u in period t is Ekulut, corresponding to storage class intervals ku and lu. qtiu is
the representative value of disaggregated inflow to reservoir u, corresponding to the
aggregate inflow class interval i in time period t.

For downstream reservoir r in the system (Figure 1), besides the intermediate catchment
flow, release from the upstream reservoir r−1 also contributes to inflow. Thus the release
from reservoir r, is a function of the intermediate catchment flow, release from upstream
reservoir r−1, and the initial and final storages of the reservoir r. Even though the reservoir
r receives the release only from reservoir r−1, since release at reservoir r−1 is a function of
the reservoir storages at the upstream reservoirs 1, 2, 3,....,r−2, the release from reservoir r
is also a function of the storages at reservoirs, 1, 2, 3,...,r. This implies that the release from
reservoir r is a function of Kr={k1,k2,...kr}, the vector of storage class intervals at the
beginning of period t of the reservoir r and upstream reservoirs whose releases contribute to
the inflow to reservoir r, class interval of aggregate inflow to the system during period t, i,
and Lr={l1,l2,...lr}, the vector of storage class intervals at the end of period t of the
reservoir r and upstream reservoirs whose releases contribute to the inflow to reservoir r.
The release from reservoir rRKriLrt is computed from the storage state transformation as
follows:

Stþ1
lr

¼ Stkr þ qtir þ RKr�1iLr�1t � RKriLrt � Ekrlr t ð6Þ
Evaporation loss from a reservoir u in period t, denoted by Ekulut, depends on the

beginning and end storages, Stku and Stþ1
lu

respectively. Ekulut can be approximated as,

Ekulut ¼ et:A
t
u ð7Þ

where et is the evaporation rate in depth units in period t for the whole catchment. At
u is the

water spread area for a reservoir u during period t corresponding to average storage,
Stku þ Stþ1

lu

� �.
2, obtained from the area-capacity relationship for the reservoir u.
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It may be noted that some among various combinations of storage and inflow, may not
be feasible, in that they result in a negative value of release from the reservoir. The feasible
releases enter as an input to the hydropower generation model. The system performance
measure for a known state of the system, required for the BSDP recursive equation is
computed using the hydropower generation model, and is explained in the next section.

5 System Performance Measure

The system performance measure considered is the squared deviations of the total power
generated from the total firm power committed for the system. The system performance
measure denoted by B, is a function of vector of storage class intervals at the beginning of
period t, K, class interval of aggregate inflow to the system during period t, i, and vector
of storage class intervals at the end of period t, L. The expression for the computation of
system performance measure B, is explained in the following subsection.

5.1 Hydropower Generation

The energy generated in kilowatts hour during time period t, can be written as, (Loucks
et al. 1981)

KWHt ¼ 2725:It:nht:h ð8Þ

where It is the flow into the penstock in Mm3 in period t, and nht is the net head in meters.η
is the plant efficiency.

Power generation in MW during a month, for reservoir u, is denoted by Pt
u. The power

generation at reservoir u can be explained with reference to Figure 1, as follows:
Let C be the constant (including the plant efficiency, η), which defines the power in MW,

for a month of 30 days. For downstream reservoir r in the system (where r=4 to N),

Pr Kr; i;Lr; tð Þ ¼ C:RKriLrt:h kr; lr; tð Þ ð9Þ

The release from the downstream reservoir r, RKr iLrt, is determined using the storage
transformation relationship given in Equation (6). The gross head available for power
generation at reservoir r, during period t, for an average storage ðStkr þ StlrÞ=2, is obtained
from the elevation-capacity relationship for reservoir r. The net head h (kr, lr, t) is obtained
after accounting for tail water level and friction loss. It must be noted that for upstream
most reservoirs, (i.e., reservoirs 1, 2 and 3) Pt

r is a function of kr, lr and i only.
The total power generated from the system (TP) can be computed as follows,

TP ¼
X3
r¼1

Pr kr; i; lr; tð Þ þ
XN
r¼4

Pr Kr; i;Lr; tð Þ ð10Þ

Thus the system performance measure B (K, i, L, t) can be written as,

B K; i;L; tð Þ ¼ TP � PTARð Þ2 ð11Þ

where PTAR is the total firm power commitment from the system in MW.
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6 Development of Recursive Equation

The system performance measure B, that is to be optimized is obtained for a given
combination K, i, L for all time periods from the hydropower generation model. Since the
system performance measure, B, is the squared deviations of the total power generated from
the total firm power committed for the system, the objective function is a minimization
function.

Thus, the objective function of the Bayesian Stochastic Dynamic Programming can be
written as,

Minimize ¼ E B K; i;L; tð Þ½ � 8K; i;m feasibleLf g ð12Þ
Feasible L is defined as those values of L, which result in nonnegative value of releases

from the reservoirs, for a given combination of K and i in period t.
It is obvious that although the system performance measure, B (K, i, L, t), does not

depend on m, the expected value of the system performance measure, E [B (K, i, L, t)],
depends on m, because the flow transition probability, Pt

imj, and the predictive probability,
Ptþ1
jn , in the recursive equation [Equations (14) and (16)] are functions of m. For

convenience, B (K, i, L, t) is written as Bt. The recursive relationship for BSDP is an
extension of the general SDP model for reservoir operations (Loucks et al. 1981). A
backward recursive relationship is developed starting with the last period in some arbitrary
year, Y, in future. In backward recursion, t is reckoned 1, 2, 3,......., T in the forward
direction and NP which denotes the stage number, 1, 2, 3.... is reckoned backwards from
the last period. Use of both indices facilitates tracing of the stage by stage movement of the
DP algorithm. Let NP be the number of periods, called as stages, remaining till the end of
the year Y, and f NPt K; i;mð Þ represent the total expected value of system performance with
NP periods to go, including the current period t, given that the vector of storages at the
beginning of period t is K={k1, k2, k3,...kN}, and aggregate inflow in current period t is in
class interval i, and forecast for aggregate inflow in the next period t+1 is in class interval,
m. With only one period remaining, i.e., (NP=1 and t=T),

f 1T K; i;ϕð Þ ¼ Min BT½ � 8K; i feasibleLf g ð13Þ
Since at NP=1 corresponding to the last time period, there is no forecast for the next period,
the third state variable m viz., the forecast for aggregate inflow in the next period t+1 is
represented as φ, a null value.

When the computations proceed to the next period T−1 in backward recursion, there are
two periods to go (i.e., NP=2), until the end of the time horizon. For the current period T−
1, the system performance measure is known to be BT − 1 for given values of K, i, and m.
The expected value of the system performance for the subsequent period T, is determined
from the state transformations: K to L, which is governed by reservoir storage continuity,
and inflow transition from i to j, given the forecast, m, for the next time period T, governed
by the posterior inflow transition probabilities PT�1

imj . Thus,

f 2T�1 K; i;mð Þ ¼ Min BT�1 þ
X
j

PT�1
imj :f 1T L; j;ϕð Þ

" #
8K; i;m feasibleLf g ð14Þ

When the computations proceed to the next period T−2, in backward recursion, there are
three periods to go (i.e., NP=3). For the current period T−2, the system performance
measure is known to be BT−2 for given values of K, i and m. The expected value of the
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system performance for the subsequent periods T−1 and T, is determined from (1) the state
transformations: K to L, which is governed by reservoir storage continuity (2) the random
transition of inflow from i to j, given the forecast m, for next time period T−1, which is
governed by posterior inflow transition probabilities PT�2

imj , and (3) the prediction of forecast
n, for time period T, from the inflow in time period T−1, j, which is governed by predictive
probabilities of forecast PT�1

jn . Thus,

f 3T�2 K; i;mð Þ ¼ Min BT�2 þ
X
j

PT�2
imj �

X
n

PT�1
jn f 2T�1 L; j; nð Þ

" #" #
8K; i;m feasibleLf g

ð15Þ
Equation (15) can be generalized for the period t and stage NP (other than for NP=1 and

NP=2) as,

f NPt K; i;mð Þ ¼ Min Bt þ
X
j

Pt
imj �

X
n

Ptþ1
jn f NP�1

tþ1 L; j; nð Þ
" #" #

8K; i;m feasibleLf g ð16Þ

In Equation (16), t is reckoned 1, 2, 3,.......T in the forward direction and NP which denotes
the stage number, 1, 2, 3.... is reckoned backwards from the last period.

Starting at some time period in the future and using the relation between the flow and
forecast in one period and that in the adjacent period i.e., the posterior transition
probabilities Pt

imj, and the predictive probabilities Ptþ1
jn , it is possible to arrive at values of L

for each time period t as a function of the state variables K, i and m. When the recursive
equations are solved for each period in successive years, the policy L (K, i, m, t) will
relatively quickly repeat itself in each successive year for the period t. The steady state
policy is said to have reached, when this occurs for all periods t, implying that the expected
annual performance f NPþNT

t K; i;mð Þ � f NPt K; i;mð Þ� �
is constant for all states K, i and m

and all periods t within a year. This steady state condition is ensured because the system
performance measure for time period t, Bt, the posterior flow transition probabilities Pt

imj,
and the predictive probabilities Ptþ1

jn do not change from year to year. The iterations are
continued till the policy L (K, i, m) attains a steady state. The values of L (K, i, m) in the
last iteration, for each time period t, define the optimal operating policy and are denoted by
L*(K, i, m, t). This is called the steady state operating policy. Figure 3 presents the
flowchart of the algorithm which is used to solve the BSDP model.

7 Model Application

The model is applied to an existing case study. The case study selected is Kalinadi
Hydroelectric Project (KHEP) Stage I, in Karnataka state, India (Figure 4). The main
storage reservoir across Kalinadi is the Supa reservoir, with a gross storage capacity of
4,178 Mm3 and a design firm power of 61.9 MW. The downstream reservoir
Bommanahalli, has a gross storage capacity of 96.89 Mm3 and the power is generated at
Nagjhari power house, which is located at the foot of the hill range. The design firm power
at Nagjhari power house is 386.4 MW. Data pertaining to the reservoirs and power houses,
their physical features, inflows to Supa reservoir, pan evaporation rate for the basin,
elevation-capacity-area relationships for reservoirs, and rainfall records of rain gauge
stations located in the catchment, are collected from various government sources. A daily
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inflow record for 15 years (1984 to 1998, for the months from June to November) for Supa
reservoir is available. It must be noted that the term ‘inflow’ is used to indicate only the
catchment flow (runoff), and it does not include controlled flows from upstream reservoir,
which is accounted separately in the storage continuity equations. Inflows (runoff) to the
Bommanahalli reservoir are generated by rainfall-runoff modeling. Supa inflow record is
extended from 15 years to 98 years, using the 98 years of rainfall data and rainfall-runoff
regression equations.

7.1 Runoff Computation

As explained earlier, the two reservoirs, Supa and Bommanahalli, constitute KHEP Stage I.
Besides these, there is one more dam, called Dandeli (Figure 4), whose construction is not

Start

Estimate posterior flow transition probability
t

imjP  by relative frequency approach 

Estimate forecast predictive probability
1+t

jnP  by relative frequency approach 

Determine the system performance measure B (K, i, L, t) (Fig. 3.6) 

NP = 1 
t = T 

Solve the recursive equation, Eqns. (3.20), (3.21) or (3.23), 
for the current stage NP 

Is t = 1?
No NP = NP+1 

t = t-1 

Is 
steady 
state 

yes 

Tabulate steady 
state policy 

NP = NP+1 
t = T 

Stop 

End

yes 

No

Figure 3 Flowchart for the so-
lution of BSDP model.
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yet completed. Therefore, Dandeli reservoir is not considered individually, and the
intermediate catchment flow to this reservoir is added up with the intermediate catchment
flows to Bommanahalli. Runoff from intermediate catchment is computed from the
regression relationships established between Thiessen weighted average rainfall (Modi
2000) and runoff, for the catchment. Intermediate catchment flows are added up to obtain
aggregate inflow for the whole catchment.

7.2 Discretisation of State Variables

The possible range of the three state variables, vector of reservoir storage volumes (St) at
the beginning of period t, aggregate inflow to the system (Qt) during period t, and the
forecast for aggregate inflow to the reservoir system (Ht+1) during period t+1, are
discretised into a number of class intervals. The range of class intervals is chosen taking
into account the variability of the state variable including extremes such that no class
interval is visited too frequently.

7.3 Discretisation of Aggregate Inflow and Aggregate Inflow Forecasts

Aggregate inflow is discretised into a number of class intervals. The number of class
intervals differs from period to period, depending on the nature of the inflow. For a
particular class of aggregate inflow Qt, during period t, the aggregate inflow to the system is
disaggregated to the representative values of inflow for individual reservoirs qtiu by the
method of conditional expectation. The disaggregation method is explained below.

Discretisation is done for aggregate inflow to the system Qt, and for inflows to
individual reservoirs Qt

u. For the discretisation of aggregate inflow and individual inflows,
it is assumed that the flows in a class interval follow a uniform distribution. A particular
class interval for aggregate inflow is denoted as i and that for Qt

u is denoted as iu. nqtiu is the
representative values assigned for a particular class interval of iu. The representative value
nqtiu for a class interval iu is the expected value of the flow in that particular inflow class
interval. Also the inflow discretisation is done in conjunction with reservoir storage
discretisation to avoid trapping states. The conditional expectation of Qt

u (inflow to

Figure 4 Schematic diagram of
the Kalinadi catchment.
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reservoir u during time period t), given that the aggregate inflow Qt, during time period t
falls in interval i can be expressed as,

qtiu ¼ E Qt
u Qt ¼ 1j� �¼ Xnt

iu¼1

P Qt
u ¼ iu Qt ¼ ij� �

:nqtiu¼
Xnt
iu¼1

Pt
iiu
:nqtiu ð17Þ

where nt is the number of class intervals (iu) for inflows to individual reservoirs for period t,
and Pt

iiu
is the conditional probability, P Qt

u ¼ iu Qt ¼ ij� �
, defined as the probability of

inflow to reservoir u (Qt
u) during time period t to be in class interval iu, given that the

aggregate inflow to the system (Qt) during time period t falls in class interval i. The
conditional probability P Qt

u ¼ iu Qt ¼ ij� �
, where u=1, 2 is found by relative frequency

approach.
The historical flow used is of record length 48 years (1951 to 1998), instead of 98 years.

This is due to the following reason. The calculation of the probabilities, Pt
imj and Ptþ1

jn

[Equations (13), (14) and (16)], requires the forecast for the historical aggregate inflow. The
forecast for monsoon inflow is obtained from an ANN forecasting model for monsoon
rainfall. Out of the 98 years of rainfall data, the first 50 years is used for training and the
remaining 48 years for testing. Since the forecast of inflow resulting from the trained
rainfall forecast cannot be used for probability calculation, the historical inflow record used
for modeling is also restricted to 48 years (1951 to 1998).

The forecast for aggregate inflow is discretised into a number of class intervals. The
number of class intervals differs from period to period, depending on the range of the
forecast values. The monsoon and non-monsoon inflow forecasting models are presented
later. In BSDP recursive equation, Equations (13), (14) and (16), there are two types of
probabilities, posterior flow transition probability and forecast predictive probability and
they are determined by relative frequency approach.

7.4 Discretisation of Reservoir Storage

The state variable vector of reservoir storages consists of storages of individual reservoirs at
the beginning of period t, and may be written as, St ¼ st1; s

t
2; s

t
3; ::::s

t
N

� �
, where N is the

number of reservoirs in the system. The storage of reservoir u is discretised between Smaxu
and Sminu for each period. Ten number of class intervals are adopted for Supa as its storage
capacity is high and five class intervals are chosen for Bommanahalli as its storage capacity
is less. The maximum and minimum storage values are 4,178 and 419.65 Mm3 for Supa
and 96.89 and 12.99 Mm3 for Bommanahalli. It is necessary that the storage discretisation
is done judiciously, because of the relatively large range of the storage state variable
compared to the aggregate inflow state variable. Simulation of this reservoir system is
carried out to meet the firm power, with a standard operating policy (which is to produce
firm power if possible and if not, to release all water to produce as much power as possible)
and then from the resulting range of storage, discretisation is carried out. Each class interval
is represented by a single value, referred to as the representative value of that class interval.

7.5 Aggregate Inflow Forecasting Model

For solving the recursive relationship of BSDP for time period t, the forecast for aggregate
inflow to the system Ht+1 for the next period t+1, is a state variable, which comes as anew
information about the state of the system. The inflow forecasts for monsoon and non-
monsoon are modeled separately. For Monsoon season, inflow is simulated using a Back
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Propagation Artificial Neural Network (ANN) model (Table I.). For non-monsoon season
Thomas–Fiering Model is used. The statistics of ANN forecasts are also presented in
Table I. The Root Mean Square Error (RMSE), the Correlation Coefficient (CC—the
correlation between the observed and predicted values), and the Performance Parameter
(PP—the ratio of mean square error, MSE, and the variance of the observed values for rain
gauge z, VARzo) are the statistical parameters (Sahai et al. 2000) used to describe the
accuracy of forecasting. The statistics, RMSE, CC and PP are considered for Thomas–
Fiering forecasting model also. For a good prediction, RMSE should be small, CC should
be closer to 1, and PP should be near to zero. From the statistics of ANN forecasting, it can
be inferred that, this modeling cannot be considered as an acceptable one for station level
rainfall forecasting. For Thomas–Fiering Model RMSE, CC, PP are obtained as 3.55 mm,
0.55 and 0.69 respectively, which are also not satisfactory. Thus it can be deduced that, the
forecasting models do not perform well. But the main objective of the proposed operating
policy methodology is to accommodate this forecast error and to examine if the
methodology is capable of offsetting such forecast errors. The precise question that is
addressed in the BSDP model is whether such poor forecasts (with large forecast errors)
may be absorbed in the policy model by including the posterior flow probability and
predictive probability of forecasts explicitly.

7.6 Solution of BSDP Recursive Equation

The Bayesian Stochastic Dynamic Programming (BSDP) model discussed earlier is applied
to the case study to get the steady state operating policy. The steady state policy is obtained
after nine cycles. It gives the optimal L values (i.e., L* values) for a given combination of
K, i, m and t. A typical policy plot for the Month of June, for Bommanahalli Reservoir is
shown in Figure 5.

7.7 Discussion on the Operating Policy Plots

From the end-of-period storage values for monsoon and non-monsoon months it can be
inferred that it is not possible to find a general pattern since hydropower generation is a
function of both the head available for power generation and the release from the reservoir.
Inflow to the reservoir either goes for building up the storage or as inflow to the penstock.
As a system of reservoirs, this policy produces a satisfactory power for a viable and optimal
combination of release and storage. The operating policy derived is a long-term policy,
which takes into account of the inflow transition probability and the forecast predictive
probability. These two probabilities together handle the inflow uncertainty and forecast
uncertainty.

7.8 Implications of the Operating Policy

The four performance indicators chosen, to study the performance of the system under a
given steady state operating policy are: reliability, resiliency, vulnerability and deficit ratio.
The discussion about the first two indicators is taken from Suresh (2002) and regarding the
last two, from Vijaykumar et al. (1996). Reliability of the system under a given policy is
defined as the probability that the system output is satisfactory (Hashimoto et al. 1982). The
second indicator resiliency, is given by the probability that the system’s output in period
t+1 is satisfactory, given that it is unsatisfactory in period t. Reliability and resiliency are
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determined from simulation by a relative frequency approach. The third indicator
vulnerability of the system under a given policy is defined as the ratio of the average of
the largest deficit occurring in the year for the system to the firm power committed for the
system. Vulnerability gives a measure of how large is the deficit. In this study vulnerability
is determined from simulation. The fourth indicator deficit ratio is defined as the ratio of the
total deficit to the total firm power commitment during the period of operation. This is used
to measure the effect of cumulative deficit.

7.9 Simulation

In order to determine a specific performance indicator for a given policy, the system is
simulated over several years. For this purpose 97 years of historical inflow data and the
associated forecasts are used. Simulation is done for different firm power commitments,
with the optimal policies derived with those firm power commitments. Performance
indicators for the different BSDP policies are listed in Table II. Also, simulation of the
system with the derived operating policy for the power commitment PTAR=270 MW is
carried out for different forecasts, viz., inflow forecasts resulting from an ANN rainfall
forecast, forecasts as mean values of monthly inflows, and perfect forecasts of inflows i.e.,
forecasts equal to historical inflows. In each case, all the four performance indicators are
estimated. These results are presented in Table IV. Like simulation of BSDP policy,
simulation with standard operating policy (SOP) has also been carried out for different firm
power commitments. The standard operating policy is to release an amount of water equal
to the total demand in period t, if possible. When it is not possible to meet the demand, all
the water in storage is released. If the availability of water (storage + inflow) exceeds the
sum of the demand and the capacity, the release is equal to the excess water available over

Figure 5 A typical policy plot
for the month of June, for Bom-
manahalli reservoir.
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the capacity. Performance indicators for SOP with different firm power commitments are
listed in Table III.

8 Results and Discussion

Optimal operating policy for KHEP Stage I has been derived with an objective function that
minimizes the expected value of squared deviations of total power generated from the total
firm power. The performance of the system should desirably result in high values for
reliability, resiliency and low values for vulnerability and deficit ratio. From the analysis
carried out, it has been found that, the total firm power commitment of 448.3 MW
(61.9 MW at Supa and 386.4 MW at Bommanahalli) results in low values of system
performance indicators. Tables II and III show that for firm power commitment of
448.3 MW BSDP has high vulnerability and deficit ratio as compared to those of SOP, but
the reliability is high for BSDP. Reliability gives the probability that a system is in
satisfactory state and vulnerability and deficit ratio give the measure of deficit when the
system fails. In the present case, the probability of failure is less for BSDP resulting high
reliability as compared to SOP, but when it fails the resulting deficit of BSDP is higher,
which results in high deficit ratio and vulnerability. A total firm power commitment of
270 MW (42.0 MW at Supa and 228.0 MW at Bommanahalli) results in reasonably
acceptable values of system performance indicators (Table IV). The reliability value of
72.23% indicates that the policy is reliable in maintaining the power generation closer to the
firm power requirement and therefore the implementation of this policy ensures a safer
performance of the system. The resiliency value of 67.49% indicates the system recovers

Table II Performance indicators for BSDP policy

Firm power commitment (MW) Reliability (%) Resiliency (%) Vulnerability (%) Deficit Ratio (%)

Supa Bommanahalli Total

61.9 386.4 448.3 40.5 29.62 96.67 45.39
50 240 290 64.75 49.76 77.77 17.34
42 228 270 72.23 67.49 66.11 11.3
30 195 225 85.98 76.69 32.44 4.04
25 170 195 92.26 83.33 13.18 1.46
20 130 150 96.13 84.44 9.45 1.06

Table III Performance indicators for SOP

Firm power commitment (MW) Reliability (%) Resiliency (%) Vulnerability (%) Deficit Ratio (%)

Supa Bommanahalli Total

61.9 386.4 448.3 26.05 16.05 95.97 41.74
50 240 290 60.1 22.2 78.85 21.89
42 228 270 41.19 18.57 49.04 13.5
30 195 225 27.26 11.7 36.28 20.56
25 170 195 29.66 11.98 39.03 21.62
20 130 150 36.89 13.35 36.62 17.85
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from the shock of the failure reasonably well. The vulnerability value obtained is 66.11%.
The high value for vulnerability signifies, that even though the failure periods are less,
wherever the failure occurs it results in a high deficit. The deficit ratio, which measures the
effect of cumulative deficit, has a value of 11.3%. Although the value of vulnerability is
high, which implies a high deficit, the cumulative effects of these deficits (deficit ratio)
across the period of simulation is less. Thus the small value of deficit ratio assures a safer
performance of the system. All these four performance indicators are computed for standard
operating policy also. It is quite obvious from the performance indicator values for SOP and
the BSDP model the BSDP policy is very much superior to standard operation. The values
of reliability and resiliency for BSDP policy are closest for the firm power 270 MW. This
implies that the preferable value of firm power commitment for KHEP Stage I is 270 MW.
It has also been observed that the optimal operating policies derived with BSDP do not
have much sensitivity towards the accuracy of forecasts as the values for system
performance indicators are almost the same for forecasts obtained with different models.
This implies the performance indicators remain unaltered irrespective of forecast variations.
The operating policy derived is a long-term policy, which takes into account the inflow
transition probability and the forecast predictive probability. These two probabilities
together handle the inflow uncertainty and forecast uncertainty. If the forecasts are perfect,
i.e., forecast uncertainty is zero, the likelihood (P[Ht|Qt]) matrix, which presents the
forecast uncertainty will get reduced to an identity matrix. Thus, the posterior flow
transition probability matrix, which is a function of the likelihood matrix, will get
transformed to a matrix containing only 1.0 and 0.0 entries in a symmetrical arrangement.
The predictive probability matrix, which is also a function of the likelihood matrix,
becomes identical to the prior flow transition probability matrix as the likelihood matrix
presenting the forecast uncertainty reduces to an identity matrix. In this case, the prior flow
transition probability matrix, as in classical SDP, plays the governing role in the DP
algorithm. On the other hand, when the forecasts are not perfect, i.e., when forecast
uncertainty exists, the likelihood matrix plays the governing role, and through Bayes law,
incorporates the forecast uncertainty in the optimization model. The less the resemblance
between the likelihood matrix and the identity matrix, the more BDT is needed to reduce
the forecast uncertainty. That means a poor forecast in model building results in more
iterations of BSDP to arrive at an optimal steady state policy.

9 Summary and Conclusions

A Bayesian Stochastic Dynamic Programming (BSDP) is developed to derive a steady state
operating policy for a multi-reservoir hydropower system. Storages of individual reservoirs

Table IV Performance indicators of the BSDP operating policy with the power commitment (PTAR)=
270 MW for different forecasting models

Forecasting
model

Firm power commitment
(MW)

Reliability
(%)

Resiliency
(%)

Vulnerability
(%)

Deficit ratio
(%)

Supa Bommanahalli Total

ANN forecast 42 228 270 72.23 67.49 66.11 11.3
Mean forecast 42 228 270 72.66 66.04 66.06 11.13
Perfect forecast 42 228 270 72.31 66.15 67.59 11.54
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at the beginning of period t, aggregate inflow to the system during period t, forecast for
aggregate inflow to the system for the next time period t+1, are the state variables. The
randomness of the inflow is addressed through a posterior transition probability of inflows.
Uncertainty in forecasts is addressed through both the posterior flow transition probability,
and predictive probability of forecasts. The model application is demonstrated through a
case study of the Kalinadi Hydroelectric Project (KHEP) Stage I, in Karnataka state, India.
Optimal operating policy for KHEP Stage I has been derived with an objective function that
minimizes the expected value of squared deviations of total power generated from the total
firm power. Four performance indicators—reliability, resiliency, vulnerability and deficit
ratio—are used to study the performance of the system under the policy. Simulations are
carried out with the BSDP policy for the power commitment of 270 MW using three
different forecasts, viz., inflow forecasts resulting from an ANN rainfall forecast, forecasts
as mean values of monthly inflows, and perfect forecasts of inflows i.e., forecasts equal to
historical inflows. From these simulations, it is observed that the operating policies derived
with the BSDP model are fairly insensitive to the accuracy of forecasts as the values of
system performance indicators are almost the same for simulated operations with forecasts
obtained from different models. This implies that the steady state policy derived with a
BSDP model may be used in situations where the forecasting skills are small due to impacts
of climatic variability or due to lack of adequate data (such as in the case of ungauged or
poorly gauged basins).
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