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A Bayesian Surrogate Model
for Rapid Time Series Analysis
and Application to Exoplanet Observations

Eric B. Ford*, Althea V. Moorhead! and Dimitri Veras?

Abstract. We present a Bayesian surrogate model for the analysis of periodic or
quasi-periodic time series data. We describe a computationally efficient implemen-
tation that enables Bayesian model comparison. We apply this model to simulated
and real exoplanet observations. We discuss the results and demonstrate some of
the challenges for applying our surrogate model to realistic exoplanet data sets. In
particular, we find that analyses of real world data should pay careful attention to
the effects of uneven spacing of observations and the choice of prior for the “jitter”
parameter.
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1 Motivation & Overview of Exoplanet Observations

Since the 1990s, nearly 500 extrasolar planets (or exoplanets) have been discovered
around other stars in our galaxy, yet only a few have been observed directly. In all
other cases, the planet’s presence has been inferred from its influence on the light of its
host star.

1.1 Doppler Observations

The most productive such method to date has been observing the Doppler shift of the
star light due to the gravitational perturbations of the planet. For a single planet
on a circular orbit, the Doppler signature arises from a sinusoidal variation in the
star’s velocity along the line of sight. More generally, a single planet causes a periodic
variation in the stellar velocity (v(t)) that follows the shape predicted by Kepler’s laws
of planetary motion, which can usually be well-approximated by the first few terms of a
Fourier expansion (Konacki and Maciejewski[1999). If the amplitude of the fundamental
term (with frequency f = 27/P, where P is the orbital period) in the Fourier expansion
of v(t) is Ky, then the coefficients of harmonic terms (with frequency nf) are of order
e" Ky, where e is the orbital eccentricity. Given the typical signal-to-noise of detections
and the typical exoplanet eccentricity of less than 0.3 (and often less than 0.1), the use
of as few as two terms in this Fourier expansion is often accurate to within observational
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uncertainties. If a star has multiple planets, its Doppler signature can be much more
complex. In some cases, the observed stellar velocities (vy) can be well approximated
as the linear superposition of multiple planets on Keplerian orbits. In other cases, the
planet-planet interactions cause effects comparable to the overall amplitude of the signal
and thus must be considered. In any case, the observational signature is quasi-periodic.
A common question is whether a planet model with N, planets is sufficient to describe
the available observations or whether the data demand at least N, +1 planets. While an
exploration of the full physical parameter space would be computationally prohibitive,
a lower dimensional surrogate model can be quite useful for analyzing such a system
(Veras et_al|201T).

1.2 Transit Timing Variations

Recently, an extremely promising new method of detecting exoplanets has burst on
to the scene. As a planet passes in front of its host star (i.e., a transit), the star’s
brightness appears to decrease. In an idealized two-body system, the mid-times of the
transits (t;) are strictly periodic at the orbital period (P), so the kth transit occurs at
time t = tg + k x P. If there are additional planets, then the times of the transits
deviate from a linear ephemeris (Agol et al.2005; Holman and Murray| [2005; Ford
and Holman 2007). The perturbations of an additional planet can cause deviations of
the transit times that are simply sinusoidal in time, a periodic non-sinusoidal pattern
or a very complex quasi-periodic waveform (Figures (1l and 2; Ford and Holman/ 2007
Nesvorny and Morbidelli2008; Nesvorny 2009; Nesvorny and Beaugé|2010). While it is
impractical to explore all the parameters of a full physical model, a lower dimensional
surrogate model may be able to help identify regions of parameter space that merit
further investigation with a full physical model.

1.3 Relation to Previous Research

In this manuscript, we present a new method for analyzing periodic time series data
using a computationally efficient Bayesian surrogate model. The details of our model
are chosen to facilitate the analysis of exoplanet observations. We test our model by
analyzing Doppler and transit timing data sets. Thanks to the computational efficiency
of our algorithm, it is possible to apply it to a large library of simulated data sets to
understand how the model performs for different types of planetary systems.

Astronomers routinely apply Markov chain Monte Carlo (MCMC) techniques to
perform Bayesian parameter estimation when analyzing Doppler observations of an ex-
oplanet host star (e.g., Ford [2005; Gregory 2005)). For multiple planet systems, MCMC
methods are computationally intensive, even when the model evaluation is performed
ignoring the gravitational interaction between the planets. While this is a good ap-
proximation for analyzing the Doppler observations of many systems, mutual planetary
interactions can be quite significant for planetary systems near a mean motion resonance
(e.g., planets b and ¢ in the GJ 876 planetary system; Laughlin et al.[2005). Full n-body
integrations to account for these mutual planetary interactions are much more computa-
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Figure 1: In this figure, we show the transit timing signature for a series of two planet systems,
each extending for 3.5 years, the nominal mission lifetime for NASA’s Kepler space observatory. In
each case, transit times are for a 20 Earth-mass planet following an initially circular orbit with a star-
planet separation of approximately 0.05AU. (One AU is the average distance between the Earth and
the Sun). In each case, there is an additional 2 Earth-mass planet (which we assume is not observed
to transit) following a slightly eccentric orbit (e2 = 0.1) and an initial mean star-planet separation of
0.078AU (upper left), 0.080AU (upper right), 0.080AU (middle left), 0.082AU (middle right), 0.084AU
(lower left) or 0.086AU (lower right). These separations are near the location of the 1:2 mean motion
resonance (=~ 0.0794AU). Note that the vertical axis scale changes from row to row. Even these small
changes in the orbital separation result in qualitative changes in short- and long-term structure of the
transit timing variations. Here we show simulated data from full n-body integrations with no data
gaps and no measurement uncertainties. In practice, even Kepler misses some transits (e.g., due to
data downlink with Earth, spacecraft abnormalities) and the transit timing measurements have noise of
~ 1073 —10~2 days, depending primarily on the brightness of the target star and the size of the planet.
For some planetary systems (e.g., Kepler-9 b&c, Holman et al.[2010) or triple star systems (Carter et al.
2011} [Slawson et al.[201T} [Steffen et al.[2011)), the amplitude of the transit (eclipse) timing variations is
much larger than Kepler’s measurement uncertainties. For other planetary systems (e.g., Kepler-11 b-f,
Lissauer et al.l2011Db)), the magnitude of transit timing variations are comparable to the measurement
uncertainties. We expect the Bayesian approach and our surrogate model to be most useful for such
systems, once a sufficient number and timespan of observations have been collected. For many systems
with no detectable transit timing variations, statistical methods such as those described here will play
an important role in establishing the significance of non-detection and the implied upper limits for the

mass of any perturbing planets (e.g., [Steffen and Agol 2005).
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Figure 2: This figure is similar to Figure [1, except the the outer planet has been moved
closer to the transiting planet. In each case, there is a 2 Earth-mass planet (which
we assume is not observed to transit) following a slightly eccentric orbit (es = 0.1)
and an initial mean star-planet separation of 0.062AU (upper left), 0.063AU (upper
right), 0.064AU (middle left), 0.065AU (middle right), 0.066AU (lower left) or 0.067AU
(lower right). These separations are near the location of the 2:3 mean motion resonance
(>~ 0.0655AU). Note that the vertical axis scale changes from row to row. Again, even
these small changes in the orbital separation result in qualitative changes in short- and
long-term structure of the transit timing variations.



E. B. Ford, A. V. Moorhead & D. Veras 479

tionally demanding. One approach is to develop and parallelize computationally efficient
methods that allow one to use full n-body integrations (e.g., Johnson et al.[2011)). While
the GJ 876 data set has many high signal-to-noise observations, most exoplanet host
stars have fewer observations and lower signal-to-noise, resulting in weak constraints
on many physical model parameters and making it even more difficult to sample these
parameter spaces using MCMC. The use of a lower-dimensional surrogate model has
the potential to contribute to the analysis of such systems by identifying the periodici-
ties that are statistically significant without introducing several additional parameters
that are poorly constrained. Similar methods are routinely applied in a frequentist con-
text to identify planet candidates from Doppler observations (Cumming et al.|2008).
Our Bayesian surrogate model can be thought of as a Bayesian generalization of the
Lomb-Scargle periodogram (Cumming|2004) that has been further generalized to allow
for multiple frequencies, perhaps due to the perturbations from additional planets or
perhaps due to significant eccentricity (Konacki and Maciejewski|[1999). Previously,
a much more restricted version of the surrogate model (Nfmax = 1, Ngmax = 0, see
§2.2) was used to evaluate strategies for scheduling Doppler observations (Fordl2008).
The generalization in this manuscript allows for identifying multiple periodicities, as is
necessary for application to eccentric and/or multiple planet systems.

We are optimistic that the surrogate model has even more potential for contributing
to the analysis of transit timing variation data. In the transit timing variation method,
the entire signal is due to the mutual gravitational perturbations. Given the highly non-
linear nature of the problem (particularly near resonances), a physical model requires
performing computationally expensive n-body integrations. While it might be practical
to perform MCMC sampling around one mode of the posterior distribution while using
full n-body integrations, it is not practical to perform a brute-force global search of
the high-dimensional parameter space while using full n-body integrations (Veras et al.
2011). The evaluation of our surrogate model is orders of magnitude faster than an
n-body integration. Additionally, the surrogate model is linear in most of its model
parameters, allowing for efficient identification of the modes and integration over linear
parameters, once we condition on the non-linear parameters. (We perform integration
over non-linear parameters via brute force, as described in the supplementary materi-
als.) The speed of the surrogate model makes it well-suited to exploring a broad range
of possible orbital configurations. Once the surrogate model identifies significant peri-
odicities, n-body integrations can be used to perform a more detailed exploration of the
full physical models in regions which could produce the periodicities identified by the
surrogate model. We present results of our Bayesian surrogate model applied to simu-
lated transit timing data and discuss the implications of our results for the prospects of
transit timing-based planet searches.
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2 Bayesian Surrogate Model for Analysis of Quasi-Periodic
Time Series

2.1 Data

First, we describe our general model for analysis of quasi-periodic time series. In the
case of Doppler observations, the independent variable (z) would correspond to time
(t) and y would correspond to the star’s velocity (v(t)). In the case of transit timing
observations, x would correspond to the transit number and y would correspond to
the mid-transit time. Each observation (yi) is accompanied by an estimate of the
measurement uncertainty (o). The independent variables (i.e., transit number or time
of each observation) are assumed to be known precisely.

2.2 Model

We explore the use of a surrogate model given by

Nf Nd
y(ag; 0) = Z [Sisin (27 fixg) + Cjcos (27 fixg)] + Z Dt (1)
i=1 1=0

where z is the independent variable for the kth observation and and y(x;0) is the
predicted value of the observable based on the surrogate model with parameters 6. In
the final sum, the superscript ¢ is the exponent. The surrogate model parameters 6
include 1) the number of frequencies Ny in the surrogate model, 2) the frequencies f;,
3) the amplitudes S; and C; for those periodicities, 4) the order N4 of the polynomial
terms, and 5) the polynomial coefficients D;. This model exactly describes time series
which are the superposition of polynomial and sinusoidal signals. The surrogate model
can be used for Bayesian model comparison to determine how complex a model (i.e.,
how many frequencies and/or polynomial terms) is justified for a given data set.

In principle, one could consider alternative basis functions. We favor the use of
sinusoids since they exactly describe the gravitational perturbation of a planet following
a circular orbit (and non-interacting with other planets). Further, a sinusoid often
provides a good first approximation to the perturbation of a planet on an eccentric orbit,
given typical eccentricities and measurement precision. In practice, we will truncate
the model to use just a few frequencies and polynomial terms, so as to provide an
acceptable model for the observations while facilitating the efficient evaluation of the
model. If observations span a sufficiently long period of time, then there is no need
for polynomial terms. In practice, the orbital period of an outer planet (e.g., Saturn
29.5 years, Neptune 165 years) can be much longer than the time span of observations
(typically ~1-10 years). If the orbital period is much longer than the time span of
observations then a simple linear term (constant radial acceleration for Doppler data)
is all that can be discerned from the available data. In the case of a planet on a circular
orbit, the “jerk” (i.e., derivative of acceleration) becomes significant as the time span of
observations approaches a quarter of the orbital period. For the general case of a planet
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on an eccentric orbit, the jerk can become evident after a greater or lesser duration,
depending upon the orientation of the orbit and phase of the observations. In either case,
we cannot infer the physical parameters with just two derivatives measured, as these are
insufficient to characterize an orbit that requres more parameters to fully specify (seven
physical parameters in general, and at least three even if we arbitrarily assume a circular,
coplanar orbit). In these cases, using only one or two polynomial terms dramatically
increases the computational efficiency, since they eliminate the need to explore a large
number of frequencies. Another advantage of the polynomial basis is that a simple linear
term corresponds to the Doppler perturbation from a body sufficiently distant that its
orbital motion is insignificant over the time span of observations. A quadratic term
corresponds to physical motion of the perturber over the time span of observations.

In cases where the time span of observations is sufficient to discern a third polynomial
term, it becomes more difficult to justify a polynomial model. On one hand, a cubic term
is still much less computationally demanding than considering an additional harmonic
term (see §2.5). On the other hand, according to our physical model, all signals are
periodic on sufficiently long timescales and three derivatives are sufficient to constrain
the range of plausible periods and amplitudes. While three derivatives are not sufficient
to infer the shape of the waveform, in many cases (e.g, a distant planet on nearly
circular orbit) a simple sinusoid is a reasonable first approximation. Therefore, we favor
considering a model with an additional harmonic term over including three or more
polynomial terms.

2.3 Likelihood

We take the likelihood of each observation to be
Li(k, Yk, 0k |0) = N(yx — y(zx; 0), 07 + 07) (2)

where N(u,0?) is a normal distribution with mean g and variance o2. Here 6 =
{Nf,fl, o fN; 81, 8N, Cy . CNyy Na, Do, ...DNd,O'j}. Note that we have expanded
the set of model parameters (#) to include o, a “jitter” parameter that is related the
amount of scatter that is not accounted for by the observational uncertainties. The
origin of the jitter need not be specified. It could be due to inaccurate estimates of
the observational uncertainties or physical effects that are not included in a particular
model (e.g., star spots, p-modes, additional planets).

We assume that the observational errors are uncorrelated in time, so the likelihood
for a data set of N,ps observations is given by

Nops

L(0) = ] Lr(zr, vk, 0xl6) . (3)
k=1
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2.4 Priors

In principle, one might aim to choose priors that are based on the distribution of masses
and orbital periods for exoplanets. Of course, characterizing those distributions is one
of the primary motivations to conduct exoplanet searches. While exoplanet searches
have detected hundreds of planets, most of these have masses comparable to Saturn or
greater and orbital periods of a few years or less (Cumming et al.2008). Inevitably,
astronomers pushing the frontiers of knowledge (e.g., searching for less massive planets)
will not know the intrinsic distribution of those planets’ orbital properties. Thus, we
choose broad priors based on physical intuition and mathematical principles, as outlined
in this section.

For the number of frequencies in the surrogate model, we adopt the following prior:
p(Ny) = (1 — 20+ a}\fmax)/(l —a) for Ny =0, p(Ny) = a7 for 0 < Ny < Ny max,
and p(Ny) = 0 for Ny > Njfmax, where o parametrizes our prior belief about the
likelihood of multiple frequencies in the signal. The maximum number of frequencies to
be considered (Nfmax > 1) is chosen so as to provide enough complexity to model the
data while keeping the model evaluation practical. The choice of a geometric probability
for an increasing number of frequencies has the advantage that the prior ratio p(N; =
n+ 1)/p(Ny = n) is independent of n (as long as n+ 1 < Ny max). If we associate
each frequency with one planet and consider planet detection serially (i.e., first look for
evidence of one planet, next look for evidence of another planet), then the minimum
Bayes factor to have a significant detection of each successive planet is constant.

The prior for the frequencies themselves are given by p(log f;) ~ U(log fumin, 10g fmax),
where U(a,b) is a uniform distribution between a and b. For our applications, there
are physical limits on the range of viable frequencies. For example, fiax could be set
by the shortest orbital period in which a planet would be able to survive for the age of
the star, and fuin could be set by the longest orbital period in which a planet would
be able to remain bound for the age of the star given perturbations from the galactic
tidal field and passing stars. In most cases, the time span of observations (T,ps) will
not be sufficient to distinguish such long-period signals from a low-order polynomial.
Thus, we typically set fmin ~ 2/Tops, as the surrogate model is still able to model slow
variations and this aids in the rapid evaluation of the surrogate model. Our choice of a
prior that is flat in the logarithm of the frequency is motivated by the maximum entropy
prior for a scale parameter. We also experimented with a modified Jeffreys prior. We
found no significant difference in the results, as long as there is a significant detection.
This can be understood simply in terms of the characteristic width of the peaks in the
likelihood which are much smaller than the domain of the frequencies. Thus, as long
as the prior for frequency has significant support across the entire domain, the choice
of the prior for frequency has minimal impact on the shape of the posterior (in loca-
tions with significant posterior probability) unless there is not significant evidence for
any periodicities. While we do not attempt to justify our choice of prior based on the
distribution of exoplanet orbital periods, we note that this alternative approach would
result in a fairly similar choice of prior, at least for frequencies between ~1/(2 days)
and ~1/(2000 days) (Cumming et al.[2008).
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Each of the frequencies (f;) has an amplitude 4; = /S? + C? and a phase ¢; =
atan2(—S;, C;). We choose a uniform prior for each phase, p(¢;) = 1/ (27). Physically,
this corresponds to time invariance; i.e., the other planetary system does not know what
time we choose to label as t = 0. For A;, the total amplitude at frequency i, we adopt
a modified Jeffreys prior, p(A;) ~ (1+A;/A,) " for 0 < A; < Apmax, where Apax
is the maximum plausible amplitude. For application to Doppler observations, Apax
could be set by the maximum velocity perturbation by a planet (or binary star). For
application to transit timing variations, An.x could be set by the orbital period. Note
that, in principle, Apax could be a function of f;. The other parameter, A,, prevents a
divergence of the prior at small amplitudes. For some applications A, may be physically
motivated. For our applications, we choose A, based on the minimum detectable signal
based on the available data set, e.g., A, ~ <1/ai2>71/2, where <1/O’Z-2>71/2 is effectively
the weighted average measurement precision. In practice, we find that any sufficiently
small choice of A, and large choice of A.x gives similar results for parameter estimation
for a given Ny. The choice of A,, Anax and a do affect the marginalized posterior
probability ratio for Ny.

For our typical applications, the total signal amplitude is proportional to the mass
of the planet. While we do not attempt to justify our choice of prior based on the
distribution of exoplanet masses, we note that this alternative approach would result in
a fairly similar choice of prior, at least for readily detectable planets (e.g., more massive
than Saturn for Doppler surveys). Present observations are only beginning to provide
significant constraints on the distribution of planet masses for low-mass planets at small
short orbital periods (<50 days) (Howard et al.[2010; Borucki et al)2011; [Youdin/201T).

We implement the above by using a “two-dimensional modified Jeffreys prior” for
each pair of amplitudes S; and C;,

p(S:, C;) =1/ [47N/S¢2 + C2log (1 4+ Amax/As) (1 +4/5% + CE/AO)] (4)

for\/S2 + C? < Amax,

and p(S;, C;) = 0 for /S? + C? > Apax. Inspection of Eqn. 4 shows that it is essentially
a modified Jeffreys prior for the total amplitude A;.

For the number of polynomial terms in the surrogate model, we adopt a prior similar
to that for the number of frequencies: p(Ny) = (1 — 28+ gNamax—1) /(1 — B) for Ny = 1,
p(Ng) = BNe71 for 1 < Ng < Ngmax, and p(Ng) = 0 for Ny > Ngmax, where 3
parametrizes our prior belief about the likelihood of higher order polynomial terms being
present in the signal. For our applications, the maximum polynomial order considered
(Ndmax > 1) is typically set to 1 and rarely more than 2. The choice of a geometric

probability for an increasing number of polynomial terms has the advantage that the
prior ratio p(Ng = n+1)/p(Ng = n) is independent of n (as long as n+1 < Ny max)-

For both the jitter and the polynomial coefficients, i.e., each of B € (D;, o;), we
adopt a modified Jeffreys prior,

p(B) = 1/[2|B|log (1 + Bmax/Bo) (1+|B[/B,)],  |B| < Bumax, (5)
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where B, and By.x are analogous to A, and An.x. We adopt the same values as
for A, and Apax. For some data sets, it may be wise to choose a smaller B,, as
the minimum measurable magnitudes for the D; depend on the effective measurement
precision, the number of observations and the time-span of observations. In many
cases, the amplitude of long-term trends is proportional to the perturbing planet’s
mass, motivating a prior p(D;) that is concentrated at small signals and that has a
similar shape to the prior for the amplitudes. We also tried using a uniform prior,
p(D;) = 1/(2Amax) for |D;| < Amax. In practice, the likelihood is very sharply peaked
in D1, so results are not sensitive to the choice of its prior. We have only begun to
experiment with the surrogate model for Ny = 2 (based on discussion at end of §2.2),
and caution that further experimentation may be needed for models with Ny > 2.

In this manuscript, we present results based on a modified Jeffreys prior, as the jitter
is a scale parameter and we have physical reason to limit p(c;) at small values of ¢, once
it becomes small compared to the measurement precision or astrophysical effects that
can cause non-gravitational perturbations to the Doppler or transit timing signal (e.g.,
non-uniform star spots). However, we found that in some cases our results could be
sensitive to the prior for the jitter (Payne and Ford[2011)). For example, either imposing
an upper cutoff on the prior for o; at ~ 10m/s or using a normal distribution for p(c;)
can significantly increase the posterior probability for Ny = n + 1 relative to that of
Ny = n or narrow the range of allowed amplitudes. Previous studies of the empirical
distribution of Doppler jitter are based on relatively small samples sizes (Wright|2005)),
so they have little to say about the tails of the distribution. Based on our results, we
encourage further observations and statistical analyses that could inform the choice of
prior for o;.

2.5 Numerical Evaluation of Model and Posterior PDF

The surrogate model was designed to provide a good approximation to Doppler or tran-
sit timing observations and is likely to provide a reasonable approximation of many
other time series. A second important feature of the surrogate model is that it permits
efficient evaluation. Several tricks to perform an efficient brute force integration are
described in the supplementary material. A key feature of the model is that for given
values of Ny, Ny, the f; and o, the model is linear. Thus, the integration over the re-
maining parameters can be performed via linear algebra and the Laplace approximation.
Marginalizing over ¢; and the f; can be performed using standard numerical techniques.
By evaluating the model conditioned on Ny and N4 and marginalizing over the remain-
ing parameters, one can compare the marginal posterior probabilities to identify values
of Ny and N4 that provide a good model for the observations without introducing more
model parameters than are justified given the available data. For our typical applica-
tions, the posterior is dominated by small values of Ny and Ny, so higher values need
not be considered explicitly. Since the surrogate model can be integrated numerically,
it provides a quantitative basis for Bayesian model comparison and/or model selection.
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3 Discussion of Application to Exoplanet Observations

3.1 Doppler Data

One common challenge for exoplanet searches is deciding when the available data pro-
vides sufficient evidence to constitute a planet discovery. This is particularly challenging
in the case of stars with multiple planets, as the data can always be better modeled
by adding additional planets. The Fourier decomposition of the Doppler signature of
a planet is dominated by power at the frequency (1/P) corresponding to the orbital
period (P). The power at the harmonic frequencies, 2/P, 3/P, ..., A\/P, decreases as
e*~1, where e is the orbital eccentricity. The eccentricity for an ellipse is constrained to
(0,1) and most known exoplanets have eccentricities smaller than 0.15. Thus, applying
the Bayesian surrogate model to Doppler data sets is expected to result in a posterior
distribution for the most significant frequency (f1) near one over the orbital period of
the planet which dominates the Doppler signature. The second most prominent fre-
quency (f2) could correspond to a harmonic of the first planet or to the orbital period
of a second planet. Some planetary systems contain two planets with orbital periods
that differ by a factor of nearly 2 (e.g., Laughlin et al.[2005; Wright et al|201T}; Lissauer
et al.2011Db)). For certain planet masses and eccentricities, the Doppler signature of two
such planets can be mimicked by one planet with a more eccentric orbit (Giuppone et al.
2009; [Anglada-Escudé et al.[2010; [Moorhead and Ford2010). If there is actually only
one planet, then one would expect the next most prominent frequency to correspond
to twice the fundamental frequency (fo = 2 x f1) to within measurement precision.
On the other hand, for systems that actually contain two planets, the sidereal orbital
periods often deviate from exact resonance (Lissauer et al. [2011b). One might hope
that in cases where the ratio of orbital periods differed from two, that the surrogate
model could recognize this difference (§ = f2 —2 x f1), so one could infer that the
observations were due to two planets, rather than one planet on a more highly eccentric
orbit (Giuppone et al.|2009; Anglada-Escudé et al.|2010; Moorhead and Ford [2010).

To explore this possibility, we applied the Bayesian surrogate model to several sets
of Doppler observations of exoplanet host stars. We focused on exoplanets with large
velocity amplitudes and believed to have a significant eccentricity, as those systems
provide the best prospects for measuring the harmonic frequencies precisely. In partic-
ular, we choose systems with Ke? > 3m/s, where K is the velocity amplitude and e is
the orbital eccentricity. In all cases, the surrogate model efficiently found the funda-
mental frequency corresponding to the orbital period. As expected, fi is very tightly
constrained and the marginalized posteriors for additional frequencies are significantly
broader. In some cases, we found that the marginalized posterior for f; did not corre-
spond to 2 X fi.

In order to determine how often f; deviated from 2 x f; by chance, we performed a
similar analysis on several simulated data sets. Each simulation was modeled on simu-
lated velocities that were calculated according to the best-fit orbital period, amplitude,
eccentricity, arrangement of pericenter and orbital phase. We added Gaussian measure-
ment noise with a scale set by the claimed measurement uncertainty. The results for
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one case (HD 162020) are shown in Figures [3 and [4. If we use the same observation
times and uncertainties as the actual observations, then the marginal posterior distri-
butions for P, = 1/f; and P, /2 = 2/f; do not overlap. If we generate a similar data
set, but with random observation times, then the marginal posterior distributions for
P, =1/fy and Py /2 =2/ f; do overlap. We conclude that one must be very cautious of
aliasing due to unevenly spaced observations when interpreting the marginal posterior
distributions for the f; for realistic data sets.

Our results suggest that the problems of aliasing could be reduced by obtaining
regularly (or randomly) spaced observations. Unfortunately, this is impractical for ob-
servations made from the surface of the Earth. First, observations can not be made
when the Sun is above the horizon (or even less than ~ 12° below the horizon) due to
scattering of sunlight by Earth’s atmosphere. As the Earth revolves around the Sun, the
time of day at which a given star can be observed from a given site changes. For most
stars, there are multiple months each year when high-precision Doppler observations
are not possible, since the star appears too close to the sun (after projecting onto the
sky). Thus, for most stars, Doppler observations are prone to aliasing at frequencies as-
sociated with the solar day and the solar year. (In principle, observations of stars near
the North or South pole from an observatory in the Arctic or Antarctic could avoid
aliasing near the day. However, there are no observatories with high-precision Doppler
capability near either pole due to logistical issues.) Second, while planet host stars
are faint compared to the daytime sky brightness, they are much brighter than distant
galaxies. Therefore, time allocation committees assign the vast majority of observing
time near new Moon to extragalactic astronomers. Exoplanet searches are typically
assigned observing time near full Moon, introducing aliasing at frequencies associated
with the lunar month (~ 29.5 days). In practice, the best way to avoid this is to
dedicate an observatory to Doppler observations (e.g., the HARPS instrument at the
European Southern Observatory’s 3.6m telescope in La Silla, Chile). Of course, this
requires considerable resources and is not an option for the world’s largest telescopes.
Third, astronomers often attempt to optimize the efficiency of their observations on
a given night by observing each star when it is near the greatest (angular) altitude
in the sky that night, as this minimizes the amount of absorption of starlight by the
Earth’s atmosphere. This strategy introduces yet another frequency associated with
the sidereal day (i.e., the time for a star to return to the nearly same point on the sky
from a given location, roughly 23 hours, 56 minutes and 4 seconds). While these may
seem like picky details, each of these timescales can be found in public data and in
some cases contribute to qualitative ambiguities in the orbital solutions (Dawson and
Fabrycky [2010). While attention to scheduling can help improve efficiency of planet
searches, ultimately weather (i.e., cloudy skies) will lead to data gaps and prevent op-
timal experimental design for any Earth-based observatory. Space-based observatories
are orders of magnitude more expensive to construct and operate. Therefore, we must
develop tools to analyze realistic data sets. Studies such as this will help us to use those
tools responsibly and reduce the risk of making erroneous claims.
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Figure 3: In this figure, we consider a simulated data set based on the best-fit orbital
parameters for the exoplanet HD 162020. We show the marginalized posterior probabil-
ity distributions for P;/2 = 2/f; (red; very narrow distribution) and P, = 1/f5 (blue;
broad distribution) from a surrogate model with Ny = 2. Based on the Fourier expan-
sion of the Doppler signature of a planet on a Keplerian orbit, one would expect that
the surrogate model would yield marginalized posterior probability distributions for f;
which overlap marginalized posterior probability distributions for f;/2. We find that
this is not necessarily the case, even for this simulated data set with high signal-to-noise,
uncorrelated Gaussian measurement errors and accurate estimates of the measurement
uncertainties. For this calculation, we have used the actual times of observations.
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Figure 4: This figure is analogous to Figure 3, except that the observation times are
chosen randomly. In this case, the posterior for P, = 1/fs (blue; broad distribution)
overlaps with the posterior for P, /2 = 2f; (red; narrow distribution), as expected for a
Keplerian orbit. Contrast this with Figure |3l which uses actual observation times. We
conclude that for realistic Doppler data sets, aliasing due to the limited number of the
unevenly spaced observations can result in the marginal posterior distributions for f; /2
and fy not overlapping. This poses a considerable challenge to testing the one-planet
model based on the dominant frequencies.
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3.2 Transit Timing Variations

The rapidly increasing number of known exoplanets that transit their host star has
led several observers to measure transit times in hopes of detecting deviations from a
linear ephemeris due to perturbations by another (potentially non-transiting) planet
(e.g., Miller-Ricci et _al. [2008; Maciejewski et al./[2010). In most previous studies, the
number of precisely measured transit times has been insufficient to fit a physical model.
The prospects for the transit timing variation method are poised to improve dramat-
ically thanks to NASA’s Kepler mission, which is observing over 100,000 stars nearly
continuously for 3.5 years (Borucki et al|2011; [Steffen et al.2010). Indeed, Kepler re-
cently reported the first strong evidence for transiting timing variations in Kepler-9 and
Kepler-11 systems (Holman et al.l 2010} Lissauer et al.[2011a). Interestingly, in both of
these cases, transit timing variations were used to confirm planet candidates that had
already been identified via transit and to constrain their masses and orbits. Kepler has
also identified dozens of planet candidates with putative transit timing variations (Ford
et_al.2011]). However, further observations are needed in order to infer the mass and
orbital properties of the perturbing bodies.

In principle, one could model the full light curve (i.e., observed brightness versus
time; [Carter et _al.2011). However, this would vastly increase the computational time
required and most of the information is contained in the transit time. (Using data from
NASA’s Kepler mission, there are typically ~ 102 — 107 brightness measurements for
each transit time.) The transit time is the most precisely measured parameter for each
transit, and the transit times are sensitive to whether the transiting planet is slightly
ahead or behind “schedule” due to gravitational perturbations from other planets. The
next best-measured parameter is the transit duration which depends on the orbit of
the transiting planet and the stellar radius (Moorhead et all2011). The depth of each
transit is primarily determined by the relative sizes of the planet and host star and is
not affected by gravitational perturbations of other planets. The detailed shape of each
transit also depends on detailed stellar properties (“limb darkening parameters”). For a
system of non-coplanar planets, transit duration variations may be detectable. We have
focused our analysis in this paper on coplanar systems viewed edge-on, so as to reduce
the dimensionality of the parameter space to be explored. While more parameters are
required to describe non-coplanar systems, in some cases it may be possible to derive
additional constraints on the orbits based on transit duration variations, or lack thereof
(Holman et _al/2010). Given the computational cost of modeling the full light curve,
we recommend future research to develop tools to analyze a series of transit times and
transit durations.

To explore the potential for transit timing variations to enable the detection of a
non-transiting planet, we have generated ~ 107 simulated data sets with a wide variety
of orbital periods, eccentricities and angles (Veras et al.[2011]). We apply the surrogate
model to simulated data sets to identify the dominant frequency and its amplitude.
We find that the surrogate model can provide an accurate model for some data sets,
particularly those very near a mean motion resonance, a regime which is particularly
difficult to approximate analytically (Nesvorny and Morbidelli 2008} Nesvorny| 2009}
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Nesvorny and Beaugd|2010)). In other cases, the transit timing variation signature is
more complex and would require several frequencies to model adequately. For extended
data sets, this can be challenging, both due to computation time and available memory.

While the surrogate model can provide a reasonable approximation to many tran-
sit timing signatures, the inferred model parameters depend sensitively on the orbital
phases, as well as more basic physical parameters such as the planet mass and orbital
period. Further, as one increases the number of observations, the inferred parameters
often change significantly. This significantly complicates the interpretation of the sur-
rogate model outputs. While the inferred model parameters will eventually stabilize
with a sufficient number and time span of observations, we find that inferred parame-
ters can continue to change even after several years of observations. We conclude that
it may not always be practical to invert transit timing variations and infer the mass
and orbital properties of a non-transiting planet (Ragozzine and Holman|2010). A
more extended discussion of implications for transit timing planet searches is presented
separately (Payne et al.|2010; Veras et al. 2011). Of course, our results do not prove
that other analysis techniques can not invert transit timing variations. However, our
surrogate model was designed to capture the most important aspects of the problem.
Thus, our results are suggestive that this problem may be more general. Since the
original submission of this paper, the first confirmations of exoplanets via the transit
timing variation methods were published (Holman et al2010; Lissauer et al.l2011a).
In these cases, each of the detected planets transit the star, so transit timing varia-
tions were used to confirm planet candidates that had already been identified by the
standard transit technique. Ford et al. (2011) showed that Kepler can be expected to
measure transit timing variations for at least 12 systems with multiple transiting planet
candidates. Based on analysis of the frequency of multiple transiting planet candidate
systems (Lissauer et al.2011b), we expect that even more planets with transit timing
variations will be significantly perturbed by a non-transiting planet. Indeed, based on
the first four months of observations, Kepler has identified dozens of planet candidates
with prospective transit timing variations, most in systems with only a single transiting
planet candidate. Both our results and [Ford et al.l (2011) suggest that further observa-
tions will be necessary before the masses and orbits of putative additional planets can
be determined.

3.3 Conclusions

We developed a Bayesian surrogate model for analysis of time series data in general and
applied this model to two types of exoplanet search data, Doppler and transit timing
variations. The surrogate model can be evaluated very rapidly and we describe a method
for efficiently integrating over most model parameters. This allows for calculating the
(properly normalized) marginalized posterior probability and assessing the posterior
probability for a given periodicity.

One strength of the surrogate model is for exploratory data analysis. For exam-
ple, astronomers routinely use the Lomb-Scargle periodogram to search Doppler data
for a periodic signature of a planet and to identify the range of periods that should
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be explored with a more detailed model. One limiting case of the surrogate model
(N¢max = 1 and Ngmax = 0) directly corresponds to the Bayesian generalization of the
Lomb-Scargle periodogram (Cumming2004). When a planet has a large eccentricity or
one star hosts multiple planets, the Lomb-Scargle periodogram typically reveals multi-
ple significant periodicities. Previously, astronomers have dealt with this by applying
the Lomb-Scargle periodogram to the residuals after subtracting the best-fit sinusoidal
or Keplerian model. This approach can bias subsequent results, since the subtracted
model is not exact. Further, assessing the significance of peaks in the periodogram of
residuals is nontrivial. Most authors use a blind approach when searching for additional
periodicities, but others favor using information about the frequencies previously identi-
fied (e.g., Konacki and Maciejewski[1999; Dawson and Fabrycky 2010). In practice, this
can lead to a cumbersome decision tree in a frequentist context. Our surrogate model
(with Nt max > 1) represents a Bayesian generalization of iterative frequentist methods
for analyzing periodogram of residuals. The Bayesian surrogate model provides a rigor-
ous basis for calculating Bayes factors of the marginalized posterior probability for the
number of significant frequencies By, 41, = p(Ny = n+1|z,y,0)/p(Ny = n|z,y,0). An-
other advantage of the surrogate model is that by marginalizing over the other model
parameters (e.g., frequencies, amplitudes, jitter, polynomial terms), a spurious false
positive should be less likely than analyzing residuals to only the best-fit model.

Finally, for many systems the surrogate model can provide a lower-dimensional model
that still captures the important (i.e., observable) physical effects. For example, in a sys-
tem of multiple low-mass planets, a full physical model has a dimension of ~ 7.V,,, where
N, is the number of planets. If the system has planetary orbits with small eccentricities
and/or inclinations, then several of the model parameters may have no observable effect.
For such systems, the surrogate model would be able to describe the system accurately
using a lower-dimensional parameter space (=~ 3N,), greatly increasing computational
efficiency and perhaps increasing the sensitivity for detecting additional planets (due to
the less extreme Occam’s factor).

The surrogate model is not meant to replace other tools for Bayesian parameter
estimation and model selection. It is still beneficial to apply MCMC (and variants) for
parameter estimation using a more physical model (e.g., Ford 2005} Gregory 2005} [Ford
20006; lJohnson et al.l2011). Similarly, tools such as restricted Monte Carlo, importance
sampling and parallel tempering can be helpful for calculating Bayes factors using a more
physical model (e.g., Ford and Gregory 2007; Gregory|2011). Since these tools are much
more computationally expensive than the surrogate model, they are most appropriate
once a putative set of orbital periods has been identified (e.g., by periodogram analysis,
surrogate model, or human inspection for sufficiently large signals).

Thanks to the computational efficiency of the surrogate model, we were able to
analyze numerous simulated datasets including multiple planet systems, something
that would not have been feasible using previously available Bayesian methods such
as MCMC. For Doppler planet searches we find that realistic observing cadences can
lead to significant aliasing that prevents precisely testing whether there is a harmonic
relationship between measured frequencies. Given the close relationship of our surrogate
model to the widely used Lomb-Scargle periodogram, our results also serve as caution
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regarding the integration of results based on periodogram analyses (e.g., Konacki and
Maciejewski|1999; |Anglada-Escudé et al.|2010; Dawson and Fabrycky|2010]).

For analyzing transit timing variations, we find the posterior distributions for the
surrogate model parameters are sensitive to the exact orbital configuration. While the
sensitivity to important physical parameters is advantageous, sensitivity to parameters
that do not have dynamical significance makes interpretation of the posterior distri-
bution for surrogate model parameters more challenging. Unfortunately, the transit
timing signature often evolves on a timescale comparable to or longer than a realistic
time span for observations (e.g., 3.5-10 years for Kepler). This makes it impractical
to build a library of possible transit timing signatures and the corresponding surrogate
model outputs. The surrogate model may still be useful for establishing the significance
of putative periodicities and/or long-term trends in transit timing data. In addition
to the advantages of a Bayesian approach, the computational efficiency of the surro-
gate model could be useful for analyzing large sets of simulated data sets to aid in
interpretation of a transit timing variation planet search.

In both cases, we find that qualitative results (e.g., whether the Bayes factor, B, 541,
for the significance of an additional frequency is greater or less than unity) can depend
on the choice of prior for the jitter parameter (0;). In this paper we used a math-
ematically motivated prior for o;. Our result suggests that practical application of
the surrogate model would significantly benefit from further astronomical observations
and statistical analyses to assess the empirical distribution of the stellar jitter for both
Doppler (e.g., [Wright/[2005) and transit timing observations (e.g., Holman et al.2010).
Given the relationship of our surrogate model to non-Bayesian methods being employed
by astronomers, our results also suggest caution in the interpretation of other results
based on frequentist analyses (which typically assume a single fixed value of the jitter).

4 Supplementary Material

4.1 Practical Model Evaluation
Integration over Linear Parameters

The surrogate model is linear in the parameters S;, C;, and D;. For a given choice of Ny,
Ny, the f; and o, one can calculate the “best-fit” values of the §;, the C;, and the D;
via simple linear algebra. The same linear algebraic operations allow the integrals over
these linear parameters to be evaluated efficiently via the Laplace approximation (i.e.,
we expand the exponent about the best-fit parameters, keep the constant and second
order terms, and extend the limits of integration to infinity; (Cumming| (2004))). For our
applications, the posterior probability is typically a smooth function of ¢, but can vary
extremely rapidly with the f;. Thus, we recommend fixing the choice of N¢, Ng, and
the f; so that the integral over o; can be evaluated efficiently with standard numerical
integration techniques. (In the special case of equal measurement uncertainties, the
integrals can be calculated analytically.)
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Brute Force Integration over Frequencies

Unfortunately, the integrals over the f; must be evaluated numerically. We recommend
discretizing these integrals and evaluating them via brute force. The number of frequen-
cies to be evaluated (M) can be quite large (Cumming 2004). Fortunately, there are
several computational tricks that can speed up the calculation. In particular, most of
the trigonometric functions can be computed using trigonometric identities to improve
performance. We find that brute force integration over one or even two f; is practical
for realistic data sets. (For large data sets, a large amount of RAM may be required for
efficient evaluation.)

Approximations for Models with Many Frequencies

Unfortunately, brute force integration over more than two f; rapidly become prohibitive.
Thus, we introduce the following approximation. We start by performing a brute force
evaluation of the model conditioned on there being one frequency and then successively
approximate the posterior conditioned on two frequencies, three frequencies, etc. When
approximating the model conditioned on there being N frequencies (and Ny > 2),
we limit the set of f; with ¢ < Ny that are considered to be those which contributed
significantly to the posterior probability for the model conditioned on there being Ny —
1 frequencies. That is we set a threshold (e.g., ¢ = 107*) and after evaluating the
model conditioned on Ny = 1 frequencies, we store the m; frequencies which have the
largest posterior probabilities and collectively sum to at least 1 — e of the posterior
probability conditioned on there being 1 frequency. At this point, we have searched
M x (1+my) frequencies (rather than M?). Next, we estimate the marginal posterior
probability for Ny = 3 by considering only those combinations of f; and f, that have
the largest posterior probabilities and collectively sum to at least 1 — € of the posterior
probability conditioned on there being 2 frequencies. Thus, when evaluating the model
conditioned on Ny frequencies, there are no more than M Hgv:ffl m,; frequencies to
be explicitly evaluated, much less than M™7. In principle, this approximation can be
relaxed by performing a full search over two frequencies. In this case evaluating the
model conditioned on Ny frequencies requires no more than M? Hl{v:fl_2 m; frequencies
to be explicitly evaluated, which may or may not be practical for a given data set.

Truncating the Number of Frequencies

For data sets which are well described by only one or a few frequencies, models which
include a large number of frequencies will have a very small posterior probability due to
the Occam’s factor associated with the higher-dimensional model. Thus, there is little
point in evaluating models with large Ny. Thus, we recommend successively calculating
the posterior probability conditioned on Ny (p(8| Ny, 2k, Yk, 0x)) and stopping at N¢ stop,
such that p(Ny = Ny sop|Th, Y, o%) < Zi\f:fé“"pilp(]\ff = i|Tk, Yk, Ok)

and approximate the remaining models as p(Ny > Ny siop| Tk, Yk, ok) = 0.
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Computational Cost

The surrogate model can be evaluated much more quickly than an n-body integration,
explores a lower-dimensional parameter space, and takes advantage of the linearity of
the model in most of the model parameters. Nevertheless, the strong sensitivity to
frequency dictates that we must perform a fine sampling in frequency. For example,
consider a case of a ~ 10M gg,tp-mass transiting planet with an orbital period near 4
days and a small planet which is not observed to transit with a period near 8 days. With
a modest eccentricity (0.1), the transit timing variations of the inner planet could be
~ 10 minutes, comparable to the timing precision for each transit for a typical Kepler
planet host star (Ford et all2011). Over 7.5 years of observations (possible with an
extended Kepler mission), one would observe roughly 680 transits, allowing for an easy
detection of such a single. If we assume a timing precision of 10 minutes and set fyax to
1 day, then each integral over frequency requires considering M ~ 180,000 frequencies.
With a single core of an AMD Opteron 275 processor (2.2 GHz), this takes ~ 10, 16
or 37 seconds for models with Ny = 1, 2 or 3. Setting ¢ = 1073 (as described above),
we needed to compute 1 (Ny = 1), 11 (Ny = 2) and 16 (N = 3) scans over frequency
for both Ny = 0 and 1, requiring a total of 12 CPU-minutes for one system. Thus,
the brute force exploration is relatively fast for a single model. For systems with no
detectable signal, the time required decreases significantly, as Ny = 3 (or even 2) need
not be explored. On the other hand, the computation time per system required grows
significantly as the signal-to-noise increases, since the number of frequencies sampled
(M) must be increased to avoid missing a narrow peak in the posterior density. Of
course, in these cases, the signal is sufficiently large that fancy statistical methods are
not necessary to detect the dominant signal. The speed of the surrogate model allowed
us to analyze millions of simulated data sets and to explore the complex parameter
space, using a cluster with hundreds of AMD Opteron servers at the University of
Florida High-Performance Computing Center.
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