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A Bayesian Truth Serum for
Subjective Data

Dražen Prelec

Subjective judgments, an essential information source for science and policy,
are problematic because there are no public criteria for assessing judgmental
truthfulness. I present a scoring method for eliciting truthful subjective data
in situations where objective truth is unknowable. The method assigns high
scores not to the most common answers but to the answers that are more
common than collectively predicted, with predictions drawn from the same
population. This simple adjustment in the scoring criterion removes all bias in
favor of consensus: Truthful answers maximize expected score even for re-
spondents who believe that their answer represents a minority view.

Subjective judgment from expert and lay
sources is woven into all human knowledge.
Surveys of behaviors, attitudes, and inten-
tions are a research staple in political sci-
ence, psychology, sociology, and economics
(1). Subjective expert judgment drives envi-
ronmental risk analysis, business forecasts,
historical inferences, and artistic and legal
interpretations (2).

The value of subjective data is limited by
its quality at the source—the thought process
of an individual respondent or expert. Qual-
ity would plausibly be enhanced if respon-
dents felt as if their answers were being
evaluated by an omniscient scorer who knew
the truth (3). This is the situation with tests
of objective knowledge, where success is
defined as agreement with the scorer_s an-
swer key, or in the case of forecasts, an ob-
servable outcome (4). Such evaluations are
rarely appropriate in social science, because
the scientist is reluctant to impose a partic-
ular definition of truth, even if one were
available (5).

Here, I present a method of eliciting sub-
jective information, designed for situations
where objective truth is intrinsically or prac-
tically unknowable (6). The method con-
sists of an Binformation-scoring[ system that
induces truthful answers from a sample of
rational (i.e., Bayesian) expected value–
maximizing respondents. Unlike other
Bayesian elicitation mechanisms (7–9), the
method does not assume that the researcher
knows the probabilistic relationship between
different responses. Hence, it can be applied
to previously unasked questions, by a re-
searcher who is a complete outsider for the
domain. Unlike earlier approaches to Btest
theory without an answer key[ (5), or the

Delphi method (10), it does not privilege the
consensus answer. Hence, there is no reason
for respondents to bias their answer toward
the likely group mean. Truthful responding
remains the correct strategy even for some-
one who is sure that their answer represents a
minority view.

Instead of using consensus as a truth
criterion, my method assigns high scores to
answers that are more common than collect-
ively predicted, with predictions drawn from
the same population that generates the an-
swers. Such responses are Bsurprisingly com-
mon,[ and the associated numerical index is
called an information score. This adjustment
in the target criterion removes the bias in-
herent in consensus-based methods and
levels the playing field between typical and
unusual opinions.

The scoring works at the level of a single
question. For example, we might ask: (i)
What is your probability estimate that hu-
manity will survive past the year 2100 (100-
point probability scale)? (ii) Will you vote
in the next presidential election (Definitely/
Probably/Probably Not/Definitely Not)? (iii)
Have you had more than 20 sexual partners
over the past year (Yes/No)? (iv) Is Picasso
your favorite 20th-century painter (Yes/No)?

Each respondent provides a personal
answer and also a prediction of the empirical
distribution of answers (i.e., the fraction of
people endorsing each answer). Predictions
are scored for accuracy, that is, for how well
they match the empirical frequencies. The
personal answers, which are the main object
of interest, are scored for being surprisingly
common. An answer endorsed by 10% of
the population against a predicted frequency
of 5% would be surprisingly common and
would receive a high information score; if
predictions averaged 25%, it would be a sur-
prisingly uncommon answer, and hence re-
ceive a low score.

The surprisingly common criterion ex-
ploits an overlooked implication of Bayesian
reasoning about population frequencies.
Namely, in most situations, one should ex-
pect that others will underestimate the true
frequency of one_s own opinion or personal
characteristic. This implication is a corollary
to the more usual Bayesian argument that the
highest predictions of the frequency of a
given opinion or characteristic in the popu-
lation should come from individuals who
hold that opinion or characteristic, because
holding the opinion constitutes a valid and
favorable signal about its general popularity
(11, 12). People who, for example, rate
Picasso as their favorite should—and usually
do (13)—give higher estimates of the per-
centage of the population who shares that
opinion, because their own feelings are an
informative Bsample of one[ (14). It follows,
then, that Picasso lovers, who have reason to
believe that their best estimate of Picasso
popularity is high compared with others_ es-
timates, should conclude that the true popu-
larity of Picasso is underestimated by the
population. Hence, one_s true opinion is also
the opinion that has the best chance of being
surprisingly common.

The validity of this conclusion does not
depend on whether the personally truthful an-
swer is believed to be rare or widely shared.
For example, a male who has had more
than 20 sexual partners Eanswering question
(iii)^ may feel that few people fall in this
promiscuous category. Nevertheless, accord-
ing to Bayesian reasoning, he should expect
that his personal estimate of the percentage
(e.g., 5%) will be somewhat higher than
the average of estimates collected from the
population as a whole (e.g., 2%). The fact
that he has had more than 20 sexual part-
ners is evidence that the general popula-
tion, which includes persons with fewer
partners, will underestimate the prevalence
of this profile.

Truth-telling is individually rational in the
sense that a truthful answer maximizes ex-
pected information score, assuming that
everyone is responding truthfully Ehence, it
is a Bayesian Nash equilibrium (15)^. It is
also collectively rational in the sense that no
other equilibrium provides a higher expected
information score, for any respondent. In
actual applications of the method, one would
not teach respondents the mathematics of
scoring or explain the notion of equilibrium.
Rather, one would like to be able to tell them
that truthful answers will maximize their
expected scores, and that in arriving at their
personal true answer they are free to ignore
what other respondents might say. The equi-
librium analysis confirms that under cer-

REPORTS

Massachusetts Institute of Technology, Sloan School
of Management, E56-320, 38 Memorial Drive, Cam-
bridge, MA 02139, USA. E-mail: dprelec@mit.edu

15 OCTOBER 2004 VOL 306 SCIENCE www.sciencemag.org462

 o
n
 O

c
to

b
e
r 

1
3
, 
2

0
0
8
 

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f
ro

m
 

http://www.sciencemag.org


tain conditions one can make such a claim
honestly.

The equilibrium results rest on two as-
sumptions. First, the sample of respondents
must be sufficiently large so that a single
answer cannot appreciably affect empirical
frequencies (16). The results do hold for
large finite populations but are simpler to
state for a countably infinite population, as is
done here. Respondents are indexed by r Z
A1,2,IZ, and their truthful answer to a m
multiple-choice question by tr 0 (t1

r,..,tm
r )

(tk
r Z A0,1Z, Fk xk

r 0 1). tk
r is thus an in-

dicator variable that has a value of one or
zero depending on whether answer k is or
is not the truthful answer of respondent r.
The truthful answer is also called a personal
opinion or characteristic.

Second, respondents treat personal opin-
ions as an Bimpersonally informative[ signal
about the population distribution, which is an
unknown parameter, < 0 (<1,..,<m) Z ;
(17). Formally, I assume common knowl-
edge (18) by respondents that all posterior
beliefs, p(<ktr), are consistent with Bayesian
updating from a single distribution over <,
also called a common prior, p(<), and that:
p(<ktr) 0 p(<kts) if and only if tr 0 ts.
Opinions thus provide evidence about <,
but the inference is impersonal: Respon-
dents believe that others sharing their opinion
will draw the same inference about popula-
tion frequencies (19). One can therefore
denote a generic respondent with opinion
j by tj and suppress the respondent super-
script from joint and conditional probabili-
ties: ProbAtj

r 0 1 k ti
s 0 1Z becomes p(tjkti),

and so on.
For a binary question, one may interpret

the model as follows. Each respondent
privately and independently conducts one
toss of a biased coin, with unknown proba-
bility <H of heads. The result of the toss
represents his opinion. Using this datum, he
forms a posterior distribution, p(<Hkt

r), whose
expectation is the predicted frequency of
heads. For example, if the prior is uniform,
then the posterior distribution following the
toss will be triangular on E0,1^, skewed
toward heads or tails depending on the result
of the toss, with an expected value of one-
third or two-thirds. However, if the prior is
not uniform but strongly biased toward the
opposite result (i.e., tails), then the expected
frequency of heads following a heads toss
might still be quite low. This would corre-
spond to a prima facie unusual characteristic,
such as having more than 20 sexual partners
within the previous year.

An important simplification in the meth-
od is that I never elicit prior or posterior
distributions, only answers and predicted fre-
quencies. Denoting answers and predictions
by xr 0 (x1

r,..,xm
r ) (xk

r Z A0,1Z, Fkxk
r 0 1) and

yr 0 (y1
r,..,ym

r ) (yk
r Q 0, Fkyk

r 0 1), respectively,

I calculate the population endorsement fre-
quencies, xk , and the (geometric) average, yk ,
of predicted frequencies,

xk 0 lim
nYV

1

n

X

n

r01

xrk ;

log yk 0 lim
nYV

1

n

X

n

r01

log yrk

Instead of applying a preset answer key, we
evaluate answers according to their informa-
tion score, which is the log-ratio of actual-to-
predicted endorsement frequencies. The in-
formation score for answer k is

log
xk

yk
ð1Þ

At least one answer will have a nonnegative
information score. Variance in predictions
tends to lower all yk values and hence raises
information scores.

The total score for a respondent combines
the information score with a separate score
for the accuracy of predictions (20):

score for respondent r 0

information score þ prediction score 0
X

k

xrk log
xk

yk
þ "

X

k

xk log
yrk
xk

; 0 G " ð2Þ

Equation 2 is the complete payoff equation
for the game. It is symmetric, and zero-sum
if " 0 1. The first part of the equation selects
a single information-score value, given that
xk
r 0 0 for all answers except the one
endorsed by r. The second part is a pen-
alty proportional to the relative entropy (or
Kullback-Leibler divergence) between the
empirical distribution and r_s prediction of
that distribution (21, 22). The best predic-
tion score is zero, attained when prediction
exactly matches reality, yrk 0 xk . Expected
prediction score is maximized by reporting
expected frequencies, yrk 0 EAxk ktrZ (2). The
constant " fine-tunes the weight given to pre-
diction error.

To see how this works in the simple coin
toss setting, imagine that there are only two
equally likely possibilities: Either the coin is
fair, or it is unfair, in which case it always
comes up heads. A respondent who privately
observes a single toss of tails knows that the
coin is fair, and predicts a 50-50 split of
observations. A respondent observing heads
lowers the probability of fairness from the
prior 1/2 to a posterior of 1/3, in accord with
Bayes_ rule, which in turn yields a predicted
(i.e., expected) frequency of 1/6 for tails (mul-
tiplying 1/3 by 1/2). From the perspective of
someone observing tails, the expectation of
others_ predictions of the frequency of tails
will be a mix of predictions of 1/2 (from those

tossing tails) and 1/6 (from those tossing
heads), yielding a geometric mean clearly
lower than his or her predicted frequency of
1/2. Hence, he or she expects that tails will
prove to be more common than predicted
and receive a positive information score. By
contrast, heads is expected to be a surpris-
ingly uncommon toss, because the predicted
frequency of 1/2 is lower than the expec-
tation of others_ predictions, which is a mix
of 1/2 and 5/6 predictions. A similar argu-
ment would show that those who draw
heads should expect that heads will prove
to be the answer with the high information
score.

The example illustrates a general proper-
ty of information scores. Namely, a truthful
answer constitutes the best guess about the
most surprisingly common answer, if Bbest[
is defined precisely by expected information
score and if other respondents are answering
truthfully and giving truthful predicted fre-
quencies. This property does not depend on
the number of possible answers or on the
prior (23). It leads directly to the equilibrium
result Eproof in the supporting online mate-
rial (SOM) text^.

For this theorem, assume that (i) every
respondent r with opinion tr forms a poste-
rior over the population distribution of opin-
ions, p(<ktr), by applying Bayes_ rule to a
common prior p(<); (ii) p(<ktr) 0 p(<kts) if
and only if tr 0 ts; and (iii) scores are com-
puted according to Eq. 2. Then, (T1) truth-
telling is a Nash equilibrium for any " 9
0: Truth-telling maximizes expected total
score of every respondent who believes that
others are responding truthfully; (T2) ex-
pected equilibrium information scores are
nonnegative and attain a maximum for all
respondents in the truth-telling equilibrium;
(T3) for " 0 1, the game is zero-sum, and the
total scores in the truth-telling equilibrium
equal log p(<ktr) þ K, with K set by the zero-
sum constraint.

Truth-telling is defined as truthful answers,
xr 0 tr, and truthful predictions, yr 0 EA<ktrZ.
T2 states that although there are other equi-
libria, constructed by mapping multiple true
opinions into a single response category or
by randomization, these less revealing equi-
libria result in lower information scores for
all respondents. If needed, one can enhance
the strategic advantage of truth-telling by
giving relatively more weight to information
score in Eq. 2 (24). For sufficiently small ",
the expected total scores in the truth-telling
equilibrium will Pareto-dominate expected
scores in any other equilibrium. T3 shows
that by setting " 0 1 we also have the option
of presenting the survey as a purely compet-
itive, zero-sum contest. Total scores then
rank respondents according to how well they
anticipate the true distribution of answers.
Note that the scoring system asks only for
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the expected distribution of true answers,
EA<ktrZ and not for the posterior distribution
p(<ktr), which is an m-dimensional probabil-
ity density function. Remarkably, one can
infer which respondents assign more proba-
bility to the actual value of < by means of a
procedure that does not elicit these probabil-
ities directly.

In previous economic research on incen-
tive mechanisms, it has been standard to as-
sume that the scorer (or the Bcenter[) knows
the prior and posteriors and incorporates this
knowledge into the scoring function (7–9, 25).
In principle, any change in the prior, whether
caused by a change in question wording, in
the composition of the sample, or by new
public information, would require a recalcu-
lation of the scoring functions. By contrast,
my method employs a universal Bone-size-fits-
all[ scoring equation, which makes no men-
tion of prior or posterior probabilities. This
has three benefits for practical application.
First, questions do not need to be limited to
some pretested set for which empirically es-
timated base rates and conditional probabil-
ities are available; instead, one can use the
full resources of natural language to tailor a
new set of questions for each application.
Second, it is possible to apply the same sur-
vey to different populations, or in a dynamic
setting (which is relevant to political polling).
Third, one can honestly instruct respondents
to refrain from speculating about the answers
of others while formulating their own answer.
Truthful answers are optimal for any prior,
and there are no posted probabilities for them
to consider, and perhaps reject.

These are decisive advantages when it
comes to scoring complex, unique questions.
In particular, one can apply the method to
elicit honest probabilistic judgments about
the truth value of any clearly stated proposi-
tion, even if actual truth is beyond reach and
no prior is available. For example, a recent
book, Our Final Century, by a noted British
astronomer, gives the chances of human sur-
vival beyond the year 2100 at no better than
50:50 (26). It is a provocative assessment,
which will not be put to the test anytime
soon. With the present method, one could
take the question: BIs this our final century?[
and submit it to a sample of experts, who
would each provide a subjective probability
and also estimate probability distributions
over others_ probabilities. T1 implies that
honest reporting of subjective probabilities
would maximize expected information score.
Experts would face comparable truth-telling
incentives as if they were betting on the
actual outcome Ee.g., as in a futures market
(27)^ and that outcome could be determined
in time for scoring.

I illustrate this with a discrete computa-
tion, which assumes that probabilities are
elicited at 1% precision by means of a 100-

point multiple-choice question (in practice,
one would have fewer categories and smooth
out the empirical frequencies). The population
vector < 0 (<00,..,<99) indexes the unknown
distribution of such probabilities among ex-
perts. Given any prior, p(<), it is a laborious
but straightforward exercise to calculate ex-
pected information score as function of true
personal probability and endorsed probabili-
ty. Figure 1, lines A90 and B90, present the
result of such calculations, with two different
priors, pA(<) and pB(<), for experts who
happen to agree that the probability of di-
saster striking before 2100 is 90%. The ex-
perts thus share the same assessment but have
different theories about how their assess-
ment is related to the assessment of others.
Although lines A90 and B90 differ, the ex-
pected information score is in both cases
maximized by a truthful endorsement of 90%.
This confirms T1. In both cases, each expert
believes that his subjective probability is pes-
simistic relative to the population: The ex-
pectation of others_ probabilities, conditioned
on a personal estimate of 90%, is only 65%
with pA(<) and 54% with pB(<).

If the subjective probability shifts to 50%,
the lines move to A50, B50, and the opti-
mum, in both cases, relocates to 50%. Hence,
the optimum automatically tracks changes in
subjective belief, in this case the subjective
probability of an unknown future event, but is
invariant with respect to assumptions about
how that belief is related to beliefs of other
individuals. Changing these assumptions will
simply lead back to the same recommenda-
tion: Truthfully report subjective probability.

Respondents are thus free to concentrate
on their personal answer and need not worry
about formulating an adequate prior. Any mod-
el of the prior is likely to be complex and
involve strong assumptions. For example, in
the calculations in Fig. 1, I assumed that

experts_ estimates are based on a private
signal, distributed between zero and one,
representing a personal assessment of the
credibility of evidence supporting the bad
outcome. The Bcredibility signal[ is a valid
but stochastic indicator of the true state of
affairs: On the bad scenario, credibility signals
are independent draws from a uniform dis-
tribution, so that some experts Bget the mes-
sage[ and some do not; on the good scenario,
they are independent draws from a triangular
distribution, peaking at zero (no credibility)
and declining linearly to one (full credibili-
ty). A prior probability of catastrophe then
induces a monotonic mapping from credibil-
ity signals to posterior probabilities of ca-
tastrophe, as well as a prior over experts_
probability estimates, p(<).

Lines A and B differ in that the prior
probability of catastrophe is presumed to be
50% for line A and 20% for line B. Expected
scores are higher for B, because the 90%
estimate is more surprising in that case.

One could question any of the assump-
tions of this model (28). However, changing
the assumptions would not move the opti-
mum, as long as the impersonally informative
requirement is preserved. (The impersonally
informative requirement means that two ex-
perts will estimate the same probability of
catastrophe if and only if they share the
same posterior distribution over other experts_
probabilities). Thus, even though information
scoring conditions success on the answers
of other people, the respondent does not
need to develop a theory of other people_s
answers; the most popular answer has no
advantage of Bwinning,[ and the entire struc-
ture of mutual beliefs, as embodied in the
prior, is irrelevant.

It is instructive to compare information
scores with scores that would be computed if
the scorer had a crystal ball and could score

Fig. 1. The expected information
score is maximized by a truthful
report of subjective belief in a
proposition (i.e., ‘‘this is our final
century’’), irrespective of priors
(A or B) or subjective probability
values (50% or 90%). Line A90
gives expected score for differ-
ent reported probabilities when
true personal estimate of catas-
trophe is 90% and prior proba-
bility is 50%. It is optimal to
report 90% even though that is
expected to be an unusually pes-
simistic estimate. Changing the
prior to 20% (line B90) increases
expected scores but does not dis-
place the optimum. Changing sub-
jective probability to 50% shifts
the optimum to 50% (A50 as-
sumes a 50% prior, B50 a 20% prior). Standard proper scoring (expectation of Eq. 3, displayed as line
PS90) also maximally rewards a truthful report (90%). However, proper scoring requires knowl-
edge of the true outcome, which may remain moot until 2100.
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estimates for accuracy. The standard instru-
ment for eliciting honest probabilities about
publicly verifiable events is the logarithmic
proper scoring rule (2, 4, 29). With the rule,
an expert who announces a probability
distribution z 0 (z1,..,zn) over n mutually
exclusive events would receive a score of

K þ log zi ð3Þ

if event i is realized. For instance, an expert
whose true subjective probability estimate that
humanity will perish by 2100 is 90%, but
who announced a possibly different proba-
bility z, would calculate an expected score of
0.9 log z þ 0.1 log(1 – z), assuming, again,
that there was some way to establish the true
outcome. This expectation is maximized at
the true value, z 0 0.90, as shown by line
PS90 in Fig. 1 (elevation is arbitrary). It is
hard to distinguish proper scoring, which re-
quires knowledge of the true outcome, from
information scoring, which does not require
such knowledge (30).

There are two generic ways in which the
assumption of an impersonally informative
prior might fail. First, a true answer might
not be informative about population frequen-
cies in the presence of public information
about these frequencies (inducing a sharp
prior). For instance, a person_s gender would
have minimal impact on their judgment of
the proportion of men and women in the pop-
ulation. This would be a case of tr m ts but
p(<ktr) ; p(<kts), and the difference between
expected information scores for honest and
deceptive answers would be virtually zero
(though still positive). As shown below, the
remedy is to combine the gender question
with an opinion question that interacts with
gender.

Second, respondents with different tastes
or characteristics might choose the same an-
swer for different reasons and hence form dif-
ferent posteriors. For example, someone with

nonstandard political views might treat his
or her liking for a candidate as evidence that
most people will prefer someone else. This
would be a case of: p(<ktr) m p(<kts) although
tr 0 ts. Here, too, the remedy is to expand the
questionnaire, allowing the person to reveal
both the opinion and characteristic.

A last example, an art evaluation, illus-
trates both remedies. The example assumes
existence of experts and laymen, and a bi-
nary state-of-nature: a question of whether a
particular artist either does or does not re-
present an original talent. By hypothesis, art
experts recognize this distinction quite well,
but laymen discriminate poorly and, indeed,
have a higher chance of enjoying a deriva-
tive artist than an original one. The fraction
of experts is common knowledge, as are the
other probabilities (Table 1).

In the short version of the survey, respon-
dents only state their opinion; in the long ver-
sion, they also report their expertise. Table 1
displays expected information scores for all
possible answers, as a function of opinion
and expertise. With the short version, truth-
telling is optimal for experts but not for
laymen, who do have a slight incentive to
deceive if they happen to like the exhibition.
With the long version, however, the diago-
nal, truth-telling entries have highest expected
score. In particular, respondents will do better
if they reveal their true expertise even though
the distribution of expertise in the surveyed
population is common knowledge.

Expected information scores in this and
other examples reflect the amount of infor-
mation associated with a particular opinion
or characteristic. In Table 1, experts have a
clear advantage even though they comprise a
minority of the sample, because their opinion
is more informative about population frequen-
cies. In general, the expected information
score for opinion i equals the expected rela-
tive entropy between distribution p(<kt

k,ti)
and p(<ktk), averaged over all tk. In words,

the expected score for i is the information-
theoretic measure of how much endorsing
opinion i shifts others_ posterior beliefs about
the population distribution. An expert en-
dorsement will cause greater shift in beliefs,
because it is more informative about the
underlying variables that drive opinions for
both segments (31). This measure of impact
is quite insensitive to the size of the expert
segment or to the direction of association
between expert and nonexpert opinion.

By establishing truth-telling incentives, I
do not suggest that people are deceitful or
unwilling to provide information without ex-
plicit financial payoffs. The concern, rather,
is that the absence of external criteria can
promote self-deception and false confidence
even among the well-intentioned. A futurist,
or an art critic, can comfortably spend a life-
time making judgments without the reality
checks that confront a doctor, scientist, or
business investor. In the absence of reality
checks, it is tempting to grant special status
to the prevailing consensus. The benefit of
explicit scoring is precisely to counteract
informal pressures to agree (or perhaps to
Bstand out[ and disagree). Indeed, the mere
existence of a truth-inducing scoring system
provides methodological reassurance for
social science, showing that subjective data
can, if needed, be elicited by means of a
process that is neither faith-based (Ball an-
swers are equally good[) nor biased against
the exceptional view.
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Single-Atom Spin-Flip
Spectroscopy

A. J. Heinrich,* J. A. Gupta, C. P. Lutz, D. M. Eigler

We demonstrate the ability to measure the energy required to flip the spin of
single adsorbed atoms. A low-temperature, high–magnetic field scanning
tunneling microscope was used to measure the spin excitation spectra of
individual manganese atoms adsorbed on Al2O3 islands on a NiAl surface. We
find pronounced variations of the spin-flip spectra for manganese atoms in
different local environments.

The magnetic properties of nanometer-scale
structures are of fundamental interest and may
play a role in future technologies, including
classical and quantum computation. Such mag-

netic structures are composed of magnetic
atoms in precise arrangements. The magnetic
properties of each atom are profoundly influ-
enced by its local environment. Magnetic
properties of atoms in a solid can be probed by
placing the atoms in tunnel junctions. Early
experiments with planar metal-oxide-metal
tunnel junctions doped with paramagnetic
impurities exhibited surprisingly complex con-

ductance spectra described as Bzero-bias anom-
alies[ (1–4). Such anomalies were shown to
reflect both spin-flips driven by inelastic
electron scattering and Kondo interactions of
magnetic impurities with tunneling electrons
(5–7). Single, albeit unknown, magnetic im-
purities were later studied in nanoscopic tunnel
junctions (8, 9). Recently, magnetic properties
of single-molecule transistors that incorporated
either one or two magnetic atoms were probed
by means of their elastic conductance spectra
(10, 11). These measurements determined g
values and showed field-split Kondo reso-
nances due to the embedded magnetic atoms.

The scanning tunneling microscope (STM)
offers the ability to study single magnetic
moments in a precisely characterized local
environment and to probe the variations in
magnetic properties with atomic-scale spatial
resolution. Previous STM studies of atomic-
scale magnetism include Kondo resonances of
magnetic atoms on metal surfaces (12, 13), in-
creased noise at the Larmor frequency (14, 15),
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