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Abstract. We present a Bayesian maximum likelihood analysis of Faraday rotation measure (RM) maps of extended radio
sources to determine magnetic field power spectra in clusters of galaxies. Using this approach, it is possible to determine the
uncertainties in the measurements. We apply this approach to the RM map of Hydra A and derive the power spectrum of
the cluster magnetic field. For Hydra A, we measure a spectral index of −5/3 over at least one order of magnitude implying
Kolmogorov type turbulence. We find a dominant scale ∼3 kpc on which the magnetic power is concentrated, since the magnetic
autocorrelation length is λB = 3 ± 0.5 kpc. Furthermore, we investigate the influences of the assumption about the sampling
volume (described by a window function) on the magnetic power spectrum. The central magnetic field strength was determined
to be ∼7 ± 2 µG for the most likely geometries.

Key words. magnetic fields – radiation mechanism: non-thermal – galaxies: active – interplanetary medium –
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1. Introduction

The intra-cluster medium is magnetised. Direct evidence for
cluster-wide magnetic fields are the large-scale diffuse radio
sources of synchrotron origin. There is growing evidence that
these fields are of the order of ∼µG and are ordered on kilo-
parsec scales (see e.g. recent reviews Carilli & Taylor 2002;
Widrow 2002; Govoni & Feretti 2004).

One method to investigate magnetic field structure and
strength is the detection of the Faraday rotation effect. This
effect is observed whenever linearly polarised radio emission
passes through a magnetised medium. A linearly polarised
wave can be described by two circularly polarised waves. Their
motion along magnetic field lines in a plasma introduces a
phase difference between the two waves resulting in a rotation
of the plane of polarisation. If the Faraday active medium is ex-
ternal to the source of the polarised emission, one expects the
change in polarisation angle to be proportional to the squared
wavelength. The proportionality factor is called the rotation
measure (RM). This quantity can be evaluated in terms of the
line of sight integral over the product of the electron density
and the magnetic field component along the line of sight.

Observed RM maps of extended extragalactic radio sources
are especially valuable in order to study the intra-cluster mag-
netic fields. Simple analytical approaches based on the patchy
structure of the RM maps to measure the characteristic length
scale of the magnetic fields, which are necessary to translate
RM values into field strength, result in magnetic field strength
of ∼5 µG up to ∼30 µG for cooling flow clusters, e.g. Cygnus A
(Dreher et al. 1987), Hydra A (Taylor & Perley 1993), A1795

(Ge & Owen 1993), 3C295 (Allen et al. 2001). The same argu-
ments have lead to estimates of a cluster magnetic field strength
of 2,...,8 µG for non-cooling flow clusters, e.g. Coma (Feretti
et al. 1995), A119 (Feretti et al. 1999a), 3C129 (Taylor et al.
2001), A2634 & A400 (Eilek & Owen 2002).

Observations of a polarised radio point source sample seen
through a cluster atmosphere were presented by Kim et al.
(1991). They detected an RM broadening towards the clus-
ter centre implying a magnetic field strength of 1 µG. More
recently, Clarke et al. (2001) analysed a statistical sample of
16 cluster sources against a control sample. They also de-
tect a broadening of the RM distribution for sources towards
the cluster centre. They find a cluster magnetic field strength
of 4,...,8 µG.

These high magnetic field values derived using RM meth-
ods seem to be in contrast to the lower magnetic field values of
0.1,...,0.3 µG estimates from Inverse Compton (IC) measure-
ments which are possible for clusters with observed diffuse ra-
dio haloes (Rephaeli et al. 1987, 1994, 1999; Henriksen 1998;
Fusco-Femiano et al. 2000, 2001, 2004; Enßlin & Biermann
1998). Cosmic microwave background photons are expected to
inverse Compton scatter off of the relativistic electrons thereby
emitting non-thermal X-ray emission. Upper limits on this non-
thermal X-ray emission together with the radio observations of
the synchrotron radiation which is emitted by the relativistic
electron population can then be used to set lower limits on the
average magnetic field strength.

There is an order of magnitude difference between the field
strength derived for these methods. Several arguments can be
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given to reconcile the different results. First, except for a very
small number of clusters (including the Coma cluster), at best
one of the methods could be applied, so that the difference
could be a difference between clusters. Second, the Faraday
rotation method measures a volume-averaged magnetic field
weighted by the thermal electron density whereas the inverse
Compton results give volume-averaged field strengths which
are weighted with the relativistic electron distribution. Since
the relativistic electron population is easily diminished in re-
gions with strong magnetic fields due to the enhanced syn-
chrotron cooling, the inverse Compton method is expected to
provide smaller estimates. Thus, a medium that is inhomoge-
neously magnetised on small scales compared to the observa-
tional spatial resolution might possibly solve the contradiction
(Enßlin et al. 1999). Furthermore, since the observed IC flux
could originate from other sources, it is an upper limit. Hence,
the IC measurements give only lower limits on the magnetic
field strength. For a more detailed discussion, we refer to Carilli
& Taylor (2002); Govoni & Feretti (2004).

Enßlin & Vogt (2003) proposed a method to determine the
magnetic power spectra by Fourier transforming RM maps.
Based on these considerations, Vogt & Enßlin (2003) ap-
plied this method and determined the magnetic power spec-
trum of three clusters (Abell 400, Abell 2634 and Hydra A)
from RM maps of radio sources located in these clusters.
Furthermore, they determined field strengths of ∼12 µG for
the cooling flow cluster Hydra A, 3 µG and 6 µG for the non-
cooling flow clusters Abell 2634 and Abell 400, respectively.
Their analysis revealed spectral slopes of the power spectra
with spectral indices −2.0, . . . ,−1.6. However, it was realised
that using the proposed analysis, it is difficult to reliably deter-
mine differential quantities such as spectral indices due to the
complicated shapes of the emission regions used which lead to
a redistribution of magnetic power within the spectra.

Recently, Murgia et al. (2004) proposed a numerical
method to determine the magnetic power spectrum in clusters.
They infer the magnetic field strength and structure by compar-
ing simulations of RM maps as caused by multi-scale magnetic
fields with the observed polarisation properties of extended
cluster radio sources such as radio galaxies and haloes. They
argue that field strengths derived in the literature using analyt-
ical expressions have been overestimated by a factor of ∼2.

In order to determine a power spectrum from observa-
tional data, maximum likelihood estimators are widely used in
astronomy. These methods and algorithms have been greatly
improved, especially by the Cosmic Microwave Background
(CMB) analysis which tackles the problem of determining the
power spectrum from large CMB maps. Kolatt (1998) proposed
such an estimator to determine the power spectrum of a primor-
dial magnetic field from the distribution of RM measurements
of distant radio galaxies.

Based on the initial idea of Kolatt (1998), the methods de-
veloped by the CMB community (especially Bond et al. 1998)
and our understanding of the magnetic power spectrum of clus-
ter gas (Enßlin & Vogt 2003), we derive here an Bayesian
maximum likelihood approach to calculate the magnetic power
spectrum of cluster gas given observed Faraday rotation maps
of extended extragalactic radio sources. The power spectrum

enables us also to determine characteristic field length scales
and strength. After testing our method on artificially generated
RM maps with known power spectra, we apply our analysis
to a Faraday rotation map of Hydra A. The data were kindly
provided by Greg Taylor. In addition, this method allows us to
determine the uncertainties of our measurement and, thus, we
are able to give errors on the calculated quantities. Based on
these calculations, we investigate the nature of turbulence of
the magnetised gas.

This paper is structured as follows. In Sect. 2, a method
employing a maximum likelihood estimator as suggested by
Bond et al. (1998) to determine the magnetic power spec-
trum from RM maps is introduced. Special requirements for
the analysis of RM maps with such a method are discussed. In
Sect. 3, we apply our maximum likelihood estimator to gener-
ated RM maps with known power spectra to test our algorithm.
In Sect. 4, the application of our method to data of Hydra A is
described. In Sect. 5, the derived power spectra are presented
and the results are discussed. In Sect. 6, conclusions are drawn.

We assume a Hubble constant of H0 = 70 km s−1 Mpc−1,
Ωm = 0.3 and ΩΛ = 0.7 in a flat universe. All equations follow
the notation of Enßlin & Vogt (2003).

2. Maximum likelihood analysis

2.1. The covariance matrix CRM

One of the most commonly used methods of Bayesian statistics
is the maximum likelihood method. The likelihood function for
a model characterised by p parameters ap is equivalent to the
probability of the data ∆ given a particular set of ap and can be
expressed in the case of (near) Gaussian statistics of ∆ as

L∆(ap) =
1

(2π)n/2|C|1/2 × exp

(
−1

2
∆T C−1∆

)
, (1)

where |C| indicates the determinant of a matrix, ∆i = RMi are
the actual observed data, n indicates the number of observa-
tionally independent points and C = C(ap) is the covariance
matrix. This covariance matrix can be defined as

Ci j(ap) = 〈∆obs
i ∆

obs
j 〉 = 〈RMobs

i RMobs
j 〉, (2)

where the brackets 〈〉 denote the expectation value and, thus,
Ci j(ap) describes our expectation based on the proposed model
characterised by a particular set of aps. Now, the likelihood
function L∆(ap) has to be maximised for the parameters ap.
Although the magnetic fields might be non-Gaussian, the RM
should be close to Gaussian due to the central limit theorem.
Observationally, RM distributions are known to be close to
Gaussian (e.g. Taylor & Perley 1993; Feretti et al. 1999a,b;
Taylor et al. 2001).

Ideally, the covariance matrix is the sum of a signal and a
noise matrix term which results if the errors are uncorrelated to
true values. Writing RMobs = RMtrue + δRM results in

Ci j(ap) = 〈RMtrue
i RMtrue

j 〉 + 〈δRMi δRM j〉
= CRM(x⊥i, x⊥ j) + 〈δRMi δRM j〉 (3)
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where x⊥i is the displacement of point i from the z-axis and
〈δRMi δRM j〉 indicates the expectation for the uncertainty in
our measurement. Unfortunately, while in the discussion of the
power spectrum measurements of CMB experiments the noise
term is extremely carefully studied, for our discussion this is
not the case and goes beyond the scope of the paper. Thus, we
will neglect this term. However, Johnson et al. (1995) discuss
uncertainties involved in the data reduction process to gain a
model for 〈δRMi δRM j〉.

Since we are interested in the magnetic power spectrum, we
have to find an expression for the covariance matrix Ci j(ap) =
CRM(x⊥i, x⊥ j) which can be identified as the RM autocorre-
lation 〈RM(x⊥i) RM(x⊥ j)〉. This has then to be related to the
magnetic power spectra.

The observable in any Faraday experiment is the rotation
measure RM. For a line of sight parallel to the z-axis and dis-
placed by x⊥ from it, the RM arising from polarised emission
passing from the source zs(x⊥) through a magnetised medium
to the observer located at infinity is expressed by

RM(x⊥) = a0

∫ ∞

zs(x⊥)
dx ne(x) Bz(x), (4)

where a0 = e3/(2πm2
ec4), x = (x⊥, z), ne(x) is the electron den-

sity and Bz(x) is the magnetic field component along the line of
sight.

In the following, we will assume that the magnetic fields
in galaxy clusters are isotropically distributed throughout the
Faraday screen. If one samples such a field distribution over
a large enough volume they can be treated as statistically ho-
mogeneous and statistically isotropic. Therefore, any statisti-
cal average over a field quantity will not be influenced by
the geometry or the exact location of the volume sampled.
Following Enßlin & Vogt (2003), we can define the elements of
the RM covariance matrix using the RM autocorrelation func-
tion CRM(x⊥i, x⊥ j) =

〈
RM(x⊥i)RM(x⊥ j)

〉
and introduce a win-

dow function f (x) which describes the properties of the sam-
pling volume

CRM(x⊥, x′⊥)= ã0
2
∫ ∞

zs

dz
∫ ∞

z′s
dz′ f (x) f (x′)

〈
Bz(x⊥, z)Bz(x′⊥, z

′)
〉
, (5)

where ã0 = a0ne0, the central electron density is ne0 and the
window function is defined by

f (x) = 1{x⊥∈Ω} 1{z≥zs(x⊥)} g(x) ne(x)/ne0, (6)

where 1{condition} is equal to unity if the condition is true and
zero if not and Ω defines the region for which RMs were ac-
tually measured. The electron density distribution ne(x) is cho-
sen with respect to a reference point xref (usually the cluster
centre) such that ne0 = ne(xref ), e.g. the central density, and
B0 = 〈B2(xref )〉1/2. The dimensionless average magnetic field
profile g(x) = 〈B2(x)〉1/2/B0 is assumed to scale with the den-
sity profile such that g(x) = (ne(x)/ne0)αB .

Setting x′ = x + r and assuming that the correlation
length of the magnetic field is much smaller than characteris-
tic changes in the electron density distribution, we can separate
the two integrals in Eq. (5). Furthermore, we can introduce the
magnetic field autocorrelation tensor Mi j = 〈Bi(x) × B j(x + r)〉

(see e.g. Subramanian 1999; Enßlin & Vogt 2003). Taking
this into account, the RM autocorrelation function can be de-
scribed by

CRM(x⊥, x⊥ + r⊥) = ã0
2
∫ ∞

zs

dz f (x) f (x + r)
∫ ∞

(z′s−z)→−∞
drzMzz(r). (7)

Here, the approximation (z′s − z) → −∞ is valid for Faraday
screens which are much thicker than the magnetic autocorrela-
tion length. This will turn out to be the case in the application
at hand.

The Fourier transformed zz-component of the autocorrela-
tion tensor Mzz(k) can be expressed by the Fourier transformed
scalar magnetic autocorrelation function w(k) =

∑
i Mii(k) and

a k dependent term (see Eq. (31) in Enßlin & Vogt 2003) lead-
ing to

Mzz(r) =
1

2π3

∫ ∞

−∞
d3k
w(k)

2

(
1 − k2

z

k2

)
e−ikr. (8)

Furthermore, the one dimensional magnetic energy power
spectrum εB(k) can be expressed in terms of the magnetic au-
tocorrelation function w(k) such that

εB(k) dk =
k2w(k)
2 (2π)3

dk. (9)

As stated in Enßlin & Vogt (2003), the kz = 0 – plane of Mzz(k)
is all that is required to reconstruct the magnetic autocorrela-
tion function w(k). Thus, inserting Eqs. (8) into (7) and using
Eq. (9) leads to

CRM(x⊥, x⊥ + r⊥) = 4π2ã0
2
∫ ∞

zs

dz f (x) f (x + r)

×
∫ ∞

−∞
dk εB(k)

J0(kr⊥)
k
, (10)

where J0(kr⊥) is the 0th Bessel function. This equation gives
an expression for the RM-autocorrelation function in terms of
the magnetic power spectra of the Faraday-producing medium.

Since the magnetic power spectrum is the interesting func-
tion, we parametrise εB(k) =

∑
p εBp1{k ∈ [kp,kp+1]}, where εBp is

constant in the interval [kp, kp+1], leading to

CRM(εBp) = 4π2ã0
2
∫ ∞

zs

dz f (x) f (x+ r)
∑

p

εBp

∫ kp+1

kp

dk
J0(kr⊥)

k
,(11)

where the εBp are to be understood as the model parameter aP

for which the likelihood function L∆(ap) has to be maximised
given the Faraday data ∆.

2.2. Evaluation of the likelihood function

In order to maximise the likelihood function, Bond et al.
(1998) approximate the likelihood function as a Gaussian of
the parameters in regions close to the maximum a = {a}max,
where {a}max is the set of model parameters which maximise
the likelihood function. In this case, one can perform a Taylor
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expansion of lnL∆(a+δa) about ap and truncates at the second
order in δap without making a large error.

lnL∆(a + δa) = lnL∆(a) +
∑

p

∂ lnL∆(a)
∂ap

δap

+
1
2

∑
pp′

∂2 lnL∆(a)
∂ap ∂ap′

δapδp′ . (12)

With this approximation, one can directly solve for the δap that
maximise the likelihood functionL

δap = −
∑

p′

(
∂2 lnL∆(a)
∂ap ∂ap′

)−1
∂ lnL∆(a)
∂ap′

, (13)

where the first derivative is given by

∂ lnL∆(a)
∂ap′

=
1
2

Tr

[(
∆∆T − C

) (
C−1 ∂C
∂ap′

C−1

)]
(14)

and the second derivative is expressed by

F (a)
pp′ = −

(
∂2 lnL∆(a)
∂ap ∂ap′

)

= Tr

[(
∆∆T − C

) (
C−1 ∂C
∂ap

C−1 ∂C
∂ap′

C−1

−1
2

C−1 ∂
2C

∂ap∂ap′
C−1

)]
+

1
2

Tr

(
C−1 ∂C
∂ap

C−1 ∂C
∂ap′

)
, (15)

where Tr indicates the trace of a matrix. The second deriva-
tive is called the curvature matrix. If the covariance matrix is
linear in the parameter ap then the second derivatives of the
covariance matrix ∂2C/(∂ap∂ap′) vanish. Note that for the cal-
culation of the δap, the inverse curvature matrix (F (a)

pp′)
−1 has

to be calculated. The diagonal terms of the inverse curvature
matrix (F (a)

pp )−1 can be regarded as the errors σ2
ap

to the param-
eters ap.

A suitable iterative algorithm to determine the power spec-
tra would be to start with an initial guess of a parameter set ap.
Using this initial guess, the δaps have to be calculated using
Eq. (13). If the δaps are not sufficiently close to zero, a new
parameter set a′p = ap+δap is used and again the δa′p are calcu-
lated and so on. This process can be stopped when δap/σap ≤ ε,
where ε describes the required accuracy.

2.3. Binning and rebinning

In our parametrisation of the model given by Eq. (11) the bin
size, i.e. the size of the interval [kp, kp+1], is important. Since
we are measuring the power spectrum, we chose equal bins on
a logarithmic scale as the initial binning. However, if the bins
are too small then the cross correlation between two bins could
be very high and the two bins cannot be regarded as indepen-
dent anymore. Furthermore, the errors might be very large, and
could be one order of magnitude larger than the actual values.
In order to avoid such situations, it is preferable to chose ei-
ther fewer bins or to rebin by adding two bins together. Note
that this oversampling is not a real problem, since the model
parameter covariance matrix takes care of the redundancy be-
tween data points. However, for computational efficiency and

for a better display of the data, a smaller set of mostly indepen-
dent data points is preferable.

To find a criterion for rebinning, an expression for the cross
correlation of two parameter ap and ap′ can be defined by

δpp′ =
〈σpσp′ 〉
〈σp〉 〈σp′ 〉 =

F −1
pp′√

F −1
pp F −1

p′p′

, (16)

where the full range, −1 ≤ δpp′ ≤ 1, is possible but usually
the correlation will be negative, indicating anti-correlation. Our
criterion for rebinning is to require that if the absolute value of
the cross-correlation |δpp′ | is larger than δmax

pp′ for two bins p
and p′ then these two bins are added together in such a way
that the magnetic energy

∑
p εBp ∗ ∆kp is conserved.

After rebinning the algorithm again starts to iterate and
finds the maximum with the new binning. This is done as long
as the cross-correlation of two bins is larger than required.

2.4. The algorithm

As a first guess for a set of model parameter εBp , we used the
results from a Fourier analysis of the original RM map em-
ploying the algorithms as described in Vogt & Enßlin (2003).
However, we also employed as first guess εBp a simple power
law εBp ∝ kαi , where α is the spectral index. The results and the
shape of the power spectrum did not change.

If not stated otherwise, an iteration is stopped when ε <
0.01, i.e. the change in parameter εBp is smaller than 1% of the
error in the parameter εBp itself. Once the iteration converges
to a final set of model parameters the cross-correlation between
the bins is checked and if necessary, the algorithm will start a
new iteration after rebinning. Throughout the rest of the paper,
we require a |δpp′ | < 0.5 for p � p′.

Once the power spectra in terms of εB(k) =
∑

p εBp1{[kp,kp+1]}
is determined, we can calculate the magnetic energy density εB

by integration of the power spectrum

εB(ap) =
∫ ∞

0
dk εB(k) =

∑
p

εBp∆kp, (17)

where ∆kp = kp+1 − kp is the binsize.
Also λB and λRM are accessible by integration of the power

spectrum (Enßlin & Vogt 2003).

λB = π

∫ ∞
0

dk εB(k)/k∫ ∞
0

dk εB(k)
= π

∑
p εBp ln(kp+1/kp)∑

p εBp∆kp
(18)

λRM = 2

∫ ∞
0

dk εB(k)/k2∫ ∞
0

dk εB(k)/k
= 2

∑
p εBp

(
1/kp − 1/kp+1

)
∑

p εBp ln(kp+1/kp)
· (19)

Since the method allows to calculate errors σεBp
, one can also

determine errors for these integrated quantities. However, the
cross-correlations δpp′ which are non-zero as already men-
tioned, have to be taken into account. The probability distribu-
tion P(a) of a parameter can often be described by a Gaussian

P(a) ∼ e−
1
2 δa

T X−1δa, (20)

where X is the covariance matrix of the parameters, δa = a −
apeak, a = {a}max is the determined maximum value for the
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probability distribution and apeak is the actual maximum of the
probability function. The standard deviation is defined as

〈δε2
B〉 = 〈(εB(a) − εB)2〉 =

∫
dna P(a) (εB(a) − εB)2. (21)

Assuming that P(a) follows a Gaussian distribution (as done
above in Eq. (20)) and using that εB(a) is linear in the ap = εBp

then Eq. (21) becomes

〈δε2
B〉 =

∫
dna P(a)

[
δa
∂εB

∂ap

]2

(22)

=

∫
dna P(a)

∑
p

δap
∂εB

∂ap

∑
p′
δap′

∂εB

∂ap′
· (23)

Rearranging this equation and realising that the partial deriva-
tives are independent of the ap since εB is linear in the aps this
leads to

〈δε2
B〉 =

∑
pp′

∂εB

∂ap

∂εB

∂ap′

∫
dna P(a) δap δap′ (24)

and finally using Eq. (16)

〈δε2
B〉 =

∑
pp′

∂εB

∂ap

∂εB

∂ap′
〈σpσp′ 〉, (25)

where 〈σp σp′ 〉 = F −1
pp′ .

A similar argumentation can be applied to the error deriva-
tion for the correlation lengths λRM and λB, although the corre-
lation length are not linear in the coefficients ap. If one uses the
partial derivatives at the determined maximum, one still is able
to approximately separate them from the integral. This leads to
the following expressions for their errors

〈δλ2
B〉 ≈

∑
pp′

∂λB

∂ap

amax
p

∂λB

∂ap′

amax
p′
〈σpσp′ 〉 (26)

and

〈δλ2
RM〉 ≈

∑
pp′

∂λRM

∂ap

amax
p

∂λRM

∂ap′

amax
p′
〈σpσp′ 〉. (27)

3. Testing the algorithm

In order to test our algorithm, we applied our maximum like-
lihood estimator to generated RM maps with a known mag-
netic power spectrum εB(k). Enßlin & Vogt (2003) give a pre-
scription (their Eq. (37)) for the relation between the amplitude
of RM, | ˆRM(k⊥)|2, and the magnetic power spectrum in Fourier
space

εobs
B (k) =

k2

a1 AΩ(2π)4

∫ 2π

0
dφ | ˆRM(k⊥)|2 (28)

or

| ˆRM(k⊥)|2 = a1 AΩ(2π)3

k2
εobs

B (k), (29)

where AΩ is the area Ω for which RM’s are actually measured
and a1 = a2

0 n2
e0 L, where L is the characteristic depth of the

Faraday screen.

As the Faraday screen, we assumed a box with sides being
150 kpc long and a depth of L = 300 kpc. For simplicity, we
assumed a uniform electron density profile with a density of
ne0 = 0.001 cm−3. For the magnetic field power spectra, we
used

εobs
B (k) =



εB

k1−α
0 k2+α

c
k2 ∀k ≤ kc

εB

k0

(
k
k0

)−5/3

∀k ≥ kc

, (30)

where the spectral index was set to mimic Kolmogorov turbu-
lence with energy injection at k = kc, and

εB =
〈B2〉
8π
=

∫ kmax

0
dk εobs

B (k), (31)

where kmax = π/∆r is determined by the pixel size (∆r) of
the RM map used. The latter equation combined with Eq. (30)
gives the normalisation k0 in such a way that the integra-
tion over the accessible power spectrum will result in a mag-
netic field strength of B for which we used 5 µG. We used
a kc = 0.8 kpc−1.

In order to generate a RM map with the magnetic power
spectrum εB(k) for the chosen Faraday screen, we filled the
real and imaginary part of the Fourier space independently with
Gaussian deviates. Then these values were multiplied by the
appropriate values given by Eq. (29) corresponding to their
place in k-space. As a last step, an inverse Fourier transforma-
tion was performed. A typical realisation of such a generated
RM map is shown in Fig. 1.

For the analysis of the resulting RM map only a small part
of the initial map was used in order to reproduce the influence
of the limited emission region of a radio source. We applied
the Fourier analysis as described in Enßlin & Vogt (2003) to
this part. The resulting power spectrum is shown in Fig. 2 as a
dashed line in comparison with the input power spectrum as a
dotted line.

The maximum likelihood method is numerically limited
by computational power since it involves matrix multiplication
and inversion, where the latter is a N3 process. Thus, not all
points of the many which are defined in our maps can be used.
However, it is desirable to use as much information as possible
from the original map. Therefore we chose to randomly aver-
age neighbouring points with a scheme which let to a map with
spatially inhomogeneously resolved cells. The resulting map is
highly resolved on top and lowest on the bottom with some ran-
dom deviations which make it similar to the error weighting of
the observed data. We used N = 1500 independent points for
the analysis. In the left panel of Fig. 1, the averaged RM map
which was used for the test is shown.

As a first guess for the maximum likelihood estimation, we
used the power spectra derived by the Fourier analysis. The re-
sulting power spectrum is shown as filled circles with 1-σ error
bars in Fig. 2. The input power spectrum and the power spec-
trum derived by the maximum likelihood estimator agree well
within the one σ level. Integration over this power spectrum re-
sults in a field strength of (4.7 ± 0.3) µG in agreement with the
input magnetic field strength of 5 µG.
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Fig. 1. Right panel, a small part (37 × 37 kpc) of a typical realisation of a RM map which is produced by a Kolmogorov-like magnetic field
power spectrum for k ≥ kc = 0.8 kpc−1 and a magnetic field strength of 5 µG. Left panel, the RM data used for the data matrix ∆i is shown
where we averaged arbitrary neighbouring points in order to reduce the number of independent points in a similar way as done later with the
observational data.
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Fig. 2. Power spectra for a simulated RM map as shown in Fig. 1.
The input power spectrum is shown in comparison to the one found
by the Fourier analysis as described in Enßlin & Vogt (2003) and the
one which was derived by our maximum likelihood estimator. One can
see the good agreement within one σ between input power spectrum
and the power spectrum derived by the maximum likelihood method.

4. Application to Hydra A

4.1. The data ∆

We applied this maximum likelihood estimator introduced and
tested in the last sections to the Faraday rotation map of the
north lobe of the radio source Hydra A (Taylor & Perley 1993).
The data were kindly provided by Greg Taylor.

For this purpose, we used a high fidelity RM map presented
in Vogt et al. (2004) which was generated by the newly devel-
oped algorithm Pacman (Dolag et al. 2004) using the original
polarisation data. Pacman also provides error maps σi by er-
ror propagation of the instrumental uncertainties of polarisation

angles. The Pacman map which was used is shown in the right
panel of Fig. 3.

For the same reasons as mentioned in Sect. 3, we aver-
aged the data. An appropriate averaging procedure using error
weighting was applied such that

RMi =

∑
j RM j/σ

2
j∑

j 1/σ2
j

, (32)

and the error calculates as

σ2
RMi
=

∑
j

(
1/σ2

j

)
(∑

j 1/σ2
j

)2
=

1∑
j 1/σ2

j

· (33)

Here, the sum goes over the set of old pixels { j} which form the
new pixels {i}. The corresponding pixel coordinates {i} were
also determined by applying an error weighting scheme

xi =

∑
j x j/σ

2
j∑

j 1/σ2
j

and yi =

∑
j y j/σ

2
j∑

j 1/σ2
j

· (34)

The analysed RM map was determined by a gridding proce-
dure. The original RM map was divided into four equally sized
cells. In each of these the original data were averaged as de-
scribed above. Then the cell with the smallest error was chosen
and again divided into four equally sized cells and the original
data contained in the so-determined cell were averaged. The
last step was repeated until the number of cells reached a de-
fined value N. We decided to use N = 1500. This is partly due
to the limitation of computational power but also partly because
of the desired suppression of small-scale noise by a strong av-
eraging of the noisy regions.

The final RM map which was analysed is shown in Fig. 3.
The most noisy regions in Hydra A are located in the coarsely
resolved northernmost part of the lobe. We chose not to resolve
this region any further but to keep the large-scale information
which is carried by this region.
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Fig. 3. The final RM map from the north lobe of Hydra A which was analysed with the maximum likelihood estimator; left: error weighted
map. The dots indicate the coordinates which correspond to the appropriate error weighted RM value, which resulted from averaging over the
indicated area; right: original Pacman map. Note that the small scale noise for the diffuse part of the lobe is averaged out and only the large
scale information carried by this region is maintained.

4.2. The window function

As mentioned in Sect. 2.1, the window function describes the
sampling volume and, thus, we have to find a suitable descrip-
tion for it based on Eq. (6). Hydra A (or 3C 218) is located
at a redshift of 0.0538 (de Vaucouleurs et al. 1991). For the
derivation of the electron density profile parameter, we relied
on the work by Mohr et al. (1999) done for ROSAT PSPC data
while using the deprojection of X-ray surface brightness pro-
files as described in the Appendix A of Pfrommer & Enßlin
(2004). Since Hydra A is known to exhibit a strong cooling
flow as observed in the X-ray studies, we assumed a double
β-profile1 and used for the inner profile ne1(0) = 0.056 cm−3

and rc1 = 0.53 arcmin; for the outer profile we used ne2(0) =
0.0063 cm−3 and rc2 = 2.7 arcmin and we applied a β = 0.77.

Assuming this electron density profile to be accurately de-
termined, there are two other parameters which enter in the
window function. The first one is related to the source geom-
etry. For Hydra A, a clear depolarisation asymmetry between
the two lobes is observed, known as the Laing-Garrington ef-
fect (Garrington et al. 1988; Laing 1988) suggesting that the
source is tilted from the xy-plane (Taylor & Perley 1993). In
fact, the north lobe points towards the observer. In order to take
this into account, we introduced an angle θ which describes the
angle between the source and the xy-plane such that the north
lobe points towards the observer. Taylor & Perley (1993) deter-
mine an inclination angle of θ = 45◦.

The other parameter is related to the global magnetic field
distribution which is assumed to scale with the electron den-
sity profile B(r) ∝ ne(r)αB . In a scenario in which an originally

1 Defined as ne(r) = [n2
e1(0)(1 + (r/rc1)2)−3β + n2

e2(0)(1 +
(r/rc2)2)−3β]1/2.

statistically homogeneously magnetic energy density gets adi-
abatically compressed, one expects αB = 2/3. If the ratio of
magnetic and thermal pressure is constant throughout the clus-
ter then αB = 0.5. However, αB might have any other value.
Dolag et al. (2001) determined an αB = 0.9 for the outer re-
gions of the cluster Abell 119.

In order to constrain the applicable ranges of these quanti-
ties, one can compare the integrated squared window function
with the RM dispersion function 〈RM(r⊥)2〉 of the RM map
used since

〈RM2(r⊥)〉 ∝
∫ ∞

−∞
dz f 2(r⊥, z), (35)

as stated by Eq. (24) of Enßlin & Vogt (2003). Therefore, we
compared the shape of the two functions. The result is shown
in Fig. 4. For the window function, we used three different
αB = 0.1, 0.5, 1.0 and for each of these, five different incli-
nation angles θ = 0◦, 10◦, 30◦, 45◦ and 60◦ were employed,
although the θ = 0◦ is not very likely considering the obser-
vational evidence of the Laing-Garrington effect as observed in
Hydra A by Taylor & Perley (1993). The different results are
plotted as lines of different style in Fig. 4. The filled and open
dots represent the RM dispersion function. The solid circles in-
dicate the binned 〈RM2〉 function. The open circles represent
the binned 〈RM2〉 − 〈RM〉2 function, which is cleaned of any
foreground RM signals.

From Fig. 4, it can be seen that models with αB = 1.0 or
θ > 50◦ are not able to recover the shape of the RM dispersion
function and, thus, we expect αB < 1.0 and θ < 50◦ to be more
likely.
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Fig. 4. The comparison of the integrated squared window function f 2(r) (lines) with the RM dispersion function 〈RM2(r)〉 (open circles) and
〈RM2〉 − 〈RM(r)〉2 (filled circles). Different models for the window function were assumed. In a) αB = 1.0, in b) αB = 0.5 and in c) αB = 0.1
were used, where the inclination angle θ of the source was varied. It can be seen that models for the window function with αB = 0.1, . . . , 0.5
and θ = 10◦, . . . , 50◦ match the shape of the dispersion function very well.

5. Results and discussion

Based on the described treatment of the data and the descrip-
tion of the window function, first we calculated power spectra
for various scaling exponents αB while keeping the inclination
angle at θ = 45◦. For this investigation, we used as the number
of bins nl = 5 which proved to be sufficient. For these calcula-
tions, we used ε < 0.1. The resulting power spectra are plotted
in Fig. 5.

In Fig. 5, one can see that the power spectrum derived for
αB = 1.0 has a completely different shape whereas the other
power spectra show only slight deviation from each other and
are vertically displaced, implying different normalisation fac-
tors, i.e. central magnetic field strengths which increase with
increasing αB. The straight dashed line which is also plotted
in Fig. 5 indicates a Kolmogorov-like power spectrum being
equal to 5/3 in our prescription. The power spectra follow this
slope over at least one order of magnitude.

In Sect. 4.2, we were not able to distinguish between the
various scenarios for αB although we found that an αB = 1 does
not properly reproduce the measured RM dispersion. However,
the likelihood function offers the possibility to calculate the
actual probability of a set of parameters given the data (see
Eq. (1)). Thus, we calculated the log likelihood lnL∆(a) value
for various power spectra derived for the different window
functions varying in the scaling exponent αB and assuming the
inclination angle of the source to be for all geometries θ = 45◦.

 1e-14

 1e-13

 1e-12

 1e-11

 0.1  1  10  100

ε B
(k

)*
k 

[e
rg

 c
m

-3
]

k [kpc-1]

αB = 1.0
αB = 0.67

αB = 0.5
αB = 0.3
αB = 0.1

 k-2/3

Fig. 5. Power spectra for N = 1500 and nl = 5. Different exponents αB

in the relation B(r) ∼ ne(r)αB of the window function were used. The
inclination angle of the source was chosen to be θ = 45◦.

In Fig. 6, the log likelihood is shown as a function of the scaling
parameter αB used.

As can be seen from Fig. 6, there is a plateau of most likely
scaling exponents αB ranging from 0.1 to 0.8. An αB = 1
seems to be very unlikely for our model as already deduced
in Sect. 4.2. The sudden decrease for αB < 0.1 might be due to
non-Gaussian effects. The magnetic field strength derived for
this plateau region ranges from 9 µG to 5 µG. The correlation
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Fig. 6. The log likelihood lnL∆(a) of various power spectra assuming
different αB while using a constant inclination angle θ = 45◦. αB =

0.1, . . . , 0.8 are in the plateau of maximum likelihood. The sudden
decrease for αB < 0.1 in the likelihood might be due to non-Gaussian
effects becoming too strong.

length of the magnetic field λB was determined to range be-
tween 2.5 kpc and 3.0 kpc whereas the RM correlation length
was determined to be in the range of 4.5, . . . , 5.0 kpc. These
ranges have to be considered as a systematic uncertainty since
we are not yet able to distinguish between these scenarios ob-
servationally. Another systematic effect might be given by un-
certainties in the electron density itself. Varying the electron
density normalisation parameters (ne1(0) and ne2(0)) leads to a
vertical displacement of the power spectrum while keeping the
same shape.

In order to study the influence of the inclination angle on
the power spectrum, we used an αB = 0.5, being in the middle
of the most likely region derived. For this calculation, we used
smaller bins and thus increased the number of bins to nl = 8.
We calculated the power spectrum for two different inclination
angles θ = 30◦ and θ = 45◦. The results are shown in Fig. 7 in
comparison with a Kolmogorov-like power spectrum.

As can be seen from Fig. 7, the power spectra de-
rived agree well with a Kolmogorov-like power spec-
trum over at least one order of magnitude. For the in-
clination angle of θ = 30◦, we derived the following
field and map properties B = 5.7 ± 0.1 µG, λB = 3.1 ± 0.3 kpc
and λRM = 6.7 ± 0.7 kpc. For θ = 45◦, we calculated
B = 7.3 ± 0.2 µG, λB = 2.8 ± 0.2 kpc and λRM = 5.2 ± 0.5 kpc.
The value of the log likelihood lnL was determined to be
slightly higher for the inclination angle of θ = 30◦. The flat-
tening of the power spectra for large ks can be explained by
small-scale noise which we did not model separately.

Although the central magnetic field strength decreases with
decreasing scaling parameter αB, the volume-integrated mag-
netic field energy EB within the cluster core radius rc2 in-
creases. The volume-integrated magnetic field energy EB is cal-
culated as follows

EB = 4π
∫ rc2

0
dr r2 B2(r)

8π
=

B2
0

2

∫ rc2

0
dr r2

(
ne(r)
ne0

)2αB

, (36)
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Fig. 7. Power spectra for two different inclination angles θ = 30◦

and θ = 45◦ and an αB = 0.5. For comparison a Kolmogorov-like
power spectrum is plotted as a straight dashed line. One can see that
the calculated power spectra follow such a power spectrum over at
least one order of magnitude. Note that the error bars are larger than
in Fig. 5 because smaller bin sizes were used.
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Fig. 8. The integrated magnetic field energy EB within the cluster core
radius rc2 for the various scaling parameters αB also used in Fig. 6 and
the corresponding central magnetic field strength B0 as determined by
our maximum likelihood estimator.

where we integrate from the cluster centre to the core radius rc2

of the second, non-cooling flow, component of the electron
density distribution.

We integrated the magnetic field profile for the various scal-
ing parameters and the corresponding field strengths which we
determined by our maximum likelihood estimator. The result is
plotted in Fig. 8. The higher magnetic energies for the smaller
scaling parameters which correspond to a lower central mag-
netic field strength are due to the higher field strength in the
outer parts of the cool cluster core. This effect would be much
more drastic if we had extrapolated the scaling B(r) ∝ ne(r)αB

to larger cluster radii and integrated over a larger volume.

6. Conclusions

We presented a maximum likelihood estimator for the determi-
nation of cluster magnetic field power spectra from RM maps
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of extended polarised radio sources. We introduced the co-
variance matrix for RM under the assumption of statisti-
cally homogeneously-distributed magnetic fields throughout
the Faraday screen. We successfully tested our approach on
simulated RM maps with known power spectra.

We applied our approach to the RM map of the north lobe
of Hydra A. We calculated different power spectra for various
window functions being especially influenced by the scaling
parameter between electron density profile and global mag-
netic field distribution and the inclination angle of the emission
region. The scaling parameter αB was determined to be most
likely in the range of 0.1, . . . , 0.8.

We realised that there is a systematic uncertainty in the val-
ues calculated due to the uncertainty in the window parameter
itself. Taking this into account, we deduced for the central mag-
netic field strength in the Hydra A cluster B = (7 ± 2) µG and
for the magnetic field correlation length λB = (3.0 ± 0.5) kpc.
If the geometry uncertainties could be removed, the remaining
statistical errors are an order of magnitude smaller. The differ-
ence of these values to the ones found in an earlier analysis of
the same dataset of Hydra A which yielded B = 12 µG and
λB = 1 kpc (Vogt & Enßlin 2003) is a result of the improved
RM map using the Pacman algorithm (Dolag et al. 2004; Vogt
et al. 2004) and a better knowledge of the magnetic cluster pro-
file, i.e. here αB ≈ 0.5 (instead of αB = 1.0 in Vogt & Enßlin
2003). However, the magnetic field strength found in Hydra A
supports the trend of relatively large magnetic fields derived
for cooling flow clusters from RM measurements reported in
the literature.

The cluster magnetic field power spectrum of Hydra A fol-
lows a Kolmogorov-like power spectrum over at least one order
of magnitude. However, from our analysis it seems that there
is a dominant scale ∼3 kpc at which the magnetic power is
concentrated.
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