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A BDI Assignment Protocol with New
Cooperative-Concession Strategies

Kiam Tian Seow, Kwang Mong Sim, Yew Soon Ong and Endang Purwanto Sulaiman

Abstract— This paper addresses the collaborative linear
assignment problem (CLAP) for a class of allocation ap-
plications. CLAP entails using agents to seek a concurrent
allocation of one different object for every agent, to opti-
mize a linear sum efficiency function as their (soft) social
goal. Anchoring in the standard framework of automated
negotiation allows an original BDI negotiation model for
CLAP to be conceptually separated into a BDI assignment
protocol and an adopted strategy. Facilitated by this
conceptual separation, the contributions of this work are:
(i) providing a rigorous analysis of the protocol and
demonstrating its salient properties, and (ii) formulating
new strategies using a novel idea of cooperative concession.
Four different strategies for a negotiation agent and the
arbitration agent provide sixteen arbitration-negotiation
combinations running with the protocol, and these are
empirically assessed for their performance profiles in
negotiation speed and solution quality. Important findings,
including the stability of the protocol in producing better
than good enough global allocations, and the strategic
influence of cooperative concessions on performance, are
examined. The significance and practicality of the work in
relation to existing work are also discussed.

Index Terms— Intelligent Agents, BDI Models, Auto-
mated Negotiation, Cooperative Concessions, Reasoning
Systems.

I. I NTRODUCTION

Central to many real world applications in a non-
centralized environment is the fundamental problem
of assigning or allocating objects to agents. The
object can be a task to assign or a resource to
allocate. Perhaps the most basic is the linear (sum)
assignment problem (LAP) which deals with the
question of how toconcurrentlyassignN distinct
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objects toN distinct agents on a one-to-one basis,
with maximizing a summation objective function
as the optimalgoal. LAP manifests itself in a
diverse range of interesting applications, either as an
allocation problem or a subproblem of co-allocation.
Examples include personnel management (assign
tasks to persons), vehicle transportation (assign
passenger requests to taxis), manufacturing (assign
jobs to parallel machines) and telecommunication
(match sending and receiving stations), for which
centralized algorithms have been applied [1].

Our research aims to develop techniques to ad-
dress distributed versions of these LAP applications,
emerged to exploit recent advancement in computer
and internet technology that has made it possible
to have situated agents collaboratively plan the
assignmentsby themselves. This is in contrast to a
centralized algorithm planningfor them [1]. Solved
this way, the basic problem is termed a collaborative
LAP (CLAP) (Section II). While the centralized
approach was acceptable in the past, it limited active
involvement of distributed agents in incremental
planning or problem solving.

This paper addresses and discusses the solutions
of CLAP in the framework of automated negotiation
[2], where negotiation is viewed as a process of
several agents searching for a solution called an
agreement. The search process is realized via a
negotiation mechanism (or algorithm) implementing
a negotiation model comprising of a high level
protocol and a set ofstrategies. In general, given
a protocol specifying the ‘rules of interactions’,
different strategies can be designed for individual
agents to select their own preferences among avail-
able choices at each step. Whereas a protocol is
public in that it is agreed and followed by all the
agents in a negotiation process, the strategies used
by individual agents are moreprivate in that their
full details may be hidden from other agents.

In addressing CLAP as a distributed agent prob-
lem, an agent attempting to reach an optimal as-
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signment solution (or agreement) faces the basic
issue of deciding what action to perform. In so
doing, each agent needs to reason about its beliefs
and preferences as well as its collaborating agents’,
mediating through interactions among the agents
during planning. The goal of LAP becomes the
joint social goal of these agents. One agent negoti-
ation mechanismMA3 [3] realizing this implements
a Belief-Desire-Intention (BDI) negotiation model
developed for CLAP. Essentially, the mechanism
involves agents negotiating under the regulation of
an arbitration agent. In seeking the social goal,
each agent reasons communicatively and submits its
intention- an object exchange proposal with another
agent that will increment the social gain if executed
- for arbitration in a finite number of negotiation
rounds.

Anchored in the framework of automated negotia-
tion, in the originalMA3, every negotiation agent as
well as the arbitration agent adopts a simple greedy
strategy ‘embedded’ in a BDI assignment protocol
(Section III-A). The strategy isgreedy because
it asserts that only an object exchange proposal
associated with thehighestsocial gain is selected
in an arbitrary round. Conceptually separating the
protocol and the strategy opens up the opportunities
for formal analysis of the protocol and development
of new strategies for CLAP, along with comparative
evaluations of their performance.

The development of new strategies in this paper
for determining local intentions and arbitrating them
in MA3 is based on a novel idea calledcooperative
concessionwhich deviates from the usual definition
of concession. By the conventional idea of con-
cession in automated negotiation, each negotiation
agent considers whether to give up (or concede)
an object if an exchange is to be agreed upon
[2]. However, by cooperative concession, whether
an agent should concede is considered by another
agent, depending on which object the former is
holding that the latter believes it might exchange
its current selection for, to increment social gain.
So intuitively, the proposed idea of cooperative
concession asserts that‘I’ consider whether ‘You’
should give inand conversely, instead of the usual
definition of ‘I’ consider whether ‘I’ should give in.

Following, the main contributions of this paper
are: (i) the novel idea of cooperative concession
strategies and their formulations for determining
local intentions and arbitrating them in BDI assign-

ment negotiation (Section III), (ii) a formal analysis
of the BDI assignment protocol that exposes three
salient properties, namely solution guarantee, sim-
plicity, and stability in some specific sense (Section
IV), and (iii) a detailed study of the empirical
performance of all possible arbitration-negotiation
combinations of strategies, along with a discussion
on the comparative effectiveness of these strategy
combinations and the stability of the BDI assign-
ment protocol for CLAP (Section V). Discussions
in relation to existing multiagent work examine
the significance of the work (Section VI), with
concluding remarks in Section VII.

II. T HE CLAP FRAMEWORK

The N × N CLAP framework [3] entails using
N agents to negotiate for an efficient concurrent
allocation ofN different objects, with one different
object for every agent. The original framework [3]
is defined withtaskagents negotiating for different
resources; here it is slightly generalized concep-
tually to agents negotiating for objects, but with
no change in mathematical formulation. Thus, in
this framework, there is a team of agentsA =
{a0, a1, · · · , aN−1} of size N ≥ 2, and a set of
different objectsO = {r0, r1, · · · , rN−1} of sizeN .
Initially, agent a ∈ A only has knowledge of the
A-QoS (application quality-of-service) it can offer
for each object, defined byd[a, r] for all r ∈ O.
Formally, the objective ofN × N CLAP is to find
the particular (total) assignment

Π : A → O such that forai, aj ∈ A,

i 6= j implies Π(ai) 6= Π(aj)
(1)

a one-to-one mapping of agents to objects that
(approximately) maximizes the total A-QoSStot,

Stot =

|A|−1
∑

i=0

d[ai, Π(ai)] (2)

Π(a) ∈ O refers to an object selection by agent
a ∈ A (under an arbitrary permutation ofΠ); and
max{Stot(2)} defines the (ideal) social goal1 of the
agents. An assignment or allocation set (or simply
assignment) corresponds to one permutation ofΠ

1Note that this global optimum is not the same as the sum
of individual local optima (each being the largest A-QoS value
d[a, r] among all objects inO for an agenta ∈ A), unless their
corresponding selections form a permutation ofΠ (1).

Administrator
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(1), and can also be equivalently represented as
containing elements of the form(a, Π(a)) ∈ A×O.

In attempting to reach an agreement (social goal),
the basic issue a negotiation agenta ∈ A faces
when holding an object selection is deciding what
alternative selections to exchange it for, as detailed
in Section III.

III. BDI N EGOTIATION MODEL FORCLAP

This section presents an overview of the BDI as-
signment protocol and the strategies that constitute
the proposed negotiation model forN × N CLAP.

A. The BDI Assignment Protocol

The proposedprotocoldivides the reasoning pro-
cess into negotiation rounds, and in each round,
performs negotiatory means-end reasoning, where
the end is to increase the social value, i.e., the
total allocated A-QoS (2), using themeans of
object exchange between two negotiation agents.
In each round, each agent locally accesses and
directly acts only on its own row of A-QoS data,
and determines itsbelief set - the information or
evidence that indicates all the possible options -
the alternative objects - a negotiation agent can
exchange its current object selection for to achieve
its end. Every agent then beginsnegotiating by
communicating with one another to acquire A-QoS
data from any agent whose current object selection
is in the agent’s belief set. In collaborating, any such
agents will respond with the required A-QoS values,
using which the agent would deliberate to determine
its own desire set - the means of exchanging its
current object selection for options (that survive the
deliberation) with the respective agents (currently
holding on to these options). Each desire is an
exchange means for the agent to achieve its end.
As a final step in a negotiation round, the agent will
adopt astrategythat must2 select a (local) desire as
its intention, which it would then use as the basis for
an object exchange proposal. All the agents’ object
exchange intentions would undergo arbitration to
decide which two agents to proceed with the object
exchange, before negotiation is concluded, and the
next round begins. The negotiation process termi-
nates when simultaneously, all negotiating agents
have no (more) intention to exchange objects.

2This rule is necessary to ensure that any strategy will always select
an available exchange means that exists.

B. Strategies for Determining Intentions

Negotiation strategies:Three strategies for a ne-
gotiation agent are possible with the BDI assign-
ment protocol in a negotiation round:

1) In the N-Greedy strategy, the agent will select
the best (local) desire - the one that offers a
net exchange gain that is the highest from the
agent’s perspective as its intention.

2) In the N-MinCon strategy, the agent will se-
lect a (local) desire that offers a net exchange
gain along with its exchange partner conced-
ing the least from the agent’s perspective as
its intention.

3) In the N-MaxCon strategy, the agent will se-
lect a (local) desire that offers a net exchange
gain along with its exchange partner conced-
ing the most from the agent’s perspective as
its intention.

Arbitration strategies:Similarly, three strategies
for arbitration are possible in a negotiation round.
The following describes the strategies for arbitration
done through a dedicated (arbitration) agent:

1) In the A-Greedy strategy, the (arbitration)
agent will select an intention with thehighest
exchange gain, among all intentions gathered,
for object exchange.

2) In the A-MinCon strategy, the agent will
select an intention with the exchange partner
of the proposing agent concedingthe least,
among all intentions gathered, for object ex-
change.

3) In the A-MaxCon strategy, the agent will
select an intention with the exchange partner
of the proposing agent concedingthe most,
among all intentions gathered, for object ex-
change.

Relative toGreedy, MaxCon tends to encourage
more A-QoS information requests in subsequent
rounds, whereasMinCon tends to encourage less.
An important motivation of this research is to
study, with Greedy as the base case, how differ-
ent arbitration-negotiation combinations including
these cooperative-concession strategies impact per-
formance in terms of negotiation speed and solution
quality.

Random strategy:In the simulation study (Sec-
tion V), we also introduce arandom ‘strategy’ for
the arbitration and negotiation agents; an agent is
said to be adopting a random strategy if it nondeter-
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ministically selects one of the three proposed before
negotiation begins. So, a total of sixteenarbitration-
negotiationstrategy combinations are investigated.

C. Formalization of BDI Concepts & Cooperative
Concession

To formally ground and combine the BDI con-
cepts and strategies of cooperative concession for
CLAP, the following CLAP-specific data structures
are formally defined, in such a way that they can be
naturally interpreted as a negotiation agent’s beliefs,
desires with concession information, and intentions
computed in an arbitrary round of negotiation. In
these definitions, the current object selections of
all agents refer to those made under an arbitrary
permutation ofΠ (1).

Definition 1 (Belief SetBi): Given that an agent
ai ∈ A’s current object selection isri ∈ O. Then
its (current) belief setBi is given by

Bi = {r ∈ O | d[ai, r] > d[ai, r
i]} (3)

If Bi 6= ∅, this means that agentai ∈ A has at least
one alternative object selectionr ∈ Bi that may
lead to increase in total A-QoS (2) (when made in
exchange with an agent whose current selection is
r ∈ O).

Definition 2 (Desire SetDi and ConcessionCij):
Given that an agentai ∈ A’s current object selection
is ri ∈ O and its belief set isBi, Bi 6= ∅. An
arbitrary agentaj ∈ A whose current object
selection isrj ∈ O is said to accept agentai ∈ A’s
beliefs Bi if rj ∈ Bi. To generate the desired
exchange options or desiresDi, agent ai ∈ A
broadcasts its beliefsBi and current selection
ri ∈ O, and an arbitrary agentaj ∈ A who accepts
the beliefs would respond with a pair of A-QoS
valuesd[aj, r

j] andd[aj, r
i], so that for each of the

|Bi| responses received, the corresponding object
exchange option[(ai, r

j), (aj, r
i), ρ, Cij] ∈ Di (i.e.,

is agentai ∈ A’s desire) if ρ > 0, where ρ is
defined by

ρ = −d[ai, r
i] + d[ai, r

j] − Cij (4)

with
Cij = (d[aj, r

j] − d[aj, r
i]) (5)

defining thecooperative concessionof agentaj ∈ A
for agentai ∈ A.
If ρ > 0, it means that there is a net exchange gain
if agentai ∈ A gives up its current selectionri ∈ O

and selectsrj ∈ O, and in exchange, agentaj ∈ A
gives up its current selectionrj ∈ O and selects
ri ∈ O. Thus, any desired ∈ Di, when carried out,
will definitely lead to an increase in total A-QoS
without violatingΠ (1). Quite naturally, it provides
the motivation for agentai ∈ A to want to exchange
its current object selection.

If the cooperative concessionCij agentai ∈ A
receives from an agentaj ∈ A is greater than
zero, this means that agentaj ∈ A will concede its
object for agentai’s with a local A-QoS decrease
if the object exchange with agentai ∈ A takes
place. If Cij < 0, it means that the agents will
mutually benefit with a local A-QoS increase should
the exchange occur.

Definition 3: [Intention Ii] Given that an agent
ai ∈ A’s desire set isDi, Di 6= ∅. Then, agent
ai ∈ A’s intentionIi is determined according to the
strategy adopted:

1) N-Greedy strategy

Ii = [(ai, r
j), (aj, r

i), ρ,−] ∈ Di, for which

ρ = max{ρ′ | [−,−, ρ′,−] ∈ Di }
(6)

2) N-MinCon strategy

Ii = [(ai, r
j), (aj, r

i),−, Cij] ∈ Di, for which

Cij = min{C ′ | [−,−,−, C ′] ∈ Di }
(7)

3) N-MaxCon strategy

Ii = [(ai, r
j), (aj, r

i),−, Cij] ∈ Di, for which

Cij = max{C ′ | [−,−,−, C ′] ∈ Di }
(8)

Agent ai ∈ A’s decisive stance or intention isIi

or it is said to have no intention if eitherBi = ∅
or Di = ∅, in which caseIi = nil, wherenil =
[−,−, 0,−].

Finally, in the role of arbitration, an intention
I = [−,−, ρ,−], ρ > 0, is similarly selected in
accordance to an adopted strategy, but over all the
agents’ intentions (or the lack thereof communicated
as anil intention)Ii ∈ I gathered.

The negotiation process will terminate following
a negotiation round when all agents have no (more)
intention to exchange objects and so submitnil
intentions, discovered through arbitration.

With the above formalization, a distributed agent
algorithm that realizes the BDI negotiation model
(consisting of the BDI assignment protocol and the
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set of strategies proposed) is presented in Section
III-D. This algorithm is referred to as aMulti-
Agent AssignmentAlgorithm (MA3), and handles
the simple role of arbitration through a dedicated
agent.

D. Distributed Agent AlgorithmMA3

MA3 assumes that|A| = |O| = N , and consists
of an arbitration agent (or arbiter) and a team of
agents,a ∈ A. Each negotiation agenta ∈ A has
initial A-QoS (local) knowledge, i.e.,d[a, r] for each
objectr ∈ O. Agenta ∈ A initially selects an object
r ∈ O according to (a permutation of)Π : A → O
(1). The arbiter then initiates negotiation.

The generic BDI reasoning mechanism of a ne-
gotiation agent and the simple role of the arbitration
agent in an arbitrary round of collaborative negoti-
ation can now be described as follows:

MA3 : Collaborative Negotiation Agent

1) If agent believes that there are alternative object se-
lections which may lead to increase in total A-QoS, it
would, based on its (local) beliefs, generate the desired
exchange options or desires, from which an option in
accordance to its adopted strategy will be chosen as its
intention.

2) Agent submits its intention (or the lack thereof) to the
arbitration agent.

3) Concurrent with Steps 1 and 2, it responds to any re-
questing agent whose beliefs it accepts, by sending to
the requesting agent the A-QoS values as required for
computing the requesting agent’s desire.

4) Agent changes its object selection (and then acknowl-
edges it), proceeds to next round of negotiation or quit,
as decided by the arbitration agent.

MA3 : Arbitration Agent

1) Agent first receives the intentions (or the lack thereof) of
all the negotiation agents.

2) If agent sees that all agents have no intention to ex-
change, it terminates the negotiation by telling all agents
to quit.

3) Otherwise, it

a) selects an intention in accordance to its adopted
strategy and instructs the two agents concerned to
proceed with the object exchange.

b) receives acknowledgement of object exchange
made as instructed (from the two agents con-
cerned), before telling all agents to proceed to next
round of negotiation.

IV. PROTOCOLANALYSIS

Formally, the BDI assignment protocol induces
the permutations ofΠ (1) for an N × N CLAP
into a negotiation space formalized as an assign-
ment reachability graphG. EssentiallyG defines
the complete space of possible sequential execution
of desires selected as intentions in a negotiation
process.

A. Negotiation Space: An Assignment Reachability
Graph

For a set of agentsA and a set of objectsO, for
which |A| = |O| = N ≥ 2, let

G
def
= (V,D, δ, Vo) (9)

represent an assignment reachability graph (ARG)
in which:

1) V denotes a (nonempty) finite set of states
uniquely characterizing the permutations ofΠ
(1), and we writeΠ(a)|v to denote the object
selection of agenta ∈ A in state v ∈ V .
|V | = N !. The total A-QoS (2) in a statev ∈
V (i.e., a permutation ofΠ) is denoted by|v|
and given by

|v| =

(N−1)
∑

i=0

d[ai, Π(ai)|v].

2) D ⊆ V × V denotes a finite set of desires.
3) δ : D × V → V is a state transition

function (due to object exchange between
two arbitrary agentsai, aj ∈ A), such that
δ(eij, v) = v′ ∈ V iff Π(ai)|v′ = Π(aj)|v
andΠ(aj)|v′ = Π(ai)|v and the magnitude of
eij ∈ D, △eij|v > 0, is defined by

△eij|v = {−d[ai, Π(ai)|v] + d[ai, Π(aj)|v]} +

{−d[aj, Π(aj)|v] + d[aj, Π(ai)|v]} > 0.

We can interpret△eij|v as the increase in total
A-QoS if agentai and agentaj exchange their
object selections held in statev ∈ V , i.e.,
Π(ai)|v andΠ(aj)|v, respectively.

4) Vo ⊆ V denotes a finite set of terminal states
such that forvo ∈ Vo, δ(e, vo) is not defined
for any e ∈ D.

Let D∗ contain all possible finite sequences, or
strings, overD, plus the null stringε. Then, def-
inition of δ can be extended toD∗ as follows:

δ(ε, v) = v,
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(∀e ∈ D)(∀w ∈ D∗), δ(we, v) = δ(e, δ(w, v)).

For a strings ∈ D∗ that is defined at an arbitrary
v ∈ V (i.e., δ(s, v) ∈ V ) and hence is called anad-
missiblestring, |s| denotes the length of the string,
i.e., the number of elements of setD, assumed
nonempty, in strings. |s| = 0 if s = ε.

Finally, to define the beliefsBi, desiresDi and
intention Ii of an agentai ∈ A in a statev ∈ V ,
we write: Bi|v, Di|v and Ii|v, respectively; if agent
ai ∈ A has no intention in a statev ∈ V , we write
Ii|v = nil. We also call a statev ∈ V an agreement,
and |v|, an agreement value.

This leads us to formally stating the basic logical
relationship among the beliefs, desires and intention
of an agentai ∈ A under an agreementv ∈ V , in
accordance to the BDI assignment protocol.

B. Characteristic Axioms of BDI Assignment Pro-
tocol

Axiom 1: Bi|v = ∅ =⇒ Di|v = ∅.
Axiom 2: (∀ai ∈ A, Di|v = ∅) ⇐⇒ v ∈ Vo.
Axiom 3: Di|v = ∅ ⇐⇒ Ii|v = nil.
Axiom 13 states that in an arbitrary statev ∈ V ,

if an agentai ∈ A has no belief, it has no desire.
Axiom 2 states that a statev ∈ V is in Vo provided
all the agents have no desire. Axiom 3 states that
in an arbitrary statev ∈ V , an agentai ∈ A has no
desire provided it has no intention.

C. Properties of ARG

Below, we present some basic properties of an
ARG G (9). These properties are needed to establish
the key properties of the BDI assignment protocol
in Section IV-D.

Property 1: If e ∈ D and δ(e, v) = v′ ∈ V , then
|v′| > |v|.

Proof: See proof of [3, Property 1,p. 260].
Property 2: ARG G is acyclic (i.e.,∀v ∈ V , there

is no s ∈ D∗ − {ε} such thatδ(s, v) = v).
Proof: See proof of [3, Property 2, p.260].

Property 3: Vo 6= ∅ (i.e., given an arbitraryv ∈
V , ∃w ∈ D∗ : δ(w, v) ∈ Vo).

Proof: See proof of [3, Property 3, p. 260].
Property 4: ∀ai ∈ A, Ii|v = nil iff v ∈ Vo.

Proof:

3Axiom 1 is not used in any proof in this paper, but is presented
here for completeness’ sake.

v ∈ Vo ⇐⇒ ∀ai ∈ A, Di|v = ∅
{by Axiom 2}

⇐⇒ ∀ai ∈ A, Ii|v = nil
{by Axiom 3}.

Hence the result.
Property 5: If v ∈ V is an optimal agreement,

thenv ∈ Vo.
Proof: We prove by contrapositive reasoning.

v 6∈ Vo =⇒ not (∀ai ∈ A, Ii|v = nil)
{by Property 4}

=⇒ ∃ai ∈ A : Ii|v = [−,−, ρ,−] 6=
nil
{ by propositional reasoning}

=⇒ ∃v′ ∈ V : v′ = δ(e, v)
{ by Definition 3 of intention as a
desire, which is a transitionIi|v =
e ∈ D of ARG G (9) }

=⇒ ∃v′ ∈ V : |v′| > |v|
{ by Property 1}

=⇒ v ∈ V is not optimal.
Hence the result.

The proofs of the next two properties rely on two
elementary results (Lemmas 1 and 2) for a directed
graph, denotedG, and some terminology, namely,
a bipartite and a colorable graph, and its chromatic
numberχ(G); these are presented in Appendix I.

Property 6: The following statements are true
and equivalent: 1)χ(G) = 2 and 2)G is a bipartite
graph.

Proof: By Property 2,G is acyclic, implying
it has no cycles and hence no cycles of odd length.
Thus, by Lemma 1,G is 2-colorable; therefore
χ(G) = 2. Since by Lemma 2,χ(G) = 2 iff G is a
bipartite graph, it follows thatG is bipartite. Hence
the result.

By Property 6,G is a bipartite graph (2-colorable)
implying V can be partitioned into (disjoint) sets of
V -0 andV -1, i.e.,

V = V -0 ∪ V -1 such thatV -0 ∩ V -1 = ∅ (10)

Together with acyclicity ofG by Property 2, we can
further partitionV -0 andV -1 individually, with

V -0 =
a

⋃

i=0

V -02i andV -1 =
b

⋃

i=0

V -12i+1 (11)

for some finite integersa andb, such that withz ∈
{0, 1}4, the following two conditions are true:

4Think of z as a binary variable, withz denotingnot z.
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1) For x 6= y, V -zx ∩ V -zy = ∅;
2) (v′ = δ(e, v) andv ∈ V -zx) =⇒ ∃!y > x :

v′ ∈ V -zy.
Property 7: For an arbitraryv ∈ V , s ∈ D∗, if

δ(s, v) ∈ V , |s| ≤ N(N − 1) − 1.
Proof: If s is a null stringε, δ(s, v) = v ∈ V ;

and trivially, |s| = 0 ≤ N(N −1)−1, sinceN ≥ 2.
By (10) and (11), an arbitrary admissible string

s ∈ D∗ − {ε} traversing inG alternates between
states inV -0 andV -1 through a sequence of parti-
tion subsets,V -00∗ → V -11∗ → V -02∗ → V -13∗ →
· · · → V -z|s|∗ , z ∈ {0, 1} andk∗ > j∗ for k = j+1.
In traversing from one such partition subsetV -zx∗

to another, one of
∑wx

y=1

((

N
2

)

− Axy

)

possible

desired exchanges (underΠ) from the subset is
taken, wherewx ≥ 1 is the number of states in aV -
zx∗ andAxy is the number of non-desired exchanges

[out of a possible

(

N
2

)

] from a state indexed byy

in V -zx∗, 0 ≤ Axy ≤

(

N
2

)

. Following,

|s|−1
∑

x=0

wx
∑

y=1

((

N
2

)

− Axy

)

≤

((

N2

2

)

− 2N

(

N
2

))

−

|s|−1
∑

x=0

wx
∑

y=1

Axy − β

(

N
2

)

,

whereβ, 1 ≤ β ≤ |Vo|, is the number of terminal
states not in any subsetV -zx∗, 0 ≤ x ≤ |s| − 1.
Simplifying, we get

|s|−1
∑

x=0

wx

(

N
2

)

≤

(

N2

2

)

− (2N + β)

(

N
2

)

.

Rewriting the left-hand side, we have

|s|α

(

N
2

)

≤

(

N2

2

)

− (2N + β)

(

N
2

)

,

where

α =

∑|s|−1
x=0 wx

|s|
≥ 1.

So in general,

|s|

(

N
2

)

≤

(

N2

2

)

− (2N + 1)

(

N
2

)

,

or
|s| ≤ N(N − 1) − 1.

Hence the result.

D. Properties of BDI Assignment Protocol

Proposition 1 (Solution Guarantee):The BDI
assignment protocol ensuresMA3 always terminates
in a finite number of negotiation rounds.

Proof: Starting from an arbitrary statev ∈ V
of an ARG G, by Property 3,MA3 will take a
finite number of transitions, one per negotiation
round to reach a statevo ∈ Vo. In this state, a
final round of negotiation proceeds during which,
by Property 4, the arbitration agent will receive the
lack of intentions by all agents and inform them to
terminate negotiation. Hence the result.

Proposition 2 (Computational Simplicity):
Given an arbitraryN × N CLAP instance, the
BDI assignment protocol ensures the worst-case
complexity of MA3 in terms of the number of
negotiation rounds isO(N2).

Proof: By Property 7, the maximum num-
ber of transitions in an admissible string ofG is
N(N − 1)− 1. SinceMA3 will execute a transition
per negotiation round until the last round when all
agents discover their lack of intentions to exchange
objects, the negotiation rounds would not exceed
N(N − 1). In terms of the number of negotiation
rounds, it follows that the worst-case complexity is
O(N2). Hence the result.

With Property 4, we can characterize a worst case
agreement (when negotiation terminates), denoted
vwc ∈ V , as follows:

|vwc| = min{|vo| | vo ∈ Vo} (12)

With Property 5, we can characterize an optimal
agreement, denotedvopt ∈ V , as follows:

|vopt| = max{|vo| | vo ∈ Vo} (13)

Given an agreementv ∈ V , its deviation in value
from (or error with respect to) the optimal is defined
by

ǫv =
|vopt| − |v|

|vopt|
× 100% (14)

Definition 4: A negotiation protocol is said to be
ǫv-stable if any strategy utilized with it will converge
to an agreement value|v| that is within ǫv of (the
optimal) |vopt|.
Using anǫv-stable negotiation protocol, the implica-
tion is that no negotiation agents which can tolerate
a maximum ofǫv from the optimal agreement value
will have any incentive to deviate from their adopted

Administrator
Highlight

Administrator
Highlight
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strategies. Importantly, this simplifies agent design
as it means that no additional, complex and time
wasting reasoning is needed by any agent to specu-
late about others’ strategies to arrive at an agreeable
solution.

Let ǫv = ǫwc whenv = vwc, and we arrive at the
following proposition.

Proposition 3 (Stability):The BDI assignment
protocol inMA3 is ǫwc-stable.

Proof: By Property 3,MA3 will reach a state
vo ∈ Vo regardless of any strategy used, where it
will terminate since by Property 4, the termination
condition for negotiation is satisfied, guaranteeing it
stays in statevo ∈ Vo. Hence the result by Definition
4 with ǫv = ǫwc in (14).
Ideally, ǫwc = 0%. As Section V will show, empiri-
cally ǫwc is found to be quite small, approximately
10%, with a high probability of achieving an even
smaller deviation of5% through an appropriate
arbitration-negotiation combination of strategies.

V. SIMULATION RESULTS, ANALYSIS &
DISCUSSIONS

In this section, we present an empirical study
of MA3 to assess the comparative performance of
all strategies proposed. The performance is assessed
primarily by the solution quality produced and the
implementation-independent negotiation speed. The
solution quality is measured (and graded) in terms
of the various extents (in %) that a solution pro-
duced deviates from the optimal one, and the nego-
tiation speed is measured in terms of the number of
negotiation rounds needed to converge to a solution.
The ‘profile’ of the performance is gathered together
with the various probabilities of interest defined,
which include those of converging to these ‘graded
solutions, and those of the algorithm running at
various defined speed levels.

A. Simulation Set-up

To conduct the study, we first prototyped a sim-
ulator for the algorithms. The simulator consists
of a centralized program running on an Intelr

Pentiumr personal computer with a 1.8GHz CPU
and 512MB (RAM) memory. For aN × N prob-
lem instance, the program generates and inputs
each of theN ! initial assignment solutions to a
reasoning mechanism which computes the agents’
object selections which would have resulted from

the distributedMA3 agents executing their adopted
strategies. The centralization is aimed at simplifying
the code that, importantly, automates and speeds
up the experimental (running and data collection)
process, but with all the features of the original
algorithm retained, except for its distribution.

In principle,MA3 can handle an arbitrary problem
sizeN . But for a complete simulation, the number
of simulation runs required isN ! per problem
instance. Clearly for a bigN , it can become in-
tractably time consuming to simulate for a large
number of problem instances. For experimental
purposes, we limitN = 10, requiring 10! (or
3,628,800) simulation runs per problem instance,
along with using an available implementation5 of
one LAP algorithm [4] to produce an optimal total
value as a reference solution. This was manageable
when we ran the simulator prototype executing all
the possible strategy combinations for the same
set of 100 randomly generated10 × 10 problem
instances. Despite the limit onN , we note that
the simulation results can also provide a base
reference for addressing large problem instances
decomposed into smaller subproblems forMA3.
Problem decomposition, however, is usually done
based on application-specific criteria that are beyond
the scope of this paper.

The average simulation result of each variable
Z, Z ∈ {ǫwc, nmax, Px, Pwc, Pvhi, Phi, Plo} (nota-
tional definitions in Appendix II) is computed and
tabulated for comparative study of allarbitration-
negotiationstrategy combinations.

B. Performance Comparisons

The simulation results for negotiation speed and
solution quality are tabulated in Tables I and II
respectively. SinceMA3 does not guarantee an op-
timal agreement in general, it seems reasonable to
interpret the agreement reached more qualitatively
to categorize its acceptability level. So in the follow-
ing discussion drawn on the tables, an assignment
agreement is said to begood enough6 if its total A-
QoS value (2) is within20% of the optimal; isnear
optimal if it is within 10%, andalmost optimalif it
is within 5%.

5From website http://www.magiclogic.com/assignment.html
6 It seems appropriate to use ‘good enough’ as a qualitative refer-

ence for solutions with total A-QoS in[0.8 max{Stot}, max{Stot}]
since, applyingPareto’s 80/20 rule, 80% of CLAP applications can
tolerate a20% deviation from their optimal solutions.
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TABLE II

MA3 SIMULATION RESULTS: QUALITY PERFORMANCEPROFILE

Strategy Solution Quality
A N ǫwc (%) P0 P5 P10 P15 P20 Pwc

MaxCon Greedy 10.3596 0.3167 0.9250 0.9963 1.0000 1.0000 0.0012
Random Greedy 10.3596 0.2928 0.8996 0.9926 1.0000 1.0000 0.0017
MaxCon MinCon 10.3596 0.2729 0.8919 0.9925 1.0000 1.0000 0.0057
Random Random 10.3596 0.2613 0.8886 0.9899 1.0000 1.0000 0.0019
Random MinCon 10.3596 0.2585 0.8897 0.9926 1.0000 1.0000 0.0036
Greedy Greedy 10.3596 0.2584 0.8940 0.9903 1.0000 1.0000 0.0021

MaxCon Random 10.3596 0.2522 0.8772 0.9894 1.0000 1.0000 0.0024
Greedy Random 10.3596 0.2506 0.8813 0.9877 1.0000 1.0000 0.0023
Greedy MinCon 10.3596 0.2391 0.8777 0.9895 1.0000 1.0000 0.0038
MinCon Greedy 10.3596 0.2168 0.8924 0.9926 1.0000 1.0000 0.0029
MinCon MinCon 10.3596 0.1972 0.8829 0.9926 1.0000 1.0000 0.0039
MinCon Random 10.3596 0.1845 0.8779 0.9899 1.0000 1.0000 0.0033
Random MaxCon 10.3596 0.1816 0.8775 0.9913 1.0000 1.0000 0.0006
Greedy MaxCon 10.3596 0.1754 0.9243 0.9953 1.0000 1.0000 0.0002
MinCon MaxCon 10.3596 0.1702 0.9161 0.9913 1.0000 1.0000 0.0001
MaxCon MaxCon 10.3596 0.1246 0.7805 0.9723 1.0000 1.0000 0.0029

TABLE I

MA3 SIMULATION RESULTS: SPEEDPERFORMANCEPROFILE

Strategy Negotiation Speed
A N nmax Pvhi Phi Plo

Greedy Greedy 16 0.0040 0.1162 0.0270
Greedy MinCon 16 0.0037 0.1073 0.0414
MinCon Greedy 16 0.0034 0.0953 0.0497
MinCon MinCon 16 0.0032 0.0918 0.0550
Greedy Random 17 0.0035 0.0980 0.0564
Random Greedy 17 0.0028 0.0792 0.1092
MinCon Random 18 0.0029 0.0777 0.0887
Random MinCon 19 0.0025 0.0704 0.1826
Random Random 20 0.0022 0.0585 0.2393
MaxCon Greedy 21 0.0015 0.0345 0.2451
Greedy MaxCon 24 0.0010 0.0200 0.4680

MaxCon MinCon 26 0.0012 0.0209 0.4851
MinCon MaxCon 27 0.0009 0.0157 0.6045
MaxCon Random 27 0.0009 0.0149 0.5839
Random MaxCon 35 0.0007 0.0127 0.6714
MaxCon MaxCon 51 0.0002 0.0017 0.9641

The worst case agreement had a constant devia-
tion of 10.3596%, and hence was (almost)near op-
timal or better thangood enough. In fact, regardless
of the strategy adopted, the probability of arriving at
a near optimalagreement was a high score of over
97%. Besides, when the arbitration and negotiation
agents randomly adopted one of the respective three
strategies, the speed performance profile was in the
mid-range and the quality performance profile was

above the mid-range. Together, the findings suggest
that where speed is not a major concern, better
than good enough agreements can often be reached
without knowing the strategies adopted by these
agents.

The A-Greedy:N-Greedy strategy combination
had the highest probabilities of reaching agreements
at very high speed (Pvhi) and high speed (Phi),
and the lowest in the maximum number of rounds
possible (nmax) and in the probability of reaching
agreements at low speed (Plo). The A-MaxCon:N-
Greedy strategy combination had the highest prob-
abilities of achieving optimal (P0), almost optimal
(P5) and near optimal (P10) agreements. Following,
the former strategy combination produced the best
speed performance profile with an above mid-range
profile in solution quality, whereas the latter one
produced the best quality performance profile with
a mid-range profile in speed.

The A-MaxCon:N-MaxCon strategy combina-
tion produced the worst performance profiles in
both speed and solution quality. In fact, with agents
adopting the N-MaxCon strategy, the performance
profiles are among the lowest in both speed and
quality. This finding suggests that the negotiation
agents should avoid the N-MaxCon strategy alto-
gether.

With the negotiation agents adopting the N-
Greedy or random strategy, the arbitration agent
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adopting the A-MaxCon strategy tended to lower
the speed performance profile, but raise the qual-
ity performance profile. Conversely, the arbitration
agent adopting the A-MinCon strategy tended to
raise the speed performance profile, though not as
high as adopting the greedy strategy, but lower the
quality performance profile that was worse off than
adopting the greedy one. This finding is significant
in anticipation of autonomous negotiation agents
preferring a greedy or unknown strategy, necessi-
tating a decision on which strategy to use for the
arbitration agent to influence speed or quality.

Finally, that the protocol is theoreticallyǫwc-
stable is supported withǫwc found to be empirically
small, approximately10 %, implying that agents
using the protocol can produce better thangood
enoughglobal object allocations, regardless of the
strategies adopted.

In summary, behaviorally, we observe that a
Greedy agent is more focussed on the social goal
as it seeks to optimize incremental gains in every
round, whereas a MaxCon agent encourages more
negotiation by inducing its exchange partner with
more beliefs in a subsequent round. Where both
the arbitration agent and the negotiation agents are
focussed on the social goal, the result is highest
speed performance profile. Where the arbitration
agent (overseeing the negotiation process) encour-
ages more negotiation, with the negotiation agents
focussed on the social goal, the result is highest
quality performance profile.

VI. RELATED WORK

A. Distributed Constraint Reasoning

There are some efforts not cast in the context of
assignment but appear to have addressed a similar
problem in the context ofdistributed constraint
reasoning, notably, work on distributed constraint
optimization problem (DCOP) (e.g., [5], [6]). In
principle, CLAP is a DCOP, as originally pointed
out in [3, p. 262]. That CLAP is a DCOP not
addressed by current DCOP techniques has been
discussed in [7, p. 1580].

B. BDI Models

Among the agent architectures/models (see [8,
Ch. 1]), the BDI model [9], [10] is one of the best
known and studied model of practical reasoning.
Based on a philosophical model of human practical

reasoning, originally developed by M. Bratman [11],
the basic model guides us to develop an agent to
decide moment by moment which action to take
in the furtherance of a goal. We adapt this model,
motivated by its appropriateness in allowing us
to conceptualize and metaphorically describe an
agent’s reasoning mechanism, moment by moment,
in terms of the agent’ mental attitudes B, D and
I to solve CLAP. However, two aspects clearly
differentiate our work from existing BDI models. In
the first is our approach to modelling. Existing BDI
models are developed without concisely formulating
the problems they attempt to solve while in our
work, the BDI model is developed with a clear
formulation of the problem it addresses, namely,
CLAP. In the second, eachmomentis not a moment
of reasoning in reaction to changes in its envi-
ronment, but a negotiation round of collaborative
reasoning - in fact, existing BDI models give no
architectural consideration to explicitly multiagent
aspects of behaviour [12] that is essential for ad-
dressing CLAP.

C. Automated Negotiation

In the literature on general negotiation frame-
works, agents that can negotiate with exact knowl-
edge of each other’s cost and utility functions, or
such knowledge learnt in the initial step of inter-
action, have been proposed [13], [14]. There are
agents that negotiate using the unified negotiation
protocol in worth-, state-, and task-driven domains
where agents look for mutually beneficial deals to
perform task distribution [15], [16]. In negotiation
via argumentation (NVA), the agents negotiate by
sending each other proposals and counter-proposals.
In [17], these proposals are accompanied by sup-
porting arguments (explicit justifications) formu-
lated as logical models. In [18], the distributed con-
straint satisfaction problem (DCSP) algorithm [19],
[20] provides the computational model, extended
with the supporting arguments (accompanying the
proposals) formulated as local constraints. In [21],
agents can conduct NVA in which an agent sends
over its inference rules to its neighbour to demon-
strate the soundness of its arguments. Finally, there
are also negotiating agents that incorporate market
driven techniques (e.g. [22]), auction mechanisms
(e.g. [23], [24]) and other AI techniques (e.g. [25]).

The proposedMA3 differs from existing work on
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negotiation in that it employs a new BDI negotia-
tion model for CLAP (Section III) not specifically
addressed in all existing work, which, to emphasize,
deals with allocation of objects among agentscon-
currently. The important features ofMA3 include: (i)
it can be easily adapted to respondon-the-fly(i.e.,
during the negotiation process) to online changes
in individual A-QoS values, and (ii) it produces
anytime readysolutions, rendering it the robustness
to deal with a dynamic environment [3].

VII. C ONCLUSIONS

This paper has visited the BDI negotiation model
for CLAP in the standard framework of automated
negotiation, conceptually separating it into a BDI
assignment protocol and an adopted greedy strat-
egy. Facilitated by this conceptual separation is a
systematic and more extensive development of the
model. On the one hand is a formal and more
rigorous analysis of the protocol, establishing its
salient properties, namely,solution guarantee, sim-
plicity, and ǫwc-stability. On the other hand are
new strategies developed based on a novel idea
of cooperative concession, extending to a strat-
egy set for the arbitration and negotiation agents.
Extensive simulations of all possible arbitration-
negotiation combinations of strategies running with
the protocol, as embodied inMA3, reveal several
important findings (Section V-B) on the speed and
quality performance profiles. Combining theoretical
and empirical insights onǫwc-stability, an important
inference to draw is that by the BDI assignment
protocol for CLAP, distributed agents can utilize
local A-QoS information with BDI-driven commu-
nication. The outcome is better than good enough
global allocations (Footnote 6), regardless of the
strategies adopted.

Some future work includes (i) decentralizing the
arbitration role to the negotiation agents to remove
the centralized arbitration agent inMA3 altogether,
by adapting the idea of collaborative local mediation
[7] to the new cooperative-concession framework
proposed in this paper, (ii) extending the protocol
to reach better agreements and (iii) the use of
heuristics to speed up negotiation.

To conclude, the research onMA3 for CLAP
should provide a base reference for researchers in-
terested in agent negotiation approaches for solving
traditional combinatorial problems in general.

APPENDIX I
BASIC GRAPH-THEORETICTERMINOLOGY &

RESULTS

1) A (finite state) graph denotedG is said to be
k-colorable if each of its states (or vertices)
can be assigned one ofk colours in such a way
that no two adjacent vertices (i.e., vertices
connected by an edge) are assigned the same
colour.

2) The chromatic number of a graphG, denoted
χ(G), is the smallestk for which the graph is
k-colorable. For ak′-colorable graphG, 2 ≤
χ(G) ≤ k′.

3) A graph is bipartite if the vertices can be
partitioned into two sets,V -0 andV -1, so that
the only edges of the graph are between the
vertices inV -0 and the vertices inV -1.

Two elementary graph-theoretic results are as fol-
lows.

Lemma 1:A graph is 2-colorable if and only if
it has no cycles of odd length.

Lemma 2:χ(G) = 2 if and only if G is a
bipartite graph.

APPENDIX II
SIMULATIONS : LEGEND

1) n : number of negotiation rounds.
2) nmax : maximumn, obtained when algorithm

terminates, and is the largest of alln ob-
tained from each of theN ! different initial
assignments simulated for aN × N problem
instance.

3) α : total A-QoS valueStot (2).
4) αopt : optimal α.
5) αwc : worst-caseα, obtained when algorithm

terminates, and is the worst of allα’s com-
puted based on the simulation ofN ! different
initial assignments generated for aN × N
problem instance.

6) ǫ : error, given by
(

|α−αopt

αopt
| × 100%

)

(Note:
This is equivalent to (14)).

7) ǫwc : worst-caseǫ, whereα = αwc.
8) Px : probability that an initial assignment can

lead to a solution with total A-QoSα within
x% of optimal, i.e.,α ∈ [ (100−x)

100
αopt, αopt].

9) Pwc : probability that an initial assignment can
lead to a worst-case solution, i.e., withα =
αwc.
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10) Pvhi : probability that the algorithm runs at
very high speed, i.e., the number of negotia-
tion rounds it can take to reach a solution is
not more than the greatest integer≤ 0.3N .

11) Phi : probability that the algorithm runs at
high speed, i.e., the number of negotiation
rounds it can take to reach a solution is not
more than the greatest integer≤ 0.5N .

12) Plo : probability that the algorithm runs at low
speed, i.e., the number of negotiation rounds
it can take to reach a solution exceedsN .

All the probabilities of interest defined above are
computed using formula

(

β

γ

)

, where integerβ is
the number of initial assignments satisfying the as-
sociated conditionsupon termination of algorithm,
and integerγ is the total number of different initial
assignments input for simulation.γ = N !.
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