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Abstract

This paper presents the design of a localization system
for a team of centimeter-scale robots that collaborate to
map and explore unknown environments. The
localization system uses ultrasound to measure the
distance from each moving robot to three stationary
robots that serve as beacons.  From these distance
measurements the position of the robots is derived using
a trilateration algorithm. The robot team can move over
large distances by using a leap-frogging approach in
which different robots serve as beacons at different times.
The localization system is able to obtain position
estimates more accurate than can be achieved through
dead reckoning, and yet, does not require any landmarks
or previously deployed beacons.

Keywords: collaborative positioning, localization,
ultrasonic range finder, miniature mobile robotics.

1 Introduction and Related Work

In this article, we present the design of a localization
system for a team of centimeter-scale robots that
collaborate to map and explore unknown environments.
The robots, called Millibots, are configured from modular
components that include sonar and IR sensors, camera,
communication, computation, and mobility modules.
Robots with different configurations use their special
capabilities collaboratively to accomplish the given task.
A typical Millibot is shown in Figure 1.

For distributed robotic applications that require robots
to share sensor information (e.g. mapping, surveillance,
etc.) it is critical to know the position and orientation of
the robots with respect to each other.  Without knowing

the position and orientation of the sensors, it becomes
impossible to interpret the sensor data in a global frame of
reference and integrate it with the data coming from other
robots.  Moreover, the Millibots require position
knowledge to move to predetermined locations, avoid
known obstacles, or reposition themselves for maximum
sensor efficiency.

Conventional localization systems do not offer a viable
solution for Millibots.  Many robotic systems rely on a
Global Positioning System (GPS) and compass for
determining their position and orientation in a global frame
of reference [7].  However, due to its large size, limited
accuracy, and satellite visibility requirements, GPS is not
appropriate for the small Millibots that operate mostly
indoors. Dead reckoning, another common localization
method, generally suffers from accuracy problems due to
integration errors and wheel slippage [3].  This is even
more pronounced for Millibots that rely on skid steering
for which track slippage is inherent to the steering
mechanism.  Conversely, other localization systems that
are based on landmark recognition [1][9] or map-based
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Figure 1: Millibot prototype



positioning [15] require too much computing power and
sensing accuracy to be implemented on Millibots.

To overcome the problems encountered in the
implementation of existing localization methods for a team
of Millibots, we have developed a novel method that
combines aspects of GPS, land-mark based localization,
and dead reckoning [14].  The method uses synchronized
ultrasound pulses to measure the distances between all
the robots on a team and then determines the relative
positions of the robots through trilateration.  Similar
systems have been developed [8] and are even
commercially available. However, they are both too large
and too expensive for operation on Millibots.  Moreover,
the system described in this article is more flexible because
it does not require any fixed beacons with known
positions, which is an important relaxation of the
requirements when mapping and exploring unknown
environments.

2 System Concept

2.1 Trilateration

The Millibot localization system is based on
trilateration [3], i.e., determination of the position based on
distance measurements to known landmarks or beacons
[10] [11]. GPS is an example of a trilateration system; the
position of a GPS unit on earth is calculated from distance
measurements to satellites in space. Similarly, the Millibot
localization system determines the position of each robot
based on distance measurements to stationary robots with
known positions.

The localization system uses ultrasound pulses to
measure the distances between robots. Periodically, each
beacon simultaneously emits a radio frequency (RF) pulse
and an ultrasonic pulse. As is illustrated in Figure 2, the
RF pulse, traveling at the speed of light (3×108 m/s),
arrives at all receivers almost instantaneously.  The
ultrasonic pulse, on the other hand, traveling only at 343

m/s (assuming 20°C air temperature) arrives at the receiver
with a delay proportional to its distance to the beacon.
Each Millibot measures this delay, using the RF pulse for
synchronization, and converts it to a distance
measurement by multiplying with the speed of sound. A
team leader coordinates the pinging sequence to ensure
that beacon signals from multiple robots do not interfere
with one another.

After all the beacons finish pinging, every Millibot has
a set of distance measurements from its current position to
each beacon position. This information is sequentially
transmitted to the host computer, which determines the
actual position of every Millibot. In the future, we plan to
calculate the Millibot positions on the local processor of
each Millibot.  However, currently the processor does not
have the necessary computation power to perform these
floating-point computations.

2.2 Initial Positions

When a team of Millibots is first deployed, they
automatically determine their position with respect to a
local frame of reference.  To accomplish this, the team
leader collects distance measurements between any
arbitrary pair of robots by pinging the beacon of each
robot possibly multiple times to achieve more accurate
distance measurements and collecting the measurements
from all the other robots.  The team leader then assigns the
position (0,0) to an arbitrarily chosen robot.  A second
robot is assigned a position on the X-axis.  This defines a
frame of reference in which the position of all other robots
is determined through trilateration.  However, based on
distance measurements alone, there remains an ambiguity
about the sign of the Y coordinates of each robot.  To
resolve this ambiguity, the team leader commands one
robot to follow a short L-shaped trajectory, and
redetermines its position through trilateration.  If the robot
turned to the left, but the assigned coordinate system
indicates a right turn, the sign of the Y-coordinates of all
robots is reversed.

2.3 Leap-Frogging

An important advantage of the Millibot localization
system is that it does not rely on fixed beacons.  Instead, a
minimum of three Millibots (but not necessarily always the
same three) serve as beacons at any time.  The Millibots
that serve as beacons remain stationary.  The other robots
can move around in the area that is within reach of the
beacons.  While they sense the environment, they can
determine their position with respect to the current
beacons.  When the team has explored the area covered
by the current beacons, other robots will become
stationary and start serving as beacons.  In this fashion,
the team can move over large areas while maintaining
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Figure 2: Ultrasonic distance measurement.



good position estimates as illustrated in Figure 3. This
leap-frogging approach allows a team to move forward
while always maintaining three stationary beacons in
known locations.

In order to avoid numerically ill-conditioned
configurations (e.g. collinear beacons), careful planning of
the movement sequence is required. The localization
algorithm is most accurate when the beacons are at the
vertices of an equilateral triangle.  When a team moves
over a large distance, the beacon that is farthest removed
from the goal will be replaced by a Millibot in a position
closer to the goal and equidistant to the other two
beacons.

As is described in Section 5, the accuracy of the
position estimates gradually deteriorates as the number of
leaps increases. We expect several parameters to affect the
accuracy, including the number of leaps, the shape of the
leap-frogging pattern and the size of each leap. Careful
characterization of these dependencies is the subject of
ongoing work.

3 Hardware description

We designed a single localization module that can
serve either as a beacon or as a localization sensor. To
produce and detect beacon signals, each Millibot is
equipped with a modified, low-cost ultrasonic transducer.
This transducer can function either as a receiver or as an
emitter. For localization to be effective, it is important that
the sensor can detect signals coming from any direction
around the Millibot. As is illustrated in Figure 4, an
ultrasonic transducer is positioned to face straight up,
pointing towards an aluminum cone that reflects all
incoming and outgoing sound waves. The result is a
transducer with 360-degree coverage in the horizontal
plane. The ultrasonic transducer with reflector is
approximately 2.5cm tall. It can reliably measure distances
up to 3m with a resolution of 4mm while consuming only
25mW.  The design and construction of this detector was
paramount in achieving a beaconing system at this scale.

Despite the fact that electrostatic transducers are
usually the family of choice for ultrasonic ranging
applications, we decided to use piezoelectric transducers
in our design. Electrostatic transducers couple to the air
more efficiently than piezoelectric transducers, and have a
higher dynamic range. However, they usually operate at
very high voltages (150-200 VDC), and are too large for the
Millibots. On the other hand, piezoelectric transducers are
inexpensive, work at low voltages and fit easily within the
power and size budget of the Millibots [5]. And although
the piezoelectric transducers have some latency in their
response due to mechanical inertia, we were able to obtain
reliable and accurate ultrasound detection up to 3m.

4 Position Estimation Algorithms

Several algorithms can be used for solving the mobile
robot localization problem. Our first implementation
combines two separate, independent algorithms: one for
tracking the position of robots moving across the field,
and the other for determining the position of the robots
that serve as fixed beacons.

As described in [14], we use an Extended Kalman Filter
(EKF) to keep track of the position of the moving robots.
Kalman filter-based techniques have proven to be robust
and accurate for keeping track of the robot’s position [10]
[11]. To provide noise rejection and develop a model
dependent estimation of position and orientation, an EKF
is applied to the distance data collected by each Millibot.
The EKF is an optimal estimator that recursively combines
noisy sensor data with a model of the system dynamics
[2]. Inputs to the EKF include distance measurements
between the robot and the beacons as well as the
velocities of both tracks. The dynamics in this application
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are the kinematic relationships that express the change in
position of the robot as a function of the track speeds.
The EKF fuses this dead reckoning data with the beacon
measurements. The two inputs complement each other to
produce an optimal estimate of the robot’s local position
and orientation.

Before a robot switches into beacon mode, its position
is estimated more accurately to avoid building up large
position errors with respect to the global reference frame.
Position estimation for beacon robots is different from that
for moving robots in several respects. Since the beacon
robots remain in the same position until they become
moving robots again, we do not have to consider their
dynamics as in the EKF. Furthermore, the orientation of
the beacon robots is not important; the sonar pulses are
transmitted in a circular fashion.

As a result, we only need to compute the position of
the future beacon and can use a trilateration algorithm that
is more accurate than the EKF. Our algorithm determines
the most likely position of the robot given the measured
distances to the current beacons. As has been verified in
our experiments, the distance measurements can be
assumed to be normally distributed.  Based on that
assumption, the likelihood of being located at position
(x,y), given the distance measurements R1m, R2m, and R3m is
given by the probability density function:

∏
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where ),( σxN  is a normal distribution with zero mean and

a standard deviation of σ  evaluated at x , and Ri is the
distance from (x,y) to beacon i. As the position estimate
for the robot, we select the position (x,y) for which the
probability density function ),,|,( 321 RRRyxP  is

maximum.  To compute this maximum, we first determine an
initial estimate based on the closed form trilateration
expression derived in [12]. The BFGS non-linear
optimization algorithm [6] is then used to iteratively
improve this initial estimate.  Because of the proximity of
the starting point, only a few iterations are necessary to
reach the optimum.

5 System Performance

Reliable distance measurements between robots are
essential for the localization system. Therefore, the design
of a good 1-D range finder is fundamental. For
performance tests two localization modules were attached
to a rail equipped with a distance scale. In order to
determine the range accuracy and precision of the unit we
took 200 measurements and computed the mean value and
standard deviation at regular distance intervals. In Figure

5, the measurements are compared to the expected
distance, assuming a linear relationship between the
distance and time measurement.

The performance of the ultrasonic range finder is
affected by several factors. Some of these factors are a
result of the hardware design, while others depend on
environmental factors.

Our system uses a threshold detector to measure the
time of arrival of ultrasonic signals. This time instant is
determined by the moment at which the incoming
ultrasonic signal exceeds for the first time a certain
reference level.  The amplitude of the ultrasonic signal
changes with the traveled distance due to beam spreading
and attenuation.  This results in small measurement errors
at low signal-to-noise ratios.  We compensate for the
above errors by using an experimentally determined
calibration equation.  While there are many different
techniques for getting accurate time of flight
measurements [4][13], we decided to use this method in
order to keep our hardware within the constraints of the
Millibots.

 The measurement process also introduces quantization
noise.  Our circuit can measure the time of flight with a
resolution of 10µs.  Assuming a 20°C air temperature, the
quantization interval is equivalent to a distance of 3.43mm.

In addition to the noise introduced by the measurement
system, several environmental factors influence the
accuracy of the measurements.  Room temperature drift
and temperature gradients influence the distance
measurement process because the speed of sound is a
function of temperature.  One can compensate for changes
in room temperature using a temperature probe, but
temperature gradients cannot easily be measured.
Similarly, one cannot easily account for air turbulence and
wind [16].  These effects are more pronounced when the
sound travels over longer distances because it has a larger
probability of crossing zones that affect its propagation
speed and consequently its time of flight.

Figure 5: 1-D range measurement performance.



We are in the process of determining the importance of
each of these effects on the overall system performance.
However, preliminary tests show very promising results.
We have tested both modes of position determination.
Figure 6 depicts a test run for the EKF algorithm.  It shows
a snapshot from the GUI that controls the Millibot fleet
[14].  Three Millibots serve as stationary beacons while a
fourth Millibot moves across the workspace under
joystick control.  The position of the robot is recorded and
plotted on the screen. The maximum position error
registered in this particular run was 2.5cm. Previous tests
for localization based solely on dead reckoning produced
very inaccurate results in similar tests, due mainly to wheel
slippage.

 In addition to the EKF algorithm, we have tested the
leap-frogging concept using a Monte Carlo simulation.
Figure 7 shows the result of a simulation of 75 leaps in a
square pattern.  The mean and standard deviation of the
position error are depicted in Figure 8.  To obtain these

simulation results, we made the assumption that the
distance measurement errors are uncorrelated with respect
to each other and with respect to the beacon positions.
Based on the analysis our 1D range measurements we
further assumed that the distance measurements have a
standard deviation of 4mm.  Because the error
accumulation depends strongly on the distance
measurement error, the robots perform each measurement
8 times, effectively reducing the variance.

The results show that the uncertainty ellipsoid
associated with each estimated position increases with the
number of leaps, as expected.  The position error variances
after the final leap are
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corresponding to an uncertainty ellipsoid with principal
axes at 45degrees and maximum and minimum standard
deviations of  0.148m and 0.076m, respectively.  The
angular error has a standard deviation of only 1.07degrees
after 75 leaps.
Compared to dead reckoning, the Millibot team maintains
position estimates that are at least an order of magnitude
more accurate than for most other robot systems.
Especially the fact that the localization algorithm is not
affected by changes in orientation is a significant benefit

Figure 7: Position estimates for a square pattern
of 75 leaps.

Figure 6: GUI snapshot of localization system.
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over dead reckoning, where most of the error is caused by
rotation in place.

It is interesting to note how the uncertainty ellipsoid
evolves along the course of the trajectory.  The
uncertainty grows more quickly in the direction
perpendicular to the direction of movement; when the
robots move along the X-axis, the uncertainty ellipsoid is
elongated in the Y-direction.  This can be explained by the
fact that all three distance measurements have a
component in the forward direction, resulting in a very
accurate measurement in that direction.

Figure 7 also shows that the leap frogging algorithm
introduces a bias.  This is due to the non-linearity in the
equations.  However, the bias is small compared to the
variance and cancels out when moving in opposite
directions.

6 Summary

A small, low-power, and accurate localization module
has been developed for the Millibot fleet.  The module
combines sonar-based distance measurements with a
trilateration algorithm to determine robot positions within
the team.  A leap-frogging algorithm allows the team to
move over large distances while maintaining accurate
position estimates with respect to the initial reference
frame.  Simulation results indicate that this localization
system has the potential to be an order of magnitude more
accurate than traditional dead reckoning systems.
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