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In this paper, a novel model for fault detection of rolling bearing is proposed. It is based on a high-performance support vector machine
(SVM) that is developed with a multifeature fusion and self-regulating particle swarm optimization (SRPSO). /e fundamental of
multikernel least square support vectormachine (MK-LS-SVM) is overviewed to identify a classifier that allowsmultidimension features
from empirical mode decomposition (EMD) to be fused with high generalization property./en the multidimension parameters of the
MK-LS-SVM are configured by the SRPSO for further performance improvement. Finally, the proposed model is evaluated through
experiments and comparative studies. /e results prove its effectiveness in detecting and classifying bearing faults.

1. Introduction

As a basic component, widely, rolling bearing is used in
rotating machinery [1]. Rotating machinery is generally in
the state of heavy work. Seriously, equipment performance is
affected by bearing failure and even damaged [2]. /erefore,
it is necessary to study the fault diagnosis of bearing. In-
telligent diagnosis does not require people to wait beside the
equipment that runs for a long time. It is suitable for
monitoring areas that are in harsh environmental condi-
tions, are sparsely populated, and are not suitable for long-
term residential areas. Dong-yang Dou pointed out that,
commonly, intelligent diagnostic methods include the
K-Nearest Neighbor (KNN) algorithm, Probabilistic Neural
Network (PNN), particle swarm optimization (PSO) opti-
mized support vector machine (PSO-SVM), and a Rule-
Based Method (RBM) based on the MLEM2 algorithm and a
new Rule Reasoning Mechanism (RRM) [3]. RBM has the
shortest time in the calculation process; relatively, the
identification accuracy is low. It takes a long time in the
training process of particle swarm optimization algorithm
[3]. However, the PSO-SVM model takes a short time in the

recognition process, and the time spent in the training
process is not concerned. Moreover, its recognition accuracy
is high. In terms of fault diagnosis, the PSO-SVMmodel has
a high accuracy which is satisfied by our requirements in the
process of fault identification.

As shown in Figure 1, the fault identification accuracy of
the support vector machine is mainly affected by the sample
feature information and its parameters. /e signal can be
decomposed by empirical mode to obtain the intrinsic
modal function (IMF). In terms of feature extraction, Chen
et al. proposed that vibration signals could be decomposed
by EMD to obtain the entropy of IMF as the feature vector
[4]. Zhu et al. proposed that hierarchical entropy (HE) was
calculated through multiscale entropy as the feature vectors
[5]. /e limitation of fault diagnosis is a single fault signal,
and multifeature fusion information is richer [6]. Yu et al.
proposed a fault diagnosis method based on multisensor
information [7]. Multisensor signal acquisition is considered
to be more comprehensive in perceptual cognition, but it is
necessary to design the location of sensor installation. When
a sensor is used to obtain the vibration signal of the bearing,
it shall be installed as close to the bearing as possible. In
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general, for multisensor information fusion methods, it is
considered very difficult to determine the location of each
sensor. Xiang and Cen proposed an entropy fusion method
based on kernel principal component analysis (KPCA).
Firstly, the energy entropy of IMF and the singular entropy
of IMF were obtained by EMD of the signal, and then the
entropy value was fused by KPCA to obtain the feature
vectors [6]. Compared with multiposition sensors, multi-
entropy fusion can obtain comprehensive information
without complicated sensor measurement system.

For rolling bearings, the speed varies slightly under
different loads. Classification accuracy is what we care about.
Generalization is required to provide better performance for
SVM. In this paper, firstly, the energy entropy of IMF and
the arrangement entropy of IMF are obtained through EMD
theory in signal. Secondly, the feature matrix IMF’s energy
entropy and IMF’s permutation entropy are fused through
PCA to obtain the feature matrix. More comprehensively,
the method can describe the bearing fault information, and it
makes the SVM have better performance.

/e classification accuracy of SVM is limited by kernel
parameters, weights between different kernel functions, and
penalty factors [8]. Traditional parameter optimization
methods have poor convergence and cannot guarantee the
maximum optimal solution, including trial and error, grid
search, and gradient descent [9]. Zhang et al. proposed to
optimize the SVM parameters by intercluster distance (ICD)
in the feature space [9]. ICD combines grid search and
multiple cross-validation. /e method is cumbersome and
the convergence is questionable in that Particle swarm
optimization (PSO) algorithm is a kind of global random
search optimization algorithm, which is easy to implement
and has the advantages of low computation demands [10]. It
is widely used for optimizing SVM [8, 11–13]. Zhu et al.
optimized SVM by PSO [5]. Wu Deng optimized SVM by
improved PSO [14]. In order to obtain better convergence

effect, Chen et al. proposed to optimize SVM parameters
through chaotic PSO [4], which effectively improved the
training process. However, due to the high degree of non-
linearity involved in modeling multidimensional problems,
there are still significant problems in obtaining efficient
SVMs for fault identification.

LS-SVM is very suitable for solving small-sample,
nonlinear, and high-dimensional problems. However, for
solving nonlinear problems, in particular, the classification
results of SVM are limited by the selection of kernel
functions. /erefore, in order to verify the effectiveness of
bearing diagnosis, a novel intelligent bearing diagnosis
method is proposed by combining the advantages of em-
pirical mode decomposition, multifeature, SRPSO algo-
rithm, and least square support vector machine.

In this paper, the parameters of MK-LSSVM are opti-
mized by the algorithm of SRPSO to obtain better perfor-
mance. /e fundamental of multikernel least square support
vector machine (MK-LS-SVM) is overviewed to identify a
classifier that allows multidimension features from empirical
mode decomposition (EMD) to be fused with high gener-
alization property. /en the multidimension parameters of
the MK-LS-SVM are configured by the SRPSO for further
performance improvement. Finally, the proposed model is
evaluated through experiments and comparative studies. In
the second section, different feature vectors, their fusion
methods, and problems in LSSSVM and their parameters to
be optimized are introduced. In the third part, the SRPSO
algorithm is introduced, which includes the establishment of
an objective function for fault identification. /e fourth part
is the fault diagnosis of the bearing. By fault diagnosis, this
way, which is the SRPSO based multikernel LSSVM, is ef-
fectively proved to improve the accuracy. In the last section,
the method is summarized.

2. Support VectorMachineBased Identification

2.1. Multikernel LSSVM. In fault diagnosis practice, it is
usually difficult to obtain sufficient fault samples [5] for
developing an intelligent system. Support vector machine
can effectively classify small-samples and nonlinear signals
and is widely used in mechanical fault identification [14].
/e traditional classification recognition method is a
combination of many binary classification support vector
machines and requires large-scale training to learn [5]. Least
square support vector machine (LS-SVM) based on statis-
tical theory and minimal risk structure can be trained with
less samples and avoid overfitting, with high generalization
accuracy [5, 8, 11, 15]. /e kernel of the polynomial kernel
function in the kernel of the support vector machine has a
strong generalization ability, but the learning ability is weak.

For rolling bearings, the values of speed may have a small
difference under different loads. Classification accuracy is what
we care about. Generalization is required to provide better
performance for SVM. /e Gaussian radial basis function
kernel is a local kernel, and the learning ability is good, but the
generalization ability is weak. Combining with the merits of
these kernel functions allows a multikernel least square sup-
port vector machine (MK-LS-SVM) [10] to be developed. /e
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Figure 1: Flowchart of fault identification based on SVM.
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basic idea of the support vector machine is to classify the
samples by nonlinear function space to high-dimensional
spatial mapping so that the samples are classified according
to different attributes [16], as shown in Figure 2.

Least squares support vector machine nonlinear
estimation:

f(x) �∑n
i�1

αiK x, xi( ) + b, (1)

whereK(x, y) is a kernel function, b is an offset, and αi is the
weight.

Gaussian radial basis function kernel:

Kg � exp − gk · x − xi
 2( ). (2)

/e polynomial function kernel is defined as

Kd � xTxi + 1( )ck . (3)

/e resulting kernel function is obtained:

K � pk · x
Txi + 1( )ck + 1 − pk( ) · exp − gk · x − xi

 2( ),
(4)

where pk is the ratio of Gaussian kernel to polynomial
kernel, ck is the parameter for polynomial parameter kernel,
and gk is the Gaussian kernel parameter.

2.2. Selecting the Feature Vector of MK-LSSVM. Due to the
different environmental conditions, the rolling bearing
signal is nonlinear, nonstationary signal. Traditional time
domain analysis and frequency domain analysis are mostly
suitable for linear stationary signals [2, 4, 17], while em-
pirical mode decomposition (EMD) is more suitable for
nonlinear, nonstationary signal feature extraction [1, 18, 19].
/e IMF’s energy entropy and IMF’s permutation entropy
are obtained by EMD of bearing failure data.

(1) Let the signal be x � x1, x2, . . . , xn{ }
① Permutation entropy reference [5]:

/e m-dimensional vector delay of signal xi:

xi � x(i), x(i + τ), . . . , x(i +(m − 1)τ){ }, (5)

where m is the embedded dimension and τ is the time
delay. /e c-dimensional delay of xi is sorted in as-
cending order:

xi � x i + k1 − 1( )τ( ), x i + k2 − 1( )τ( ), . . . ,{
x i + km − 1( )τ( )}. (6)

When x(i + (ka− 1 − 1)τ) � x(i + (ka − 1)τ), take the
order ka− 1 < ka.
/e frequency of each arrangement is

p hk( ) � Number k | k≤ n − (m − 1)τ, xmi has type h{ }
n − (m − 1)τ

.

(7)

Permutation entropy:

Hp(D) � − ∑
hk∈Sm

p hk( )ln p hk( )( ).
(8)

② Energy entropy reference [18]:

/e signal can be obtained by the empirical mode
decomposition of the intrinsic modal function:

IMF � imf1, imf2, . . . , imfn{ }. (9)

/e energy of each intrinsic modal component imf i is
obtained:

E � E1, E2, . . . , En{ }. (10)

/e sum of the energies of all intrinsic modal
components:

E �∑n
i�1

Ei. (11)

Percentage of each intrinsic modal component:

pi �
Ei
E
. (12)

Energy entropy:

He � − ∑
n

i�1

pilogpi. (13)

(2) Different speed will affect the bearing parts of the
fault frequency and load changes. /e entropy of the
bearing under different rotational speeds is fused
into the eigenvector. Feature fusion as shown in
Figure 2 and its steps are as follows.

① /e energy entropy and permutation entropy of
the IMF are obtained by decomposing the vi-
bration signal through empirical mode

② Mark the serial number of the different fault
types

③ Use the fault type serial number to mark the fault
feature

④ /e fault feature and its corresponding markings
at different rotational speeds are merged as fusion
feature vectors

Bearing

Signal at a fluctuating
speed 

The energy entropy of
IMF 

The permutation
entropy of IMF 

Fusion

Type marked

Feature
decomposition

Figure 2: Bearing failure feature fusion.
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3. Self-Regulating PSO Optimized MKLS-
SVM for Fault Identification

3.1. Self-Regulating PSO. /e American social psychologist
James Kennedy and electrical engineer Kennedy and
Ebenhart proposed the particle swarm optimization in 1995
[20]. /e basic idea is to assume that there are groups of N
particles in D-dimensional space, and the position and speed
of each particle have been constantly updated.

/e corresponding position of each particle i in the
D-dimensional space:

Xi � xi1, xi2, . . . , xiD( ). (14)

/e corresponding velocity of each particle i in the
D-dimensional space:

Vi � vi1, vi2, . . . , viD( ), (15)

where the speed of each particle will be based on its own
t-generation previous speed (vtid), self-awareness (c1r1
(Pbestti − x

t
id)), and social awareness (c1r1(Pbest

t
i − x

t
id)) of

three aspects of the update speed [21]. /e velocity update of
the i − th particle in the t − th generation in d dimension
satisfies:

vt+1id � ωvtid + c1r1 Pbest
t
i − x

t
id( )

+ c2r2 Gbest
t
g − x

t
id( ). (16)

/e position update of the i − th particle in the t − th
generation is satisfied:

xt+1id � xtid + v
t+1
id . (17)

In addition to each particle history best position,

Pbestti � pbestti1, pbest
t
i2, ..., pbest

t
iD( ). (18)

Particle history global best position:

Gbestt � Gbestt1, Gbest
t
2, ..., Gbest

t
D( ). (19)

Velocity range is [vmin, vmax] and position range is
[xmin, xmax], where c1, c2 is the inertia weight. c1, c2 is the
random number uniformly distributed between 2 [0, 1]. ω is
the inertia weight, and the linear decreasing rate of each
generation makes the convergence of the particle swarm
optimization algorithm better [21]. d � 1, 2, . . . , D repre-
sents the dimension of the particle.

Traditional particle swarm optimization algorithm
because of the performance depends on the preset pa-
rameters and is therefore easy to fall into the local optimal
[4]. In recent years, people can do this for the im-
provement can be divided into four categories: (a) based
on the parameter setting algorithm, (b) based on neigh-
borhood topology algorithm, (c) based on learning
strategy algorithm, and (d) mixed type algorithm, which is
based on learning strategies and mixed. Among them, the
optimization of the type of algorithm is better [21]. As
shown in Figure 3, based on the human cognitive psy-
chology decision-making, the self-regulating particle
swarm optimization algorithm introduces two strategies

in the learning strategy. /e first strategy is the setting of
the inertia weight; that is, for the increase of the inertia
weight of the optimal particles to accelerate the explo-
ration of the optimal particles in the whole, and the rest of
the particles are explored along the linearly decreasing
inertia weight [21]. /e second strategy is to select the
search direction for the particles according to the self-
cognition [21].

It is best for the particle to have the optimal search
direction for its previous velocity direction and not
to be influenced by self-cognition (c1r1(Pbest

t
i − x

t
id))

and social cognition (c1r1(Pbest
t
i − x

t
id)). Besides the

direction of other particles’ speed, the impact of self-
cognition (c1r1(Pbest

t
i − x

t
id)) and social cognition

(c1r1(Pbest
t
i − x

t
id)) on the speed has also to be considered.

/e ordinary particles are perceived by a uniformly dis-
tributed random number a of [0, 1] to the global search
direction. /e ordinary particles will choose the social
cognitive direction according to the uniform distribution
random number a and the set threshold λ. If the uniform
random number a reaches the threshold λ, it is considered
that the social cognition is chosen; otherwise it is con-
sidered to abandon the social cognition. /e size of the
threshold λ has a certain screening effect on the choice of
social cognition. From the point of view of probability, the
greater the value of λ, the smaller the effect of social
cognition on ordinary particles. /e smaller the value of λ,
the greater the effect of nonholonomic optimal particles on
social cognition. /at is, the logical value of the self-cog-
nition and social cognitive part of the global optimal
particle is 0; the logical value of the self-cognition part of
the other particles is 1; the social cognitive part is the logical
value of 1 when the uniform distribution random number a
satisfies the threshold λ; and the logic value is zero when λ is
not satisfied.

3.2. Implementation Steps

(1) Initialize the position and velocity of each particle.

(2) Calculate the fitness value of each particle.

(3) /e initial particle position is set to the historical
optimal position Pbest and the Pbest fitness value is

Decision-makers

�e best position for
swarm 

Others

Velocity and position are updated

Keep decision Strategy adjustment
Guide

Figure 3: Human cognitive psychology optimal decision.
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compared to obtain the initial historical global op-
timal position Gbest.

(4) Calculate the self-regulating inertia weight (w) of
each particle.

For the best particles,

w � w + η∗Δw. (20)

Other particles:

w � w − Δw, (21)

where Δω satisfies condition Δw � (wI − wF)/NIter.
wI is the initial value of the inertia weight. wF is the
inertia weight termination value.NIter is the number
of iterations and η is a constant that controls the
acceleration rate.

(5) Update the particle velocity and position.

Velocity update
v � w∗ v, for best particle,

v � w∗ v + c1∗ r1∗ (Pbest − x) + c2∗ r2∗P∗ (Gbest − x), otherwise,
{ (22)

where c1, c2 is the acceleration coefficient. r1, r2 is the
random number in the range of (0, 1). P is the particle
social cognition:

P �
1, if a> λ,
0, otherwise,

{ (23)

where a is a random number and λ is the set
threshold, typically 0.5.

(6) Calculate the particle fitness value after updating the
position.

(7) Update the best position of each particle and the
global best position of the particle swarm.

(8) To determine if the end of the conditions is not met,
the conditions are returned 4).

In this paper, r1, r2 is the random number in the range of
(0, 1); c1� 1.49445; c2�1.49445; λ� 0.5.

3.3. :e SRPSO Optimized MKLS-SVM Model. SRPSO
optimization MKLS-SVM fault diagnosis process shown in
Figure 4. From formula (8) we can see that there are three
parameters in the multikernel least squares support vector
machine. Difficulty: Gaussian radial basis function kernel gk,
polynomial function kernel parameter ck, and weight pk. /e
energy entropy and permutation entropy are obtained by
empirical mode decomposition of the fault signals of bearings
under different rotational speeds./e different entropy values
at different rotational speeds are used as the eigenvectors of
the signals for the training and testing of multikernel least
squares support vector machines. SRPSO in CEC2005 for
single-peak, basic multichannel, extended multichannel, and
mixed type function test shows a better convergence [15]. /e
adaptive parameters of the multikernel support vector ma-
chine can be found by SRPSO. /e appropriate parameters

can reduce the SVM classification error ratio. /e ratio of the
correct number of SVM fault classification and the number of
sample signals under different parameters are taken as the
fitness target of particle swarm optimization algorithm. /e
self-regulating PSO can optimize the SVM parameters and
can be realized by optimizing the fitness function values in the
training samples. Finally, the test samples are entered into the
trained SVM, and the classification accuracy of the test
samples can be obtained.

4. Fault Detection

In order to verify the effectiveness of the proposed method,
the experimental data of the Electrical Engineering Labora-
tory at Case Western Reserve University were selected [22],
which have been explored by many researchers. /e tested
bearing was a drive end bearing Type 6205-2RS.

4.1. Experimental Data. /e sampling frequency is
12,000Hz. Defect dimensions for bearings are 0.021″,
0.014″, 0.021″, 0.028″. For each original collected signal that
represents one working condition, the first 120,000 points
(the sampling time is 10 s) were divided into 50 subsignals.
Each subsignal contains 2400 points (sampling time is 0.2 s).
A set of signals is composed of all subsignals in different
environments. A sample is randomly selected in the set of
vibration signals in various environments, as shown in
Figure 5./e IMF of this sample is calculated through EMD,
as shown in Figure 6.

As shown in Figure 6, comparing with other IMF
components, it can be seen that the amplitude of the 7th to
8th IMF component is very small. /erefore, taking the first
six IMF components is enough to express the original signal.
/e entropy value of IMF was obtained through EMD. Some
entropy values are listed below:

① IMF’s energy entropy, as shown in Tables 1–4:

② IMF’s permutation entropy, as shown in Tables 5–8.
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4.2. Fault Detection. /e process of SVM classification is
influenced by its parameters. Generally, PSO is used as a
method to optimize parameters. To do this, we need to
compare the performance of PSO and SRPSO. /e pa-
rameters of LSSVM are optimized by PSO, as shown in
Figure 7(a). /e parameters of LSSVM are optimized by
SRPSO, as shown in Figure 7(b).

Figures 7(a) and 7(b) show that SRPSO has a good
convergence for optimization of SVM parameters, and no
more than 6 generations can be obtained to obtain the
optimal solution, thus, selecting the update of the sixth
passage.

/e study was divided into three parts:

(a) How the eigenvectors are obtained has been given.
Firstly, the EE and PE of each subsignal are obtained

through EMD, and then the entropy value is fused to
form the eigenvector.

(b) /e model for fault identification has been ob-
tained. /e parameters of MK-LSSVM were op-
timized by SRPSO, and the theoretical model of
MK-LSSVM to identify fault defects was
constructed.

(c) /e defect of rolling bearing has been identified. /e
model is used for signal detection to complete the
flaw detection of bearing signal.

In this paper, compared with other methods, the su-
periority of the proposed method is reflected./e first group
is the method mentioned in the literature [5]. /e second
group is the method proposed in the literature [10]. /e
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Figure 6: /e IMF’s of sample.

Table 1: Energy entropy at 1730 rpm.

Fault location Fault mark Feature number
Energy entropy at 1730 rpm

E1/E E2/E E3/E E4/E E5/E E6/E

Inner ring

1 1 0.0007 0.1019 0.1359 0.0260 0.0158 0.0037
1 2 0.0012 0.1102 0.1693 0.0306 0.0135 0.0032
1 3 0.0008 0.0946 0.1475 0.0349 0.0146 0.0034
1 4 0.0009 0.1166 0.1488 0.0274 0.0145 0.0047
1 5 0.0005 0.0901 0.1214 0.0457 0.0097 0.0050

Outer ring

2 1 0.0028 0.2061 0.1835 0.0753 0.0258 0.0131
2 2 0.0029 0.1865 0.2030 0.1029 0.0558 0.0128
2 3 0.0023 0.1790 0.1838 0.0879 0.0269 0.0099
2 4 0.0018 0.1587 0.1754 0.0672 0.0101 0.0095
2 5 0.0023 0.1612 0.1939 0.1079 0.0189 0.0123

Ball

3 1 0.0694 0.5219 0.2552 0.0942 0.0645 0.0145
3 2 0.0626 0.5171 0.2399 0.1127 0.0784 0.0121
3 3 0.0710 0.5227 0.2569 0.1226 0.0879 0.0188
3 4 0.0801 0.5266 0.2808 0.1494 0.1120 0.0059
3 5 0.0846 0.5285 0.2663 0.1228 0.0894 0.0140
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Table 3: Energy entropy at 1772 rpm.

Fault location Fault mark Feature number
Energy entropy at 1772 rpm

E1/E E2/E E3/E E4/E E5/E E6/E

Inner ring

1 1 0.0010 0.0844 0.1648 0.0456 0.0155 0.0052
1 2 0.0011 0.1011 0.1650 0.0387 0.0112 0.0059
1 3 0.0008 0.1129 0.1307 0.0729 0.0147 0.0068
1 4 0.0007 0.0874 0.1410 0.0273 0.0097 0.0009
1 5 0.0009 0.0942 0.1564 0.0338 0.0106 0.0014

Outer ring

2 1 0.0061 0.1713 0.2980 0.1059 0.0230 0.0086
2 2 0.0059 0.2046 0.2863 0.0580 0.0251 0.0178
2 3 0.0041 0.1942 0.2418 0.1045 0.0326 0.0136
2 4 0.0041 0.1721 0.2573 0.0772 0.0126 0.0043
2 5 0.0030 0.1285 0.2425 0.0610 0.0142 0.0088

Ball

3 1 0.0014 0.1433 0.1569 0.0792 0.0505 0.0140
3 2 0.0038 0.2138 0.2023 0.1290 0.0856 0.0194
3 3 0.0056 0.2081 0.2540 0.1703 0.0855 0.0218
3 4 0.0011 0.1345 0.1370 0.0728 0.0536 0.0107
3 5 0.0009 0.1411 0.1103 0.0671 0.0296 0.0113

Table 2: Energy entropy at 1750 rpm.

Fault location Fault mark Feature number
Energy entropy at 1750 rpm

E1/E E2/E E3/E E4/E E5/E E6/E

Inner ring

1 1 0.0008 0.0763 0.1523 0.0355 0.0109 0.0027
1 2 0.0007 0.0785 0.1475 0.0338 0.0105 0.0038
1 3 0.0006 0.0727 0.1329 0.0412 0.0096 0.0046
1 4 0.0006 0.0727 0.1399 0.0274 0.0130 0.0044
1 5 0.0010 0.1108 0.1503 0.0837 0.0182 0.0090

Outer ring

2 1 0.0026 0.1709 0.2052 0.0809 0.0111 0.0024
2 2 0.0033 0.1696 0.2349 0.0589 0.0202 0.0116
2 3 0.0029 0.2007 0.1956 0.0616 0.0219 0.0118
2 4 0.0050 0.2380 0.2187 0.1510 0.0445 0.0118
2 5 0.0027 0.1926 0.2002 0.0465 0.0143 0.0063

Ball

3 1 0.0233 0.4209 0.2811 0.1723 0.0938 0.0065
3 2 0.0176 0.3860 0.2891 0.1074 0.0965 0.0121
3 3 0.0158 0.3736 0.2628 0.1848 0.1141 0.0233
3 4 0.0184 0.3991 0.2535 0.1641 0.0982 0.0197
3 5 0.0165 0.3694 0.3037 0.1283 0.0814 0.0314

Table 4: Energy entropy at 1792 rpm.

Fault location Fault mark Feature number
Energy entropy at 1792 rpm

E1/E E2/E E3/E E4/E E5/E E6/E

Inner ring

1 1 0.0018 0.1077 0.2051 0.0478 0.0113 0.0049
1 2 0.0024 0.1174 0.2244 0.0365 0.0095 0.0040
1 3 0.0018 0.1049 0.1986 0.0983 0.0104 0.0034
1 4 0.0021 0.1132 0.2166 0.0460 0.0068 0.0029
1 5 0.0018 0.1247 0.1994 0.0565 0.0116 0.0034

Outer ring

2 1 0.0091 0.2671 0.2952 0.1591 0.0418 0.0198
2 2 0.0045 0.1727 0.2660 0.0821 0.0393 0.0227
2 3 0.0037 0.1649 0.2482 0.0673 0.0221 0.0130
2 4 0.0037 0.1431 0.2415 0.1476 0.0328 0.0121
2 5 0.0055 0.2264 0.1707 0.2395 0.0660 0.0168

Ball

3 1 0.0055 0.2555 0.2340 0.0789 0.0545 0.0093
3 2 0.0075 0.2626 0.2810 0.0841 0.0428 0.0235
3 3 0.0050 0.2552 0.2167 0.0825 0.0498 0.0205
3 4 0.0085 0.2851 0.2799 0.0860 0.0456 0.0137
3 5 0.0054 0.2305 0.2568 0.0858 0.0578 0.0142
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Table 5: Permutation entropy at 1730 rpm.

Fault location Fault mark Feature number
Permutation entropy at 1730 rpm

PE1 PE2 PE3 PE4 PE5 PE6

Inner ring

1 1 0.7421 0.5522 0.3756 0.2768 0.2020 0.1605
1 2 0.7502 0.5321 0.3656 0.2704 0.1943 0.1585
1 3 0.7609 0.5692 0.3836 0.2811 0.2035 0.1592
1 4 0.7531 0.5219 0.3538 0.2713 0.1896 0.1513
1 5 0.7399 0.5158 0.3623 0.2923 0.2125 0.1662

Outer ring

2 1 0.8071 0.6348 0.4092 0.3008 0.2386 0.1830
2 2 0.8112 0.6038 0.4010 0.3160 0.2720 0.2020
2 3 0.8092 0.6609 0.4291 0.3104 0.2516 0.1925
2 4 0.8039 0.6134 0.3875 0.3069 0.2239 0.1796
2 5 0.8060 0.5603 0.3848 0.2961 0.2292 0.1864

Ball

3 1 0.8002 0.5068 0.3674 0.2595 0.1890 0.1512
3 2 0.8222 0.5497 0.3853 0.2719 0.1948 0.1614
3 3 0.8141 0.5333 0.3847 0.2752 0.1882 0.1447
3 4 0.8083 0.5193 0.3939 0.2779 0.1920 0.1493
3 5 0.8133 0.5223 0.3826 0.2764 0.1964 0.1580

Table 6: Permutation entropy at 1750 rpm.

Fault location Fault mark Feature number
Permutation entropy at 1750 rpm

PE1 PE2 PE3 PE4 PE5 PE6

Inner ring

1 1 0.7495 0.5696 0.3642 0.2677 0.1942 0.1593
1 2 0.7450 0.5521 0.3716 0.2879 0.2047 0.1601
1 3 0.7441 0.5945 0.3809 0.2838 0.2090 0.1696
1 4 0.7461 0.5290 0.3646 0.2674 0.1993 0.1624
1 5 0.7484 0.6640 0.4109 0.2953 0.2185 0.1752

Outer ring

2 1 0.8049 0.6063 0.3937 0.2891 0.2121 0.1677
2 2 0.8204 0.5579 0.3696 0.2788 0.2213 0.1862
2 3 0.7964 0.6387 0.4171 0.3101 0.2303 0.1814
2 4 0.8118 0.6892 0.4554 0.3111 0.2659 0.1988
2 5 0.8131 0.5760 0.3771 0.2931 0.2178 0.1765

Ball

3 1 0.8398 0.5654 0.3797 0.2731 0.1975 0.1539
3 2 0.8119 0.5361 0.3678 0.2711 0.1963 0.1565
3 3 0.8337 0.5878 0.4060 0.2976 0.2080 0.1708
3 4 0.8205 0.5261 0.3880 0.2959 0.2024 0.1636
3 5 0.8170 0.5541 0.3793 0.2718 0.2028 0.1592

Table 7: Permutation entropy at 1772 rpm.

Fault location Fault mark Feature number
Permutation entropy at 1772 rpm

PE1 PE2 PE3 PE4 PE5 PE6

Inner ring

1 1 0.7494 0.5420 0.3565 0.2719 0.2092 0.1665
1 2 0.7520 0.5614 0.3637 0.2730 0.2116 0.1713
1 3 0.7358 0.6310 0.4070 0.3040 0.2162 0.1721
1 4 0.7491 0.5292 0.3607 0.2702 0.1970 0.1586
1 5 0.7446 0.5489 0.3622 0.2706 0.1932 0.1484

Outer ring

2 1 0.8194 0.5606 0.3798 0.2768 0.2112 0.1703
2 2 0.8142 0.5732 0.3699 0.2895 0.2287 0.1879
2 3 0.8070 0.5617 0.3677 0.2900 0.2190 0.1872
2 4 0.8110 0.6117 0.3783 0.2881 0.2200 0.1715
2 5 0.8144 0.5566 0.3699 0.2923 0.2293 0.1748

Ball

3 1 0.7992 0.5848 0.3893 0.2789 0.2013 0.1545
3 2 0.8085 0.5766 0.3903 0.2843 0.2063 0.1627
3 3 0.7860 0.6197 0.4063 0.2842 0.2023 0.1617
3 4 0.7733 0.5771 0.3853 0.2831 0.2027 0.1580
3 5 0.7840 0.5785 0.3933 0.2865 0.2106 0.1746
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third group is IPSO-LSSVM./e proposed method is shown
in group 4 [14].

Classification accuracy refers to the ratio of the number
of correct classifications to the total samples. As can be seen

from Table 9, the average classification accuracy of the
SRPSO optimized MK-LSSVM proposed in this paper is
99.72%. It can be seen that the fault defect classification
accuracy of SRPSO optimized MK-LSSVM is higher. /e

Table 8: Permutation entropy at 1792 rpm.

Fault location Fault mark Feature number
Permutation entropy at 1792 rpm

PE1 PE2 PE3 PE4 PE5 PE6

Inner ring

1 1 0.7363 0.5393 0.3587 0.2674 0.2076 0.1596
1 2 0.7416 0.5550 0.3508 0.2664 0.1955 0.1513
1 3 0.7297 0.5633 0.3662 0.2905 0.2084 0.1606
1 4 0.7299 0.5537 0.3622 0.2656 0.2065 0.1620
1 5 0.7298 0.5472 0.3685 0.2662 0.1969 0.1530

Outer ring

2 1 0.8217 0.6730 0.4356 0.3176 0.2488 0.1840
2 2 0.8146 0.6193 0.4082 0.2942 0.2299 0.1747
2 3 0.8148 0.5702 0.3795 0.2859 0.2282 0.1812
2 4 0.8258 0.5848 0.3800 0.2927 0.2262 0.1858
2 5 0.8124 0.6669 0.4430 0.3417 0.2810 0.2267

Ball

3 1 0.8019 0.5699 0.3901 0.2783 0.1957 0.1637
3 2 0.8041 0.5877 0.3886 0.2841 0.2191 0.1781
3 3 0.8053 0.5842 0.4002 0.3021 0.2279 0.1732
3 4 0.8083 0.5844 0.3758 0.2739 0.1967 0.1690
3 5 0.8183 0.5894 0.3998 0.2959 0.2115 0.1670

Table 9: Accuracy of bearing fault recognition.

Case number Optimization type

Support vector machine
parameters Average value of classification accuracy

pk ck gk

1 PSO optimized multiclass SVM+HE [5] 97.75%
2 SVM with parameter optimized by ICD [10] 97.91–100%
3 Improved PSO+LS-SVM [14] 89.50%
4 �e proposed theory 0.5975 8.3853 50.2970 99.72%

/e expression of accuracy is the ratio of the number of correctly classified sets to all sets (including the number of correctly classified sets and the number of
incorrectly classified sets).
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Figure 7: (a) PSO optimization training for multikernel single feature LSSVM. (b) SRPSO optimization training for multikernel single
feature LSSVM.
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average recognition accuracy of type 1 is 97.75%. /e av-
erage recognition accuracy of type 2 is 97.91–100%. Type 3
shows that the recognition accuracy of improved PSO op-
timized support vector machine under a single feature is
89.50%. /e experimental results show that this method can
improve the recognition accuracy of rolling bearing by SVM.
Comprehensively, SRPSO optimized MK-LSSVM can ex-
tract the information of the signal.

5. Conclusions

Based on the analysis of the existing fault diagnosismethods, this
paper proposes a SRPSO optimized MK-LSSVM. In this paper,
the selection of support vector machine and the feature fusion of
signal are given, and the parameters of MK-LSSVM are opti-
mized by SRPSO./e actual results show that the integration of
fault feature vectors can improve the adaptability of support
vector machines. /e optimized MK-LSSVM can obtain more
intrinsic information in the signal through the SRPSO theory.
Obviously, it has been improved that the classification accuracy
was calculated by SRPSO optimized MK-LSSVM.
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