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Abstract

This paper presents a beat tracking system that processes acoustic signals of music and recognizes temporal
positions of beats in real time. Musical beat tracking is needed by various multimedia applications such as video

editing, audio editing, and stage lighting control. Previous systems were not able to deal with acoustic signals that
contained sounds of various instruments, especially drums. They dealt with either MIDI signals or acoustic signals

played on a few instruments, and in the latter case, did not work in real time. Our system deals with popular music
in which drums maintain the beat. Because our system examines multiple hypotheses in parallel, it can follow

beats without losing track of them, even if some hypotheses become wrong. Our system has been implemented
on a parallel computer, the Fujitsu AP1000. In our experiment, the system correctly tracked beats in 27 out of 30

commercially distributed popular songs.

1 Introduction

Musical beat tracking systems are important for various

multimedia applications. These systems recognize temporal
positions of quarter notes, just as people keep time to music

by hand-clapping or foot-tapping. Such a system is needed
by applications, for example, video editing systems, in which

a visual track can be automatically synchronized with an
audio track using beat tracking. In particular, it facilitates

the editing of music promotion videos such as those on MTV
since visual motions are synchronized with beats. In an audio

editing system or hard disk recording system, beat tracking
makes automatic indexing of music possible. The users of
these systems can deal with acoustic signals as a set of beats

instead of raw acoustic wave data. In live performances,
furthermore, beat tracking is useful in the control of stage

lighting by a computer. For instance, various properties of
lighting such as color, brightness, direction, and effect can be

changed in time to the music.

Previous beat tracking systems [1]�[7] have dealt with
MIDI as their input. Their reliance on MIDI, however, lim-

ited the input source to electronic instruments, and moreover

limited their application. Those systems generally dealt with
classical works, in particular piano solo, and emphasized

tracking tempo changes. Although some systems [8][9] dealt
with acoustic signals, they concentrated on automatic tran-

scription rather than beat tracking, and did not work in real
time. They could not process music played on ensembles of a

variety of instruments because of the difficulty of segregating
the sound of each instrument.

This paper describes a beat tracking system, called BTS,

which processes monaural acoustic signals and recognizes
temporal positions of beats in real time. BTS deals with

popular music in which drums maintain the beat. We con-
centrate on finding the position of beats in acoustic signals

rather than on following tempo changes, because popular
songs have less tempo change than do classical works. BTS

receives acoustic signals sampled from a compact disc, tracks
beats corresponding to quarter notes, and transmits their tem-

poral positions to other computers through a network in real
time.

The difficulties of tracking the beats in acoustic signals are:

(1) Acoustic signals sampled from a commercial compact
disc consist of sounds of various kinds of instruments. The

onsets of notes are difficult to obtain precisely (unlike the
case of MIDI signals, where there is no such problem). (2)

The simple technique of peak-finding with a threshold is not
useful for tracking beats since there are many energy peaks

that are not directly related to beats. (3) A beat may not
directly correspond to a real sound; it is a perceptual concept
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that a human feels in music. There is not necessarily a specific

sound that directly indicates the position of beats. Several
interpretations of signals are therefore possible at any given

point. (4) In general, it is difficult to determine which note-
value a beat corresponds to, and whether a beat is a strong

beat or a weak beat.

To address these issues, BTS examines multiple possibili-
ties of positions of beats in parallel. BTS computes the relia-

bility of each onset time so that subsequent processing might
disregard low reliability onset times. BTS uses a collection

of programmatic agents, each of which interprets these onset
times and predicts the next beat according to its own strategy.

The position of the next beat is determined on the basis of
the most reliable agent. In addition, BTS leverages the fact

that for a large class of popular music, a bass drum and a
snare drum usually sound on the strong and weak beats, re-

spectively. By assuming that these drum-sounds are present,
BTS can detect them, infer the length of a quarter note, and

determine whether a beat is strong or weak.

BTS has been implemented on a distributed memory par-
allel computer, the Fujitsu AP1000. BTS reports beat infor-

mation (BI) that consists of: the temporal position of a beat
(beat time), whether the beat is strong or weak (beat type),

and the current tempo. BTS correctly tracked beats in 27 out
of 30 popular songs sampled from commercially distributed

compact discs.

2 Acoustic Beat-Tracking Issues

This section presents the beat-tracking issues and our so-

lutions to them. These issues are classified into three groups:
issues of signal processing, issues of real-time processing,

issues of musical judgement.

� Issues of signal processing

1. There is not necessarily a specific sound that directly
indicates the position of beats. In fact, a musical beat

may not directly correspond to a real sound; there may
even be no signal on a beat.

BTS tracks beats by managing multiple evidence such

as onset times in several different frequency ranges,
onset times of two different kinds of drum-sounds (a

bass drum and a snare drum), and their loudness. BTS
interprets this evidence by using musical knowledge

such as the manner in which the two kinds of drums are
used in a large class of popular music.

2. It is generally impossible to obtain precise onset times

from acoustic signals that contain sounds of various
instruments.

BTS employs sophisticated means of estimating the on-

set time in the frequency analysis stage. First, BTS finds
multiple interpretations of onset times corresponding to

various time-window widths. Second, the reliability of
an onset time is computed by a process that takes into

account such factors as the rapidity of increase in power,
and the power present in nearby time-frequency regions.

The higher the reliability of an onset time, the greater
its importance in subsequent processing.

� Issues of real-time processing

3. To track beats in real time, only acoustic signals obtained
previously are available.

BTS should predict the next beat time in advance from

the onset times obtained previously. At the time when
BTS finishes recognition of a sound in an acoustic sig-

nal, its onset time has already passed.

4. BTS should be able to recover the correct tracking even

if the current hypothesis becomes incorrect.

BTS examines multiple possibilities of positions of
beats in parallel. BTS manages multiple agents that

track beats according to different strategies. Even if
some agents lose track of beats, BTS will correctly track

beats as long as other agents have the correct hypothe-
ses. Each agent interprets onset times and makes its own

hypothesis of beats. BTS generates beat information on
the basis of the most reliable hypothesis.

� Issues of musical judgement

5. It is generally difficult to determine whether a beat is a
strong beat or a weak beat � i.e., it is difficult to track

beats at the half-note level.

BTS assumes that the time-signature is 4/4, this being

the most frequent time-signature in the repertoire we
are considering. To infer beat type, BTS also assumes

that a bass drum (BD) usually sounds on a strong beat
(the first or third quarter notes in a measure) and a

snare drum (SD) on a weak beat (the second or fourth).
This does not mean that all BD and SD must sound on
the strong and weak beats, respectively, but rather that

that arrangement should be the most frequent. These
assumptions fit a large class of popular music.

BTS, like human listeners, utilizes BD and SD as prin-
ciple clues to the location of strong and weak beats.
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Because the sounds of BD and SD are not known in

advance, BTS automatically acquires the characteris-
tic frequencies of these sounds during the beat-tracking

process. Note that BTS cannot simply use the detected
BD and SD to track the beats, because this detection

process is too noisy. The detected BD and SD are only
used to determine the beat type (strong or weak) of an

already detected beat.

6. It is difficult to judge whether the inter-beat-interval

(IBI)1 corresponds to the temporal length of a quarter
note.

The tempo of an input song is constrained to be between

70 M.M.2 and 180 M.M. and almost constant; popular
songs have less tempo variation than do classical works.

Even if IBI is limited in the length of the quarter note
corresponding to the supported tempo, cases occur such

that BTS cannot judge whether the IBI is the length of
a quarter note.

BTS concludes that the current IBI is the length of a

quarter note if SD usually alternates with BD on the
beats obtained previously. If BTS can detect neither

BD nor SD, the stable interval between onsets with high
reliability is regarded as the length of a quarter note.

3 Overview of BTS

Figure 1 shows the overview of BTS. First, Frequency

Analysis finds notes’ onset times in an input acoustic sig-
nal digitized by A/D Conversion and also detects BD and

SD. Second, multiple agents in Beat Prediction interpret the
onset times found previously and make parallel hypotheses:

each agent first calculates the IBI (inter-beat-interval); it then
predicts the next beat time, and infers its beat type, and fi-

nally evaluates its own reliability. BI Generation assembles
BI (beat information) on the basis of the most reliable hy-
pothesis. Finally, BI Transmission transmits the BI to other

application programs via a computer network.

The following describe the stages of Frequency Analysis

and Beat Prediction.

3.1 Frequency Analysis

The onset times in several different frequency ranges and

the onset times of BD and SD are obtained by the following

1The inter-beat-interval is the temporal difference between two succes-
sive beats.

2the number of quarter notes per minute

Figure 1: Overview of BTS

processes.

3.1.1 Fast Fourier Transform (FFT)

The frequency spectrum (the power spectrum) is calculated
by FFT. Each time FFT is applied to the digitized acoustic

signal, the window of FFT is shifted to the next time. The
resolution along the frequency axis3 is determined by the

size of the window (WinSIZE). The resolution along the
time axis3 is determined by the shifted size of each window

(ShiSIZE).

3.1.2 Extracting onset components

The onset components and their degree of onset (rapidity of

increase in power) are extracted from the frequency spectrum.
BTS regards the frequency component �(�� � ) that fulfills the

conditions (1) as the onset component (Figure 2).�
�(�� � ) � ��

�� � ��
(1)

3In our current implementation, the frequency resolution is 21.53Hz and
the time resolution is 11.61msec.
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where �(�� � ) is the power of the spectrum of frequency � at

time �, �� and �� are given by:

�� = max(�(�� 1� � )� �(�� 1� � � 1)� �(�� 2� � )) (2)

�� = min(�(� + 1� � )� �(� + 1� � � 1)) (3)

In other words, these conditions extract frequency compo-

nents whose power has been increasing.
The degree of onset �(�� � ) is given by:

�(�� � ) = �(�� � )� �� + max(0� �(� + 1� � ) � �(�� � )) (4)

Figure 2: Extracting onset components

3.1.3 Finding onset times

The onset time is found by peak-finding in �(�) along the

time axis, where �(�), the sum of the degree of onset, is
defined by:

�(�) =
�
�

�(�� � ) (5)

�(�) is linearly smoothed by convolution kernel before the
peak time and peak value of �(�) are calculated. The onset

time is given by this peak time. The reliability of the onset
time is obtained as the ratio of its peak value to a recent

maximum peak value.
BTS employs multiple onset-time finders, each of which

sends its onset information to a corresponding agent-pair
mentioned later in 3.2. Each finder has two parameters: The

first parameter, sensitivity, is the size of convolution kernel
used for smoothing. The smaller the size of the convolution
kernel, the higher its sensitivity. The second parameter, fre-

quency range, is the range of frequency in the summation of
�(�) (in Equation (5)). Limiting the range makes it possible

to find the onset times in several different frequency ranges.
The settings of these parameters vary from finder to finder.

3.1.4 Detecting BD and SD

BTS learns the characteristic frequencies of BD and SD

for the current song by examining the extracted onset com-
ponents. These characteristic frequencies are then used for

subsequent BD and SD detection. For times at which on-

set components are found, BTS finds peaks along the fre-
quency axis and histograms them (Figure 3). The histogram

is weighted by the degree of onset �(�� � ). The character-
istic frequency of BD is given by the lowest peak of the

histogram, and that of SD is given by the maximum peak of
the histogram over the frequency of BD.

Figure 3: The characteristic frequencies of BD and SD

BTS judges that BD or SD has sounded at times when

(1) an onset is detected and (2) the onset’s peak frequencies
coincide with the characteristic frequencies of BD or SD. The

reliability of the onset times corresponding to BD and SD is
obtained as the ratio of �(�� � ) currently under consideration

to a recent maximum peak value.

3.2 Beat Prediction

Multiple agents interpret the results of the Frequency Anal-
ysis stage and maintain their own hypotheses, each of which
consists of next beat time predicted, its beat type, its relia-

bility, and current IBI. These agents, the number of which
is NumAGENTS, are grouped into pairs. Two agents in the

same pair use the same IBI, and cooperatively predict the
next beat times, the difference of which is half of the IBI.

This enables one agent to track the correct beats even if the
other agent tracks the middle of the two successive correct

beats. Agent-pairs differ (from other agent-pairs) in that they
receive onset information from different onset-time finders.

The agent-pairs can, in turn, re-adjust the parameters of the
onset-time finders based on estimates of their own reliability

� in other words, there is feedback between the (high-level)
beat-prediction agents and the (low-level) onset-time finders.

Each agent has three parameters that determine its strategy

for making the hypothesis. Both agents in the same pair
have the same setting of these parameters. The settings of

these parameters vary from pair to pair. Because the input
signals are examined by these various viewpoints, various

hypotheses can emerge.

The first and second parameters are sensitivity and fre-
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quency range. These two parameters control the parameters

of an onset-time finder, and influence the onset-finding strat-
egy. The third parameter, histogramming strategy, takes the

value successive or alternate. When the value is successive,
successive onsets are used in forming the inter-onset-interval

(IOI)4 histogram; when the value is alternate, alternate val-
ues are used. If the reliability of an agent remains low for a

long time, the agent adjusts these parameters so that they are
close to these of the most reliable agent.

The following sections discuss the formation and manage-

ment of hypotheses. First, each agent calculates the IBI, and
then predicts the next beat time and evaluates its own reliabil-

ity (3.2.1). Second, the agent infers its beat type and modifies
its reliability (3.2.2). Finally, the most reliable hypothesis is
selected from hypotheses of all agents (3.2.3).

3.2.1 Predicting next beat

Each agent predicts the next beat time by adding the cur-
rent IBI to the previous beat time (Figure 4). The IBI is

calculated as the most frequent interval between onsets with
high reliability. The IBI is given by the interval with the

maximum value in the inter-onset-interval (IOI) histogram
(Figure 5). Before the agent adds the IBI to the previous beat

time, the previous beat time is adjusted to the nearest onset
time if they almost coincide.

Figure 4: Beat prediction

Figure 5: IOI Histogram

Each agent evaluates its own reliability. The reliability

is increased if an onset time coincides with the beat time
predicted previously. In addition, if an onset time coincides

4The inter-onset-interval is the temporal difference between two succes-
sive onsets.

with the time that corresponds to the position of an eighth

note or a sixteenth note, the reliability is slightly increased.
Otherwise, the reliability is decreased.

3.2.2 Inferring beat type

Each predicted beat time is labeled with its beat type in this
process. Although it would be better to infer the beat type on

the basis of a variety of clues, in our current implementation,
the beat type is inferred only from the onset times of BD and

SD.

Figure 6: Expectation of BD and SD

The detection of an individual occurrence of BD or SD is
likely to be corrupted by noise or other sounds. Furthermore,

some BD or SD sounds may be missing, as in the case of
a syncopation. BTS compensates for these difficulties by

taking advantage of the fact that the BD and SD sounds
generally alternate (Figure 6); so for example, following a

sequence BD SD ? SD BD ? ? SD BD SD, BTS would
expect BD. In this calculation, SD carries more weight than

BD, because BD sometimes does not sound on beats in a
syncopated rhythm and the possibility of SD sounding on

beats is higher than that of BD.

If BD (SD) is expected, BTS concludes that the next beat

type is a strong (weak) beat. In both cases, the reliability is
increased so that the hypothesis with the IBI corresponding

to a quarter note is likely to be selected.

3.2.3 Managing hypotheses

All agent-generated hypotheses are classified into groups

according to beat time and IBI. Each group has the total
reliability given by the sum of the reliability of hypotheses in

its group. The most reliable hypothesis in the most reliable
group is selected and sent to the BI Generation stage, which

performs some post-processing operations and preparations
for transmission of BI to the network.
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4 Implementation

Figure 7 shows the implementation on a distributed mem-
ory parallel computer, the Fujitsu AP1000. The use of a

parallel computer enables us to handle this computationally-
intensive task in real time. The AP1000 consists of 64 cells5.

We divide the 64 cells into 8 groups to which the different
processes are assigned directly. The number of cells used

in each group is indicated at the lower right of the rectan-
gles in Figure 7. The arrows indicate the global flow of data

between groups.

Figure 7: Implementation on the AP1000

In our current implementation, NumAGENTS (the num-
ber of agents) is 30. Both of the number of onset-time finders

and the number of agent-pairs are therefore 15. Initial pa-
rameters of these agent-pairs are shown in Table 1. The unit

of sensitivity is the frame-time defined below.

4.1 A/D Conversion

The input acoustic signal is digitized at 16bit/22.05kHz
and then divided into blocks of 256 samples on Sun SPARC

Station 10 (SS10). These blocks are transferred from SS10
to AP1000 via SCSI. A block consisting of 256 samples is

a fundamental unit in all processes of BTS. The time cor-
responding to 1 block is called 1 frame-time (11.61msec).

The frame-time is the unit of time used in BTS, and the term
‘‘time’’ in this paper is defined as the time measured with the

frame-time.
5Cell means a processing element in the AP1000. Each cell consists of a

25MHz SPARC with FPU, 16Mbytes DRAM and 128kbytes direct-mapped
cache memory.

Table 1: Initial parameters of agent-pairs
pair No. sensitivity frequency range histogramming

strategy
1 11 0-11kHz successive
2 13 0-11kHz successive
3 15 0-11kHz successive
4 17 0-11kHz successive
5 19 0-11kHz successive
6 21 0-11kHz successive
7 23 0-11kHz successive
8 25 0-11kHz successive
9 13 0-11kHz alternate

10 19 0-11kHz alternate
11 15 0-430Hz successive
12 15 430-1.3kHz successive
13 15 1.3k-3.0kHz successive
14 15 3.0k-6.5kHz successive
15 15 6.5k-11kHz successive

In our current implementation, WinSIZE (the window size
of FFT) is 4 frame-times (1024 samples). ShiSIZE (The

shifted size of each window) is 1 frame-time (256 samples).

4.2 BI Transmission, RMCP system

BI is transmitted to the Ethernet as the RMCP packet at

the predicted time. RMCP stands for remote music control
protocol, which is a communication protocol on the UDP/IP

between servers and clients in the RMCP system [10]. The
RMCP system is a distributed cooperative system that inte-

grates MIDI and LAN. This enables computers on the Ether-
net to use the BI in various ways. For example, a workstation

connected to the MIDI instrument may create drum-sounds
or clapping-sounds in time to the input music. A workstation

with a graphics engine may also create computer graphics
synchronized with music.

We can both see and hear the result of BTS on the RMCP

Figure 8: BTS, BIDS, and BISS on RMCP system
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system (Figure 8). BI is graphically represented with another

program called Beat Information Display Server (BIDS).
BIDS provides a color display of BI received from BTS

via the Ethernet, so that we may see beat time and beat type
in time to music. BI is also aurally represented with an-

other program called Beat Information Sound Server (BISS).
BISS plays drum-sounds or clapping-sounds by controlling

a MIDI instrument. In the case of drum-sounds, BISS plays
a bass drum sound on strong beats and a snare drum sound
on weak beats. High hat cymbals can be played on the eighth

or sixteenth notes if BTS transmits BI corresponding to the
sixteenth notes6.

5 Experiments and Results

We tested BTS on 30 popular songs in the rock and pop

music genre. The initial one or two minutes of those songs
were used as the input. The input was a monaural acoustic

signal sampled from a commercial compact disc, in which
BD and SD usually sounded on the strong and weak beats,

respectively. Their tempi ranged from 78 M.M. to 168 M.M.
and were almost constant.

Table 2: Experimental results�

No. title (artist) result tempo
1 Julian (Princess Princess) � 78
2 Dancing queen (ABBA) � 99
3 Something about you (LEVEL 42) � 106
4 Pride (U2) � 106
5 Need you tonight (INXS) � 109
6 Satisfied (Richard Marx) � 109
7 Love story ha totuzen ni (Kazumasa Oda) � 114
8 Open your heart (Madonna) � 115
9 Black or white (Michael Jackson) � 115

10 Sussudio (Phil Collins) � 121
11 All that jazz (Breathe) � 123
12 Seeing is believing (Mike + the Mechanics) � 133
13 Any way you want it (Journey) � 139
14 Be good to yourself (Journey) � 151
15 Arcadia (T-Square) � 156
16 Danger zone (Kenny Loggins) � 157
17 Mighty wings (Cheap Trick) � 159
18 Surfing with the alien (Joe Satriani) � 168

� There were 12 other Japanese songs in which BTS correctly
tracked beats, besides those listed above.

The test results are shown in Table 2. BTS correctly
tracked beats in 27 out of 30 songs in real time. At the

beginning of each song, the beat type was not obtained cor-
rectly even if the beats were found. This is because BTS had

not yet acquired the characteristic frequencies of BD and SD.

6BTS has an optional function to generate BI corresponding to sixteenth
notes by interpolating between beat times corresponding to quarter notes.
This function is useful if short-interval synchronization is required.

After the BD and SD had sounded stably for a few measures,

the beat type was obtained correctly.

We discuss the reason why BTS made mistakes in the

songs No.4, No.7 and No.15. In the song No.4, BTS tracked
beat times correctly; however, the beat type was sometimes

wrong. The power of BD was sometimes too low to detect
the peak frequency corresponding to BD. Because the lowest

detected peak corresponded to SD, BTS regarded SD as BD.
In the song No.7, although BTS tracked beat times correctly,

the beat type was reversed as if BD were SD. BTS did not
acquire the characteristic frequencies of BD and SD correctly,

because both of the lowest peak and the maximum peak of
the histogram were the common frequency peaks in both BD

and SD. In the song No.15, BTS tracked beats correctly, for
the most part, but during about three measures in the middle,
the beat type was reversed due to some irregular rhythm in

the drums.

6 Applications of BTS

Musical beat trackers such as BTS are useful in various

multimedia applications. This section discusses some typical
examples.

� Video editing

Computer synchronization of visual tracks and audio tracks
was discussed in a number of works such as [11]. If these

tracks are already prepared or recorded at the same time,
simple synchronization is enough. However, in video editing

systems, it is necessary that motions or events in a visual track
are synchronized with music in an audio track by hand, if the
users would like to create MTV-style videos in which visual

motions are synchronized with beats. BTS can be used to
synchronize events in a visual track with musical beats in an

audio track automatically.

� Audio editing (Hard disk recording system)

Current audio editing systems work with raw acoustic

wave data. BTS enables editors to handle acoustic signals as
a set of beats instead of raw data. Future versions of BTS

will enable handling of acoustic signals at higher levels of
musical abstraction.

� Stage lighting control

BTS is useful in automatically synchronizing computer

controlled stage lights with beats of a musical performance.
For instance, various properties of lighting such as color,

brightness, direction, and effect can be changed in time to
the music.
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� Real-time computer graphics
BTS makes it easy to create real-time computer graphics

synchronized with music. For example, a virtual dancer on
a computer graphics display may dance in time to music

using BI. The motion, step and position of the dancer can
be changed with the beats. We have developed a server

called RMCP Animation Server on the RMCP system, which
displays a virtual dancer whose motion is changed with beats

in real time (Figure 9).

Figure 9: Computer graphics synchronized with music

� Live performances
Beat tracking can also provide computers the ability to

participate intelligently in live performances. The computer
may follow a human performance in real time and join the

ensemble.

7 Conclusion

We described the configuration and implementation of a
real-time beat tracking system (BTS). BTS tracks beats in

acoustic signals that contain sounds of various instruments
that include drums, and reports beat information correspond-

ing to quarter notes in time to input music. BTS has been
implemented on a parallel computer, the Fujitsu AP1000. In

our experiment, the system correctly tracked beats in 27 out
of 30 popular songs in the rock and pop music genre.

BTS manages multiple agents that track beats according to

different strategies in order to examine multiple hypotheses
in parallel. This enables BTS to follow beats without losing

track of them, even if some hypotheses become wrong. BTS
automatically acquires the characteristic frequencies of bass

drum and snare drum, and then detects them. This makes
it possible to determine whether a beat is a strong beat or a

weak beat.

We plan to improve the algorithm of the Beat Prediction

stage in order to reduce the limitations on the input. Future

work will include improvement of the method of detecting
drums, a study on recognition of higher level musical events

such as the beginning of measure, and application to a mul-
timedia system.
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