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�e �ow shop scheduling problems with mixed blocking constraints with minimization of makespan are investigated.�e Taguchi
orthogonal arrays and path relinking along with some e�cient local search methods are used to develop a metaheuristic algorithm
based on bee colony optimization. In order to compare the performance of the proposed algorithm, two well-known test problems
are considered. Computational results show that the presented algorithmhas comparative performancewithwell-known algorithms
of the literature, especially for the large sized problems.

1. Introduction

Flow shop scheduling problem has been extensively studied
for over 50 years because of its signi	cance in both theory and
industrial applications [1]. As an important branch of �ow
shop scheduling problems, the blocking �ow shop scheduling
has attracted much attention in recent years. In the blocking
�ow shop, because of the lack of intermediate bu
er storage
between consecutivemachines, a job has to stay in the current
machine until the next machine is available for processing,
even if it has completed processing in this machine [2].
�is increases the waiting time and thus in�uences the
e�ciency of production. In the classical �ow shop problem,
the bu
er space capacity between machines is considered
unlimited. Some �ow shop problems are concerned with the
blocking constraints such as RSb, RCb, and RCb∗ (these
blocking constraints will be described in Section 2). For
problems with classical blocking constraint (RSb), Wang et
al. [3, 4] developed a hybrid genetic algorithm for �ow shop
scheduling with limited bu
ers and a hybrid harmony search
algorithm and Ribas et al. [5] proposed an iterated greedy
algorithm. RCb constraint was introduced for the 	rst time by

Dauzere-Peres [6]. Regarding RCb constraint, an integer lin-
ear programming model, lower bounds, and a metaheuristic
are presented in [7]. �ese problems have also been solved in
[8] by a metaheuristic algorithm. A new blocking constraint
called RCb∗ has been proposed by Trabelsi et al. [9] which is
an RCb constraint simultaneously subjected to di
erent types
of blocking constraints on successive machines in a process.
In [10], authors proposed some heuristic for the �ow shop
problem with RSb, RCb, and RCb∗ constraints and solved it
with genetic algorithm. In [11], the complexity of a production
system where the RSb and RCb constraints are mixed is
studied.

In this paper, we propose a constructive heuristic for
minimizing the makespan in �ow shop scheduling problems
with mixed blocking constraints. We propose a new heuristic
method for the problem,which is based on the ideas of the bee
colony optimization. �e presented algorithm is developed
by using the ideas of the Taguchi orthogonal arrays and the
path relinkingmethod.Moreover, some heuristic local search
methods and perturbation procedures are also designed to
improve the e�ciency of the resulting algorithm. To compare
the presented algorithm with some e�cient algorithms of
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the literature, two sets of well-known test problems are used.
�e numerical results show that the presented algorithm is
comparative with well-known algorithms of the literature.

�is paper is structured as follows: the mixed blocking
�ow shop problem is described in Section 2. Section 3 is
concerned with the description of the presented algorithm
of this paper. �e numerical results are given in Section 4.
Finally, the paper is concluded in Section 5.

2. Problem Description

To describe the problem, we followed the same approach as
[10]. Flow shop scheduling problems are a class of scheduling
problems with a workshop or group shop in which the
�ow control will enable an appropriate sequencing for each
job and for processing on a set of machines or with other
resources 1, 2, . . . , � in compliance with given processing
orders. Particularly, the maintaining of a continuous �ow
of processing tasks is desired with a minimum of idle time
and a minimum of waiting time. Flow shop scheduling is
a special case of job shop scheduling where there is strict
order of all operations to be performed on all jobs. Flow shop
scheduling may apply as well to production facilities as to
computing designs. �e deterministic �ow shop scheduling
problem consists of a 	nite set � of � jobs to be processed on
a 	nite set� of � machines. Each job �� must be processed
on every machine in its routing consisting of � operations
��1, ��2, . . . , ���. Operation ��� needs an execution time ���
on machine�� ∈ �, performed in order. For 1 ≤ � ≤ �,
only one job can be executed on machine ��, at any time.
Here, preemptive operations are not authorized. Objective
function is to reduce the time when all operations are com-
pleted, that is, makespan. Several di
erent cases of �ow shop
can be considered such as the classical �ow shop problem
without any blocking constraint, the �ow shop problem with
only one blocking constraint between all machines, and the
�ow shop problems in which di
erent blocking constraints
are mixed. One constraint met in industrial problems is that
a job blocks a machine until this job starts on next machine
in routing. �is classical blocking constraint is denoted by
RSb (Release when Starting Blocking). Another constraint
is that a machine will be immediately available to treat
its next operation a�er its job on the following machine
in process is 	nished without regard to whether or not
it leaves the machine. �is blocking constraint is denoted
by RCb∗ (Release when Completing Blocking∗). In a large
production line, di
erent types of blocking constraints can be
encountered which depend on intermediate storage between
machines, characteristics of machines, and technical con-
straints. To characterize a �ow shop problem where di
erent
blocking constraints are mixed, a vector � is introduced that
contains blocking constraints between machines. Element��
is blocking constraint between machines�� and��+1. �is
vector has � − 1 elements (as many elements as the number
of transitions between machines). See [10] for details and a
mathematical programming formulation of the problem. For
the �ow shop scheduling problem, we use a permutation �
of jobs as a solution representation. For example, suppose
there are six jobs and fourmachines in a �ow shop scheduling

problem. A permutation � = (2, 3, 1, 6, 5, 4) is a permutation
of six jobs and this solution represents a scheduling in which
the sequence of jobs on each machine is �2, �3, �1, �6, �5, �4.

3. Bee Colony Algorithm

To describe the bee colony algorithm, we use the same
approach as [12]. �e bee colony algorithm is a stochastic P-
metaheuristic that belongs to the class of swarm intelligence
algorithms. BC is the one, which has been most widely
studied and applied to solve the real-world problems. �e
basic arti	cial bee colony algorithm [12] classi	es bees into
three categories: employed bees, onlooker bees, and scout
bees that both the onlookers and the scouts are also called
unemployed bees. Employed bees are having no knowledge
about food sources and looking for a food source to exploit.
Onlooker bees are waiting for the waggle dances exerted by
the other bees to establish food sources and scout bees carry
out a random search in the environment surrounding the
nest for new food sources. In the BC algorithm, each solution
to the problem under consideration represented by an �-
dimensional real-valued vector is called a food source and
the nectar amount of the food resource is evaluated by the
	tness value. �e following steps show the template of the
bee algorithm inspired by the food foraging behavior in a bee
colony:

(1) Initialization: compute an initial population.

(2) Employed bee stage: 	nd food sources by exploring
the environment randomly.

(3) Onlooker bee stage: select the food sources a�er
sharing the information with employed bees.

(4) Scout bee stage: select one of the solutions; then,
replace it with a new randomly generated solution.

(5) Remember the best food source found so far.

(6) If a termination criterion has not been satis	ed, go to
step (2); otherwise, stop the procedure and report the
best food source found so far.

Due to the fact that the basic BC algorithm was originally
designed for continuous function optimization, for making it
applicable for solving themixed blocking �ow shop problems
with makespan criterion, a new variant of the BC algorithm
is presented in this section.

3.1. Initialization. In the BC algorithm, initial population is
o�en generated randomly. To guarantee an initial solution
with certain quality and diversity, we generate one solution
by using the NEH heuristic of Nawaz et al. [13]. �en, to
maintain the diversity of the initial population, the other
solutions are randomly generated in the entire search space.
In Section 4, we show the impact of selecting NEH algorithm
and some random solutions instead of selecting just random
solution.�e framework of the NEH heuristic is presented as
follows:

(1) Compute the total processing time on allmachines for
each job. �en, obtain a sequence 
 = (
1, . . . , 
�)
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by sorting jobs according to their nonincreasing total
processing time.

(2) �e 	rst two jobs of 
 are taken, and the two possible
subsequences of these two jobs are evaluated, and
then select the better one as the current sequence �.
Set � = 2.

(3) Set � = � + 1. Take the �th job of 
 and insert
it into � (� ∈ [1, � + 1]) possible positions of the
current sequence � to obtain � subsequences. Select
the subsequence with the minimummakespan as the
current sequence � for the next generation. Repeat
this step until all jobs are sequenced and the 	nal
sequence is found.

3.2. Employed Bee Phase. According to the basic BC algo-
rithm, the employed bees 	nd new solutions in the neigh-
borhood of their current positions. Let �0 = {�1, . . . , ���}
be the population. For each member ��, at 	rst, we apply
a perturbation method to �� and generate a new solution
��� . �en, the path relinking procedure is executed on ��
and ��� and produces a set of candidate solutions. Finally, a
local search (which will be described later) is applied to the
best candidate solution with a small probability �LS and the
current solution is replaced by the best candidate solution.
�e pseudocode of employed bee phase procedure is given as
follows:

(1) Let � = {�1, . . . , ���} be the current population and
set � = 1.

(2) Apply the perturbation method to �� to obtain a new
solution ��� .

(3) Let � = {�1, . . . , �	} be the set of candidate solutions
obtained by executing the path relinking method to
�� and ��� .

(4) Use the local search method to improve the best
candidate solution with probability �LS.

(5) Replace �� with the best candidate solution.

(6) Let � = � + 1. If � > ��, then, stop. Otherwise, go to
step (2).

To complete the discussion, we need to describe the pro-
cedures for perturbation, path relinking, and local search.�e
perturbation procedure is based on the insertion operator.
In the insertion operator Ins(�, �) jobs � and � are selected,
the job at position � is inserted into position �, and all jobs
between positions � and � are shi�ed accordingly [14]. In the
perturbationmethod, at 	rst, a randomposition� is selected.
�en, for all � ̸= �, the operator Ins(�, �) is applied to the
current solution and the best obtained solution is chosen as
the perturbed solution.�e path relinking is applied in order
to explore the search space between �� and ��� . Path relinking
is based on the interchange operator. Consider two distinct
positions � and �. �e operator Exch(�, �) exchanges the
positions of the job at position � and the job at position �.
In what follows, the path relinking procedure is explained by
using an example. Let � = (2, 1, 4, 5, 3) and �� = (3, 4, 2, 1, 5).
At 	rst, job 2 which is in position 1 of � is chosen. Since job

2 is in position 3 in ��, we apply the operator Exch(1, 3) on �
and generate �1 = (4, 1, 2, 5, 3). In the next step, job 4 which
is in position 1 of � is selected. Since job 4 is in position 2
of ��, we apply Exch(1, 2) on �1 to obtain �2 = (1, 4, 2, 5, 3).
Similarly, the next generated solution is �3 = (5, 4, 2, 1, 3),
obtained by executing Exch(1, 4) on �2. �e set of candidate
solutions obtained by using the path relinking method is
{�1, �2, �3}. As mentioned earlier, the local search method
is applied on the best candidate solution with probability
�LS. �e local search method is also based on the exchange
operator. In the local search method, at 	rst, a position �
is randomly selected. �en, for all � ̸= �, the operator
Exch(�, �) is applied to the current solution. �e result is the
best obtained solution. �e local search method is repeated
until no improvement is observed in a certain number of
times (MaxCounter).

3.3. Onlooker Bee Phase. In the onlooker bee phase, we try
to improve the quality of the members of the populations.
For this purpose, we repeat the following procedure a certain
number of times (MaxIter). At 	rst, a member of the pop-
ulation is randomly chosen. �en, the perturbation method
(as described in Section 3) is applied to the selected member.
Finally, an improvement method (to be described later) is
applied to the perturbed solution and if the resulting solution
is better than the selected member, then the selected member
is replaced with the resulting solution.�e pseudocode of the
onlooker bee phase is given as follows:

(1) Set � = 1.
(2) Let � be a random member of the population.

(3) Let �� be the solution obtained by running the pertur-
bation method to �.

(4) Apply the improvement method to �� to generate a
new solution ���.

(5) If ��� is better than �, then set � = ���.
(6) Let � = � + 1. If � > MaxIter, then, stop. Otherwise, go

to step (2).

Two local search methods LS1 and LS2 are used in the
improvement method. LS1 is exactly the local search method
described in Section 3 and is based on the exchange operator.
LS2 is obtained by using the insertion operator instead of
the exchange operator in LS1. In LS2, a job is removed from
a permutation and inserted into other positions; then, the
permutation with the best out of the insertions is retained
for the next iteration. In the improvement method, at 	rst,
LS1 is applied on the given solution 
 and a new solution

� is generated. If 
� is better than 
, we set 
 = 
�. �en,
LS2 is applied on 
 and another solution 
�� is produced.
Similarly, if 
�� is better than 
, we set 
 = 
��. If the current
solution is not improved by using of LS1 and LS2, then the
perturbation method (described in Section 3) is applied on

. �is process is repeated until no improvement is observed
in a certain number (MaxCnt) of iterations. �e pseudocode
of this improvement method is given as follows:

(1) Set � = 1 and let 
 be the current solution.
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(2) Let 
� be the solution obtained a�er an application of
LS1 to 
. If 
� is better than 
, then 
 = 
�.

(3) Let 
�� be the solution obtained a�er an application of
LS2 to 
�. If 
�� is better than 
, then 
 = 
��.

(4) If 
 is not improved a�er the application of LS1 and
LS2, then apply the perturbation method to 
 and
replac 
 with the perturbed solution.

(5) Let � = � + 1. If � > MaxCnt, then, stop. Otherwise,
go to step (2).

3.4. Scout Bee Phase. In this phase, the algorithm tries to
generate new solutions by executing the following procedure
a certain number of times (MaxLoop). At 	rst, two distinct
solutions of the population �1 and �2 are randomly selected.
�en, the better one is determined.Without less of generality,
let �1 be the better one. In the next step, a combination
method is applied to the best solution found so far and �1 to
generate a new solution. Finally, �2 is replaced with the new
generated solution. �e pseudocode of the scout bees phase
procedure is given as follows:

(1) Set � = 1.
(2) Let �1 and �2 be two members of the population

chosen randomly.

(3) If �1 is better than �2, then let �
 = �1. Otherwise,
�
 = �2.

(4) Let �∗ be the solution obtained a�er an application of
the combination method to �
 and �best (�best is the
best solution so far).

(5) If �
 = �1, then �2 = �∗; otherwise, let �1 = �∗.
(6) Let � = � + 1. If � > MaxLoop, then, stop. Otherwise,

go to step (2).

In the following, we describe the combination method.
�e ideas of the combination method are usually taken from
crossover operators of evolutionary algorithms. However, in
this paper, the combination method is based on the Taguchi
orthogonal arrays. For this reason, it is required to brie�y
describe the Taguchi orthogonal arrays. To describe the
Taguchi orthogonal arrays, we follow the same approach as
[15]. Taguchi orthogonal arrays are concerned with � factors,
where each factor has � levels. �e purpose is to determine
the best setting of each factor’s level. Clearly, examining all

possible �	 combinations o�en needs a lot of computational
e
ort and is ine�cient. �erefore, a small but representative
sample of whole combinations is considered for this purpose.
Let � be the number of elements of this sample. �is sample
can be determined by an array with � rows and � columns
and is denoted by �(�, �, �, �). All members of the sample
must satisfy three conditions. Every levelmustmake the same
number of times in any column occur. For every � factors
in any � columns, every combination of � levels must make
the same number of times occur. �e members of the factor
must be uniformly distributed over the whole space of all
possible combinations. In this paper, the parameter � is always
equal to 2 and can be omitted from this notation. In other

words, the more simple notation ��(�	) can be used instead

of �(�, �, �, �). To use ��(�	) in the combination method, we
need to explain how the best combination of each factor’s level
is determined. Let ��,� = ∑��=1 ��� ���, where �� is the objective
function value of the �th member of the sample; if the �th
level of the factor in ��(�	) is �, then � ��� = 1 and otherwise
� ��� = 0. �e �th level of the factor � is the best level of this
factor, if � = argmin1≤�≤
��,�.

In the following, an example is presented to explain
how Taguchi orthogonal arrays are used to combine some
members of the population. Consider the orthogonal array

�4(23). Note that � = 2, � = 3, and � = 4. In the
combination method, 5 solutions are generated and the best
one is returned as the result of the combination method.
From these 5 solutions, 4 solutions are generated by using

the rows of �4(23) and a solution is generated by using the
best level of each factor. At 	rst, we explain how solutions are
generated by using the rows of �4(23). Assume that we want
to combine two solutions �1 = (1, 4, 6, 2, 5, 0, 7, 3) and �2 =
(4, 6, 3, 2, 1, 7, 0, 5) by using the third rowof�4(23). In the 	rst
step, 2 cut points 2 and 5 are randomly chosen and �1 and
�2 are cut into 3 pieces. �ese 3 pieces are characterized by
grey and white colors. Since the 	rst component of the third

row of �4(23) is 1, the 	rst piece of the combined solution
is taken from the 	rst piece of �2. �erefore, the 	rst piece
of the combined solution is (4, 6). �e second piece of the
combined solution is (6, 2, 5)which is taken from �1, because
the secondmember of the third row of �4(23) is 0. But here, 6
is repeated in the 	rst piece of the combined solution as well.
�erefore, only 2 and 5 appeared in the combined solution
and the entry corresponding to 6 is le� blank. Similarly, as

the third member of the third row of �4(23) is 1, the third
piece of the combined solution is taken from �2 and the
entry corresponding to the repeated number 5 is le� blank.
�e outcome of this procedure is (4, 6, ?, 2, 5, 7, 0, ?). Note
that the missing components of the combined solution are 1
and 3. Now, we consider the 	rst member �1. �e 	rst blank
position belongs to 1, because in �1 at 	rst 1 appeared. Finally,
the second blank position is devoted to 3 and the resulting
solution is (4, 6, 1, 2, 5, 7, 0, 3). �is procedure is depicted in
Figure 1. Now, we explain how the best level of each factor is
used to construct a solution. As we noted before, to compute
the best level of each factor, we have to compute ��,� for
1 ≤ � ≤ (� = 3) and 1 ≤ � ≤ (� = 2). Consider Figure 2.
�1,0 is constructed by using the 	rst column of �4(23). Since
level 0 appeared in the 	rst and second row of the 	rst column
of �4(23), we have �1,0 = 14×1+18×1+20×0+10×0 = 32.
Similarly, �1,1 is also computed by using the 	rst column of

�4(23). Since level 1 appeared in the third and fourth row of
the 	rst column of �4(23), we have �1,1 = 14 × 0 + 18 × 0 +
20× 1+ 10× 1 = 30. We have argmin0≤�≤1�1,� = 1. �erefore,
the best level of the 	rst factor is 1. By following the same
procedure, the best levels of the second and third factors are 1
and 0, respectively. Now, since the best level of the 	rst factor
is 0, the 	rst piece of the new solution �5 is taken from �1.
Similarly, the second and third factors of �5 are taken from
�2 and �1, respectively. Finally, from �1, �2, . . . , �5, the best
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1 0 0 0

2 0 1 1

3 1 0 1

4 1 1 0

1 4 6 2 5 0 7 3

+

4 6 3 2 1 7 0 5

4 6 2 5 7 0

Solution 4 6 1 2 5 7 0 3

L4(2
3
)

P1

P2

Figure 1: Solution generation by using the third row of �4(23).

Partial solution Solution

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Fitness

1 4 6 2 5 0 7 3 1 4 6 2 5 0 7 3

1 4 3 2 7 0 5 1 4 3 2 6 7 0 5

4 6 2 5 7 0 4 6 1 2 5 7 0 3

4 6 3 2 1 0 7 4 6 3 2 1 0 7 5

Level 0

Level 1

Best level 1 1 0

4 6 3 2 1 0 7 4 6 3 2 1 0 7 5

Best solution 4 6 3 2 1 0 7 5 10

W5

F1,0 = 14 + 18

F1,1 = 20 + 10

F2,0 = 14 + 20

F2,1 = 18 + 10

F3,0 = 14 + 10

F3,1 = 18 + 20

W1

W2

W3

W4

E1 = 14

E2 = 18

E3 = 20

E4 = 10

E5 = 10

Figure 2: Combination method.

one is �5 and is returned as the output of the combination
method.

In general case, suppose that we want to use the orthog-

onal array ��(�	) to combine � members �1, �2, . . . , �
 of
the population and generate some new solutions. At 	rst,
� − 1 cut points are randomly chosen and �1, �2, . . . , �
 are
cut into � pieces. �en, for 1 ≤ � ≤ �, the �th row of the

orthogonal array corresponding to ��(�	) is considered and
a new solution�� is generated as follows. If the level of the �th
factor in the �th row of the orthogonal matrix is 1 ≤ � ≤ �,
then the �th part of �� is taken from the �th part of ��. Here,
missing components of �� are inserted as described before.
In the next step, the 	tness value �� of each �� is computed.
�en, the best level of each factor is determined, as described
before, and a new solution ��+1 is also generated as follows.
If the best level of the �th factor is 1 ≤ � ≤ �, then the
�th part of �� is taken from the �th part of �� and missing
components of ��+1 are inserted as described before. Finally,
from �1, �2, . . . , ��+1, the best one is chosen as the output of
the combination method. �e pseudocode of the described
combination method is given as follows:

(1) Select � members �1, �2, . . . , �
 of the population,
randomly.

(2) Randomly, choose �−1 cut points and cut�1, �2, . . . �

into � pieces.

(3) Use the �th row of ��(�	) to generate a new member
��, for 1 ≤ � ≤ �.

(4) Compute the 	tness value �� of each newmember��,
for 1 ≤ � ≤ �.

(5) Compute the value of ��� of factor � with level �, for
1 ≤ � ≤ �, 1 ≤ � ≤ �.

(6) Use the best levels of all factors to generate a new
member ��+1 and calculate the 	tness value ��+1 of
��+1.

(7) From �1, �2, . . . , ��+1, choose the best one as the
output of the combination method.

4. Numerical Results

In this section, we examine the practical e�ciency of the
BC algorithm. �e implementation was performed by using
the C programming language on a system with a dual core
3.6GHz CPU and 2GBmemory. All of the parameters in this
study were determined experimentally.�e parameters of BC
algorithm were set as follows: �size = 10, �LS = 0.05. Two sets
of test problems were used to examine the e�ciency of the
presented algorithm.�e	rst set of test problems is presented
in Trabelsi et al. [10], and the second set is given by Taillard
[16].�e numerical results of the test problems of Trabelsi are
recorded in Tables 2, 3, and 4 and the numerical results of the
test problems of Taillard are given in Tables 5(a), 5(b), and
5(c).

Table 1 is concerned with the properties of the 5680
di
erent benchmark problems presented by Trabelsi et al.
[10].�e 	rst column and row of this table are concernedwith
the number of jobs and machines, respectively. �e number
in the �th row and �th column denotes the number of test
problems with �� machines and �� jobs, where �� denotes
the �th number of the 	rst column and �� is the �th number
of the 	rst row. For example, the number of test problemswith
�1 = 5 jobs and�5 = 15machines is 100.

In Table 2, the computing time of the BC is compared
with that of the genetic algorithm (GA) of Trabelsi et al.
[10] which is an e�cient algorithm of the literature (perhaps
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Table 1: Characteristics of the set of test problems presented by Trabelsi.

Size �1 = 5 �2 = 6 �3 = 7 �4 = 10 �5 = 15 �6 = 20 �7 = 50 �8 = 100
�1 = 5 100 100 100 100 100 100 100 100

�2 = 6 100 100 100 100 100 100 100 100

�3 = 7 100 100 100 100 100 100 100 100

�4 = 8 100 100 100 100 100 100 100 100

�5 = 9 100 100 100 100 100 100 100 100

�6 = 10 100 100 100 100 100 100 100 100

�7 = 11 100 100 100 100 20 20 20 20

�8 = 12 100 100 100 20 20 20 20 20

Table 2: Comparison of BC and GA with respect to computing time.

Alg. � � = 5 � = 6 � = 7 � = 10 � = 15 � = 20 � = 50 � = 100
GA 5 0.00 0.00 0.00 0.00 0.00 0.00 1.00 2.06

BC 5 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.06

GA 6 0.00 0.00 0.00 0.00 0.00 0.02 1.03 3.01

BC 6 0.00 0.00 0.00 0.00 0.01 0.03 0.06 0.09

GA 7 0.00 0.00 0.00 0.02 0.01 0.01 0.00 0.00

BC 7 0.01 0.01 0.01 0.03 0.03 0.06 0.09 0.17

GA 8 0.00 0.01 0.05 0.25 0.40 0.59 1.97 5.06

BC 8 0.01 0.01 0.03 0.03 0.04 0.06 0.12 0.23

GA 9 0.05 0.08 0.14 0.51 0.85 0.00 3.61 7.15

BC 9 0.03 0.03 0.04 0.04 0.06 0.07 0.15 0.32

GA 10 0.13 0.05 0.13 0.44 0.76 1.10 3.23 6.10

BC 10 0.03 0.03 0.03 0.04 0.07 0.09 0.23 0.45

GA 11 0.48 0.23 0.69 0.82 2.15 2.95 6.5 9.95

BC 11 0.04 0.04 0.04 0.06 0.07 0.14 0.26 0.59

GA 12 0.56 0.39 0.61 1.00 2.35 2.65 5.30 11.15

BC 12 0.04 0.04 0.06 0.06 0.11 0.14 0.32 0.76

Table 3: Comparison of BC and GA with respesct to quality of solutions.

Alg. � � = 5 � = 6 � = 7 � = 10 � = 15 � = 20 � = 50 � = 100
GA 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BC 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GA 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BC 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GA 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BC 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GA 8 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

BC 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

GA 9 0.00 0.00 0.00 0.02 0.04 0.01 0.02 0.01

BC 9 0.00 0.00 0.00 0.02 0.03 0.02 0.03 0.00

GA 10 0.04 0.02 0.06 0.05 0.10 0.04 0.05 0.05

BC 10 0.02 0.02 0.06 0.04 0.08 0.04 0.04 0.02

GA 11 0.02 0.04 0.09 0.10 0.20 0.29 0.12 0.04

BC 11 0.04 0.02 0.05 0.11 0.15 0.10 0.05 0.05

GA 12 0.06 0.06 0.17 0.25 0.34 0.27 0.23 0.13

BC 12 0.04 0.05 0.11 0.18 0.18 0.28 0.17 0.11
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Table 4: Success rates of BC in 	nding the optimal solution.

� × � NoI NS � × � NoI NS � × � NoI NS

5 × 5 100 All 7 × 50 100 All 10 × 15 100 78

5 × 6 100 All 7 × 100 100 All 10 × 20 100 86

5 × 7 100 All 8 × 5 100 All 10 × 50 100 80

5 × 10 100 All 8 × 6 100 All 10 × 100 100 85

5 × 15 100 All 8 × 7 100 All 11 × 5 100 86

5 × 20 100 All 8 × 10 100 All 11 × 6 100 91

5 × 50 100 All 8 × 15 100 All 11 × 7 100 78

5 × 100 100 All 8 × 20 100 All 11 × 10 100 71

6 × 5 100 All 8 × 50 100 99 11 × 15 20 10

6 × 6 100 All 8 × 100 100 99 11 × 20 20 14

6 × 7 100 All 9 × 5 100 All 11 × 50 20 14

6 × 10 100 All 9 × 6 100 All 11 × 100 20 12

6 × 15 100 All 9 × 7 100 All 12 × 5 100 85

6 × 20 100 All 9 × 10 100 95 12 × 6 100 85

6 × 50 100 All 9 × 15 100 94 12 × 7 100 71

6 × 100 100 All 9 × 20 100 93 12 × 10 20 9

7 × 5 100 All 9 × 50 100 90 12 × 15 20 13

7 × 6 100 All 9 × 100 100 96 12 × 20 20 8

7 × 7 100 All 10 × 5 100 92 12 × 50 20 8

7 × 10 100 All 10 × 6 100 94 12 × 100 20 8

7 × 15 100 All 10 × 7 100 89

7 × 20 100 All 10 × 10 100 89
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Figure 3: Comparison of BC and GA with respect to computing
time.

the best one). In this table, the names of the algorithms are
given in the 	rst column.�e numbers of jobs and machines
are given in the second column and 	rst row, respectively.
For each problem instance BC was run 25 times and the
average of the computing times is recorded in the column
below AvgT. �e numerical results of this table show that for
large instances the computing time of BC is less than that
of GA. From Figure 3, we can see that, with increasing the
number of jobs, the di
erence of computing time of presented
algorithm has been raised with GA that shows our algorithm
is signi	cantly faster than GA.

In Table 3, the quality of solutions obtained by BC is
compared with those of GA. Here, the error percentages are
obtained by using the formula%err = (�max−Opt)/Opt×100
and are recorded below the column %err. It can be observed

Table 5: �e results of the BC on Taillards benchmark problems.

(a)

Instance � ∗ � Min AvgValue Max SD AvgTime

ta001 20 × 5 2265 2268.2 2273 3.92 0.094

ta002 20 × 5 2180 2185.6 2187 3.17 0.109

ta003 20 × 5 2095 2095 2095 0.00 0.093

ta004 20 × 5 2417 2420.7 2438 5.63 0.112

ta005 20 × 5 2097 2106.6 2108 4.26 0.150

ta006 20 × 5 2265 2265 2265 0.00 0.120

ta007 20 × 5 2198 2198 2198 0.00 0.125

ta008 20 × 5 2261 2269.4 2288 13.59 0.098

ta009 20 × 5 2253 2257.52 2270 9.65 0.108

ta010 20 × 5 2042 2065.04 2089 8.13 0.102

ta011 20 × 10 2596 2609.3 2619 10.95 0.18

ta012 20 × 10 2685 2737.72 2805 39.62 0.19

ta013 20 × 10 2456 2486.44 2576 28.64 0.21

ta014 20 × 10 2186 2237.88 2286 42.63 0.22

ta015 20 × 10 2416 2464.88 2509 24.39 0.17

ta016 20 × 10 2289 2324.52 2365 27.64 0.18

ta017 20 × 10 2391 2407.92 2431 19.62 0.20

ta018 20 × 10 2541 2565.6 2605 19.86 0.23

ta019 20 × 10 2571 2604.72 2658 26.99 0.22

ta020 20 × 10 2684 2704.84 2736 16.45 0.19

ta021 20 × 20 3217 3248.6 3269 19.01 0.39

ta022 20 × 20 3010 3051.24 3092 39.59 0.41

ta023 20 × 20 3278 3331.00 3390 38.27 0.43

ta024 20 × 20 3164 3200.76 3234 24.16 0.42

ta025 20 × 20 3288 3338.40 3488 76.42 0.38

ta026 20 × 20 3155 3196.16 3238 30.66 0.39

ta027 20 × 20 3208 3259.48 3296 34.63 0.40

ta028 20 × 20 3127 3185.04 3236 44.78 0.44

ta029 20 × 20 3171 3235.52 3309 41.29 0.38

ta030 20 × 20 3140 3194.6 3256 29.88 0.46

ta031 50 × 5 5197 5210.10 5231 10.80 0.70

ta032 50 × 5 5430 5446.70 5479 13.49 0.72

ta033 50 × 5 5037 5046.00 5060 7.67 0.81

ta034 50 × 5 5368 5393.16 5418 7.28 0.79

ta035 50 × 5 5481 5391.40 5405 12.58 0.86

ta036 50 × 5 5430 5448.20 5473 14.54 0.76

ta037 50 × 5 5123 5146.90 5169 14.00 0.78

ta038 50 × 5 5214 5243.1 5260 11.86 0.73

ta039 50 × 5 5210 5212.40 5218 2.54 0.70

ta040 50 × 5 5351 5366.00 5379 9.47 0.75

ta041 50 × 10 5796 5826.30 5878 23.09 1.43

ta042 50 × 10 5445 5488.40 5523 23.40 1.67

(b)

Instance � ∗ � Min AvgValue Max SD AvgTime

ta043 50 × 10 5500 5532.30 5584 24.16 1.51

ta044 50 × 10 5785 5811.60 5834 16.04 1.42

ta045 50 × 10 5790 5816.40 5859 22.89 1.39

ta046 50 × 10 5662 5694.00 5739 25.47 1.48

ta047 50 × 10 5802 5836.50 5868 18.55 1.43
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(b) Continued.

Instance � ∗ � Min AvgValue Max SD AvgTime

ta048 50 × 10 5668 5699.30 5730 17.89 1.53

ta049 50 × 10 5610 5646.40 5683 21.48 1.48

ta050 50 × 10 5707 5780.60 5825 29.76 1.59

ta051 50 × 20 6820 6873.40 6935 31.94 3.12

ta052 50 × 20 6550 6592.50 6644 25.28 2.95

ta053 50 × 20 6389 6432.90 6465 27.82 3.18

ta054 50 × 20 6504 6558.52 6649 46.62 3.17

ta055 50 × 20 6447 6475.30 6505 16.04 3.10

ta056 50 × 20 6442 6488.20 6530 26.30 3.09

ta057 50 × 20 6507 6544.8 6572 17.70 3.14

ta058 50 × 20 6502 6572.16 6676 29.87 2.95

ta059 50 × 20 6512 6562.10 6631 30.74 2.98

ta060 50 × 20 6675 6728.40 6746 21.32 3.03

ta061 100 × 5 10601 10640.20 10678 22.54 5.71

ta062 100 × 5 10462 10477.9 10505 16.57 3.75

ta063 100 × 5 10216 10233.7 10259 23.56 4.46

ta064 100 × 5 9949 9996.00 10018 37.49 4.68

ta065 100 × 5 10339 10374.5 10432 33.69 5.06

ta066 100 × 5 10039 10079.6 10120 28.46 4.70

ta067 100 × 5 10396 10453.5 10491 31.26 4.75

ta068 100 × 5 10011 10038.50 10072 19.64 4.53

ta069 100 × 5 10651 10681.1 10702 14.96 4.50

ta070 100 × 5 10556 10572.6 10605 22.90 4.68

ta071 100 × 10 11283 11374.1 11446 41.14 9.45

ta072 100 × 10 10779 10846.2 10888 38.55 8.79

ta073 100 × 10 11147 11211.3 11248 27.46 8.87

ta074 100 × 10 11468 11492.80 11534 19.72 7.78

ta075 100 × 10 10937 10994.40 11036 25.33 7.98

ta076 100 × 10 10486 10540.00 10613 36.26 8.89

ta077 100 × 10 10927 10977.9 11019 42.86 7.81

ta078 100 × 10 10938 11015.1 11080 46.44 8.06

ta079 100 × 10 11239 11279.40 11347 35.45 8.76

ta080 100 × 10 11262 11329.90 11386 39.27 8.57

ta081 100 × 20 12180 12237.50 12344 46.28 15.18

ta082 100 × 20 12114 12177.30 12246 39.95 16.31

ta083 100 × 20 12145 12232.70 12299 47.09 14.98

ta084 100 × 20 12158 12211.00 12261 34.14 15.4

(c)

Instance � ∗ � Min AvgValue Max SD AvgTime

ta085 100 × 20 12085 12196.80 12264 48.26 15.56

ta086 100 × 20 12244 12300.00 12369 36.41 15.16

ta087 100 × 20 12339 12376.10 12409 19.12 15.43

ta088 100 × 20 12502 12565.50 12652 38.49 15.29

ta089 100 × 20 12295 12352.10 12433 33.47 15.98

ta090 100 × 20 12423 12482.00 12525 37.19 15.04

ta091 200 × 10 21953 22056.70 22136 54.33 46.65

ta092 200 × 10 21570 21607.40 21707 45.16 46.70

ta093 200 × 10 21918 22012.20 22147 73.07 43.73

ta094 200 × 10 21626 21705.5 21768 42.83 41.07

ta095 200 × 10 21683 21822.40 21929 75.52 45.54

ta096 200 × 10 21128 21239.50 21319 60.27 45.62

(c) Continued.

Instance � ∗ � Min AvgValue Max SD AvgTime

ta097 200 × 10 21851 21954 22052 58.02 43.28

ta098 200 × 10 21697 21867.40 21978 78.91 46.28

ta099 200 × 10 21512 21555.90 21595 27.84 44.18

ta100 200 × 10 21565 21658.40 21730 45.61 46.96

ta101 200 × 20 23150 23240.80 23299 40.36 102.98

ta102 200 × 20 23479 23574.30 23674 62.57 103.9

ta103 200 × 20 23541 23720.60 23795 76.31 87.84

ta104 200 × 20 23629 23705.00 23793 57.44 93.07

ta105 200 × 20 23276 23351.70 23433 52.30 92.68

ta106 200 × 20 23492 23630.10 23692 57.17 90.36

ta107 200 × 20 23715 23812.10 23875 49.46 90.14

ta108 200 × 20 23575 23686.60 23797 56.42 85.95

ta109 200 × 20 23522 23621.50 23707 52.84 91.00

ta110 200 × 20 23547 23614.70 23685 49.68 93.74
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Figure 4: Comparison of BC and GA with respect to quality of
solutions.

that the overall mean error value yielded by the BC is equal
to 0.0328 which is smaller than 0.0458 generated by the GA.
As the problem size increases, the superiority of the BC over
GA increases. For the biggest problem analyzed (12 × 100),
the average error of the GA was nearly 0.189, while it was 0.14
for the presented BC. Based on Figure 4, we can observe that
our algorithm reaches better solution in large problemswhich
indicates the superiority of presented algorithm for mixed
blocking �ow shop than GA.�erefore, we conclude that the
BC is competitive with GA, with respect to the computing
time and the quality of the computed solution.

In Table 4, the rates of success of the presented algorithm,
in 	nding the optimal solution of the test problems of
Trabelsi, are given. In this table, � is the number of jobs, �
is the number of machines, NoI is the number of problem
instances (given in Table 1), and NS is the number of times
in which BC computes the optimal solution. �e numerical
results of Table 4 verify that, from 64 cases, in 33 cases, BC
computes the optimal solution of all problem instances. In
31 cases, the BC could not 	nd the optimal solution of all
of test problems. However, from these 31 cases, in 10 cases,
the BC 	nds the optimal solution of more than (or equal
to) 90 percent of test problems. Moreover, in 8 cases, the
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Table 6: Comparison of BC-NEH and BC-Random.

Instance BC-Random BC-NEH AIR (%)

20 ∗ 5 2215.206 2213.106 0.095

20 ∗ 10 2516.782 2514.382 0.095

20 ∗ 20 3229.32 3224.08 0.162

50 ∗ 5 5298.458 5290.396 0.152

50 ∗ 10 5721.72 5713.18 0.149

50 ∗ 20 6583.931 6582.828 0.017

100 ∗ 5 10389.03 10354.76 0.330

100 ∗ 10 11201.36 11106.11 0.850

100 ∗ 20 12339.51 12313.1 0.214

200 ∗ 10 21827.46 21747.94 0.364

200 ∗ 20 23792.03 23635.18 0.659

Average NA NA 0.281

BC 	nds the optimal solution of 80 to 90 percent of the test
problems. Only in 8 cases, the optimal solution of 70 to 80
percent of test problems is computed. Indeed, from 5680 test
problems, only the optimal solution of 346 problems could
not be found by using BC. �ese results show the e�ciency
of the presented algorithm in 	nding the optimal solution of
the test problems.

For the 	rst time, the BC was tested in the well-known
test bed of Taillard [16]. Due to the fact that the largest
number of jobs in Trabelsi’s benchmark problems is 12, in
order to prove the e�ciency of our algorithm according
to competing approaches of this problem, we conducted
still another experiment to test the performance of the BC
on the 110 problems presented by Taillard that are larger
than Trabelsi’s benchmark. In Table 4, the 	rst column is
concernedwith the problemname. In the second column, the
size of the test problems is recorded. Here, the number of jobs
is denoted by � and the number of machines is denoted by�.
Moreover, the column under Min (Max) is for the objective
value of the best (worst) and the standard deviation (SD)
of solution found by the presented algorithm. So, all results
were obtained a�er 10 runs for each instance and are given
in Table 2. �e experimental results reveal that BC has the
capability to solve large scale problems and it is e
ective and
has reliable performance.

In addition, in order to prove the e�ciency of applying
NEH heuristic algorithm as one of the solutions instead of
using just random ones as initial solutions, we compare the
results of algorithms in these two cases that can be seen in
Table 6. In that table, BC-NEH donates BC algorithm when
NEH was used as one of the initial solutions, while BC-
Random means BC algorithm with only random solutions
as initialization phase. Comparison results indicate BC-NEH
is 0.281 percent better than BC-Random that shows the
e�ciency of applying NEH as a solution and increases its
e
ectiveness especially in large instances. It is also worth
pointing out that, owing to �size = 10, to maintain the
diversity of solutions and decrease the computing time, we
just use a heuristic solution instead of applying di
erent
heuristic solutions [17] in initialization step.

5. Conclusion

In the current research, a mixed blocking �ow shop schedul-
ing problem for minimizing the makespan was discussed.
�is problem is known to be strongly NP-hard. Here, an
e�cient bee colony algorithm was proposed to solve this
problem. �e novelty of the presented method was mainly
relevant to thewaywe applied the ideas of Taguchi orthogonal
arrays, path relinking, and some local search methods within
the bee colony algorithm, to obtain an e�cient algorithm for
mixed blocking constraints �ow shop scheduling problems.
Comparison of the proposed algorithm with an e�cient
algorithm of the literature demonstrates the e�ciency of the
proposed BC algorithm. For the 	rst time, the presented
algorithm was also tested on well-known test bed of Taillard.
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