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Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP)
characteristics. �is paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for
multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded
machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process.
In the 	rst stage, the NSGA-II algorithm with � iteration times is 	rst used to obtain the initial population �, in which a bee
evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm
with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid
the premature convergence, an updating mechanism is employed in this stage. More speci	cally, its population consists of three
parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on
some published benchmark instances. Finally, the e
ectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing
the experimental results and the results of some well-known algorithms already existed.

1. Introduction

As a part of production scheduling and combinatorial optimi-
zation problems, job-shop scheduling problem (JSP) attracts
more and more researchers from all walks of life (e.g.,
mechanical engineering, mathematics, and computer so�-
ware engineering) in the recent decades [1–5].

Flexible job-shop scheduling problem (FJSP) inherits the
characteristics of the JSP, in which each operation is allowed
to be processed by any machine in a given set rather than one
speci	ed machine, and it has been proved that the FJSP is
strong NP-hard [6]. FJSP consists of two subproblems: one is
the routing subproblem that each operation is assigned to one
machine of a set of machines, and the other is the scheduling
subproblem that a feasible schedule is obtained by sequencing
the assigned operations on all machines. �erefore the FJSP
is more dicult to be solved than the classical JSP because of
its need to determine the assignment of operations in related
machines [7].

�e FJSP is 	rstly addressed by Brucker and Schlie [8].
And they presented a polynomial algorithm with only two
jobs and identical machines. Brandimarte [9] proposed a
hybrid tabu search (TS) algorithm which was based on
decomposition to solve the FJSP. Dauzère-Pérès and Paulli
[10] provided a TS algorithm which was based on the inte-
grated approach and developed a new neighbourhood func-
tion [11] for the FJSP in terms of solution quality and com-
putation time. Gao et al. [12] proposed a hybrid genetic algo-
rithm to solve the FJSP with non	xed availability constraints.
And in order to enhance the inheritability, this genetic algo-
rithm uses an innovative representation method and applies
genetic operations to phenotype space. Saidi-Mehrabad and
Fattahi [13] developed a TS algorithm that took the operation
sequences and sequence-dependent setups into consideration
to solve the FJSP. A genetic algorithm (GA) combined with a
variable neighbourhood search (VNS) was presented by Gao
et al. [14], and a GA with di
erent strategies was proposed by
Pezzella et al. [15]. Yazdani et al. [16] developed a parallel VNS
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algorithm based on the application of multiple independent
searches which increased the exploration of search space.
Xing et al. [17] put forth a knowledge-based ant colony
optimization algorithm. Recently, a novel arti	cial bee colony
(ABC) algorithm [18] and a discrete harmony search (DHS)
algorithm [19] were brought forward to solve the FJSP.

As is shown above, the single-objective optimization of
FJSP (SO-FJSP) has been extensively studied, which generally
minimizes themakespan that is the time required to complete
all jobs. However, many industries (e.g., aircra�, semicon-
ductors manufacturing, and electronics) have trade-o
s in
their scheduling problems in which multiple objectives need
to be considered to optimize the overall performance of the
system.�erefore, theMO-FJSPmay be closer to the realistic
production environments and needs to be further studied.
In recent years, the MO-FJSP has captured more and more
interests of numerous domain researchers, and a great many
of algorithms have been presented [20]. Compared with SO-
FJSP, MO-FJSP has two problems to be dealt with: incom-
mensurability between objectives and contradiction between
objectives (i.e., optimizing a single-objective generally results
in deterioration of another objective) [13].

For the MO-FJSP, Scha
er [21] provided a genetic algo-
rithm with vector evaluated. Jurisch [22] presented a branch-
and-bound algorithm and some heuristic algorithms. By
combining the VNSwith particle swarm optimization (PSO),
Liu et al. [23] presented a hybrid metaheuristic to solve the
MO-FJSP. A new genetic algorithm (GA) which hybridized
with a bottleneck shi�ing procedure was developed by Gao et
al. [24] to solve theMO-FJSP. Zhang et al. [25] embedded tabu
search (TS) in PSO as a local search to deal with theMO-FJSP.
Xing et al. [26] advanced an ecient search method for the
MO-FJSP. González-Rodŕıguez et al. [27] proposed a generic
multiobjective model which was based on lexicographical
minimization of expected values for FJSP. By introducing sev-
eral metrics of the multiobjective evaluation in the MO-FJSP
literature, Rahmati et al. [28] adopted two multiobjective
evolutionary algorithms for the MO-FJSP.

Recently, some studies based on the Pareto dominance
relation have been used to solve the MO-FJSP and they are
more desirablewhen comparedwith the prior linearweighted
summation ones [29]. �e nondominated sorting genetic
algorithm (NSGA) [30] was one of the 	rst methods used to
solve themultiobjective problem.Kacemet al. [31] brought up
a Pareto approach based on the hybridization of fuzzy logic
(FL) and evolutionary algorithms to solve the MO-FJSP. Ho
and Tay [32] integrated a guiding local search procedure and
an elitism memory mechanism into the evolutionary algori-
thm to solve the MO-FJSP.

Deb et al. [33] came up with a nondominated sorting-
basedmultiobjective evolutionary algorithm (MOEA), called
nondominated sorting genetic algorithm II (NSGA-II).Wang
et al. [34] proposed a multiobjective GA based on immune
and entropy principle for the MO-FJSP. By employing simu-
lated annealing (SA) algorithm as a local search process, Fru-
tos et al. [35] introduced amemetic algorithm (MA) based on
the NSGA-II. Wang et al. [36] presented an e
ective Pareto-
based estimation of distribution algorithm (P-EDA), inwhich
various strategies are integrated to maintain quality and

diversity of solutions. Rohaninejad et al. [37] advanced an
MO-FJSP problem with machines capacity constraints to
minimize the makespan and overtime costs of machines.
Kaplanoğlu [38] put forth an object-oriented (OO) approach
combined with SA optimization algorithm to solve the MO-
FJSP, in which a two-string encoding scheme was used to
express this problem.

Our reviewof the above literatures reveals that theNSGA-
II algorithm has been widely used to solve the MO-FJSP for
its advantages such as high eciency to optimize the complex
problems and the ability to gain widespread Pareto-optimal
solutions. And the algorithms with a two-stage optimization
scheme have been also widely studied to solve the MO-
FJSP for it could fully tap the optimization potentials of
various metaheuristic algorithms. However, we found that
the NSGA-II algorithm has the disadvantage of premature
convergence to local solution and the algorithms with a two-
stage optimization scheme have the disadvantages of being
unable to gain stable and high quality initial population in the
	rst stage.Hence, in this paper, we propose a bee evolutionary
guidingNSGA-II (BEG-NSGA-II)with a two-stage optimiza-
tion scheme to solve the MO-FJSP, which aims to fully play
the respective advantages of NSGA-II algorithm and the
algorithms with a two-stage optimization scheme and to
overcome the disadvantages of them. In the 	rst stage, the
NSGA-II algorithm with � iteration times is 	rst used to
obtain the initial population� which consists of three parts
changing with the iteration times. In order to extensively
exploit the solution space, an e
ective local search operator is
invented in this stage. In the second stage, the NSGA-II algo-
rithm with GEN iteration times is used to obtain the Pareto-
optimal solutions. In order to enhance the searching ability
and avoid the premature convergence, an updating mecha-
nism and some useful genetic operators were employed in
this stage. Four famous benchmarks that include 53 open
problems of FJSP are chosen to estimate the performance of
the proposed algorithm. Moreover, by comparing the results
of our algorithm and some existing well-known algorithms,
the virtues of our algorithm can be clearly demonstrated.

�e rest of this paper is organized as follows. �e de	ni-
tion and formalization of the MO-FJSP are given in the
next section. In Section 3, NSGA-II is brie�y introduced, and
then the overview and implementation details of the pro-
posed BEG-NSGA-II are presented, respectively. A�erwards,
Experimental Studies and Discussions are made in Section 4.
Finally, Conclusions and Future Studies are described in
Section 5.

2. Problem Definition

�e FJSP is commonly de	ned as follows. �ere is a set of �
jobs (��, � ∈ {1, 2, . . . , �}) and a set of � machines (	�, 
 ∈
{1, 2, . . . , �}). One or more operation(s) (���, � ∈ {1, 2, . . . ,
��}, �� is the total number of operations for job ��) is/are
allowed to be processed by one machine of 	��, which
consists of a set of machines of the �th operations for job ��.
��� denotes the processing time of the �th operation for job ��,
which is processed bymachine 
. Generally, the FJSP consists
of two subproblems: the routing subproblem of assigning
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Table 1: �e 4 × 5 problem.

	1 	2 	3 	4 	5

Job 1

�1,1 2 5 4 1 2

�1,2 5 4 5 7 5

�1,3 4 5 5 4 5

Job 2

�2,1 2 5 4 7 8

�2,2 5 6 9 8 5

�2,3 4 5 4 54 5

Job 3

�3,1 9 8 6 7 9

�3,2 6 1 2 5 4

�3,3 2 5 4 2 4

�3,4 4 5 2 1 5

Job 4
�4,1 1 5 2 4 12

�4,2 5 1 2 1 2

each operation to a machine among a set of machines
available and the scheduling subproblem of sequencing the
assigned operations on all machines to obtain a feasible
schedule for optimizing a certain objective function [39, 40].

One classical 4 × 5 FJSP is shown in Table 1. In this paper,
we aim to minimize the following three objectives:

(i) Maximal completion time of machines (makespan).

(ii) Workload of the most loaded machine (MW).

(iii) Total workload of all machines (TW).

Some assumptions are put forward:

(i) Each operation cannot be interrupted during process-
ing.

(ii) Each machine can process at most one operation at
any time.

(iii) One operation cannot be processed by more than one
machine simultaneously.

(iv) Moving time between operations and setting up time
of machines are negligible.

(v) Machines are independent of each other.

(vi) Jobs are independent of each other.

�e notations used in the de	nition of multiobjective
FJSP in this paper are shown in Notations [25].

�e mathematical model could be given as follows [25]:
Objective functions:

min �1 = max
1≤�≤�

(��)

min �2 = max
1≤�≤�

(��)

min �3 =
�
∑
�=1
��

(1)

Subject to: ��� − ��(�−1) ≥ �������, � = 2, . . . , ��; ∀�, � (2)

[(�ℎ� − ��� − �ℎ��) �ℎ������ ≥ 0]

∨ [(��� − �ℎ� − ����) �ℎ������ ≥ 0] , ∀ (�, �) , (ℎ, �) , 

(3)

∑
�∈
��

���� = 1 (4)

���� =
{
{
{

1, if machine 
 is selected for operation ���
0, otherwise.

(5)

Equation (1) indicates the three optimizing objectives.
Inequality (2) ensures the operation precedence constraint.
Inequality (3) ensures that each machine processes only one
operation at each time. Equation (4) states that one machine
can be selected from the set of available machines for each
operation [25]. According to whether machine 
 is selected
to process step ��� or not, equation (5) is used to determine
the value of ����.

3. The Proposed Algorithm

3.1. Brief Introduction of NSGA-II. �e nondominated sort-
ing genetic algorithm II (NSGA-II) is a population-based
multiobjective evolutionary algorithm, which is widely used
in the optimization of multiobjective problems. �e core
procedure of NSGA-II can be brie�y formulated as follows.
First, using � and "� presents the current parent and
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o
spring population, respectively. �e sizes of � and "� are
both �. �en a new population #� = � ∪ "� (of size 2�) is
formed by combining � with "�. Furthermore, an operator
called nondominated sorting is executed, which de	nes #� as
di
erent nondominated levels (rank1, rank2, etc.), to choose
the best � members as the new population named �+1 for
the next generation. In NSGA-II, the crowding distance is
computed by a special operator, and then the solutions with
larger crowding distance values are selected. More details of
the NSGA-II could refer to [33].

3.2. �e BEG-NSGA-II

3.2.1. Framework. In this paper, a bee evolutionary guiding
nondominated sorting genetic algorithm II (BEG-NSGA-II)
with a two-stage optimization scheme is proposed for the
FJSP, inwhich a bee evolutionary guiding scheme is presented
that focus on the exploitation of solution space, and some
mechanisms are used to enhance the searching ability and
avoid the premature convergence. Its framework is shown in
Figure 1. More details of steps are described as follows.

�e First Stage

Step 1. Generate � individuals as the initial population
randomly, and set � = 1.

Step 2. Calculate the 	tness value of individuals based on
objective 1, objective 2, and objective 3; then select the best
	tness individuals as the queen 1, queen 2, and queen 3
correspondingly; if � > 1, compare the 	tness value of the
parent queens and o
spring queens, and select the best ones
as the new queens correspondingly.

Step 3. Use roulette wheel method to select  individuals
according to the 	tness value of objective 1, objective 2, and
objective 3.

Step 4. Randomly generate # individuals, and combine these
individuals with the  individuals generated from Step 3,
respectively.

Step 5. �e new queens selected from Step 2 take crossover
and mutation with other corresponding individuals gener-
ated from Step 4 to produce the o
spring population 1, o
-
spring population 2, and o
spring population 3, respectively.

Step 6. Combine the three o
spring populations into a com-
bining population.

Step 7. Fast nondominated sorting and congestion comput-
ing.

Step 8. Select the top � individuals as the o
spring popula-
tion.

Step 9. Set � = � + 1; if � > �, continue next step; otherwise
return Step 2, and the population is replaced by the selected
� individuals.

�e Second Stage

Step 10. Select % top individuals (from the top� individuals)
as the elite individuals.

Step 11. Use a binary tournament selection method to select
cross individuals from o
spring population (i.e., the selected
� individuals); if &(�, �) > ', use a precedence operation
crossover; otherwise, use job-based crossover.

Step 12. If � <= 0.1 and if o
spring rank = 1, then choose
swapping mutation; else, choose two binding mutation or
reversemutation; else, the population does not takemutation.

Step 13. Randomly generate #� new individuals.

Step 14. Combine the three-part individuals which get from
Steps 10, 12, and 13.

Step 15. Use Step 7 to deal with the combining population to
generate o
spring population.

Step 16. If � > *-�, output the result; otherwise, � = � + 1,
and return Step 10.

�e parameters used in this algorithm are de	ned as
follows:

At the 	rst stage,

/ = �� ,

 = / ∗ �2 ,

# = � (1 − /)2 .

(6)

At the second stage,

/� = �
*-�, (7)

#� =
�(1 − /�)

2 , (8)

7� + % + 0.5� >= � (9)

&(�, �) =

∑
�=1

88888min [max [0, 888889�� − 9��
88888] − 1, 0]

88888
: , (10)

&(�, �) ≤ ', Precedence operation crossover

&(�, �) > ', Job-based crossover.
(11)

In (6)–(9), where � is the number of individuals in
the initial population, � is the current iteration, � is the
iteration times in the 	rst stage, and GEN is the iteration
times in the second stage. Equation (9) ensures that there are
enough numbers of individuals to be selected in the following
o
spring, and we set the value of % as 0.3 × �. Equation (10)
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Figure 1: �e framework of BEG-NSGA-II for MO-FJSP.
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(b) Decoding Gantt chart

Figure 2: An encoding and decoding example of a chromosome of 4 × 5 FJSP.

is a di
erence degree function which is used to compute the
similarity between chromosome � and chromosome � (the
two chromosomes that will be crossed), where : is the length
of a chromosome and 9�� denotes the @th gene in chromosome
�. In (11), ' is a parameter set as 0.7.�e chromosomes tend to
select themultipoint preservative crossover with the decrease
of '.

3.2.2. Chromosome Encoding and Decoding. In this paper, we
use the encoding method presented by Gao et al. [12]. �e
FJSP problem includes two subproblems: one is operation
sequence part and the other is machine assignment part.
Chromosome that corresponds to the solution of the FJSP
also consists of two parts. �e 	rst one is the operation
sequence vector and the second one is the machine assign-
ment vector. Two di
erent encoding methods are used to
generate the two vectors.

In terms of the operation sequence vector, the operation-
based representation method is used, which is composed of
the jobs’ numbers. �is representation uses an array of unin-
terrupted integers from 1 to �, where � is the total number
of jobs, and each integer appears Oni times, where Oni is the
total number of operations of job �; therefore, the length of the
initial operation sequence population is equal to∑��=1 ���. By
scanning the operation sequence from le� to right, the �th
occurrence of a job number expresses the �th operation of
this job. �e operation sequence vector of every initial indi-
vidual of population is generated with the randomly encod-
ing principle. By using these representation features, any
permutation of the operation sequence vector can be decoded
to a feasible solution.

�e machine assignment vector indicates the selected
machines that are assigned to the corresponding operations
for all jobs. It contains � parts, and the length of �th part is
Oni, hence the length of this vector also equals∑��=1 ���. �e
�th part of this vector expresses themachine assignment set of
�th job. Supposing amachine set %�ℎ = {��ℎ1, ��ℎ2, . . . , ��ℎ��ℎ}
can be selected to process the ℎth operation of job �, a gen
set {��1, ��2, . . . , ��ℎ, . . . , �����} denotes the �th part of machine
assignment vector, and ��ℎ is an integer between 1 and ��ℎ,
and this means that the ℎth operation of job � is processed by

the ��ℎth machine ��ℎ��ℎ from %�ℎ. �e machine assignment
vector of every initial individual of population is generated by
selecting the available machine randomly for each operation
of every job. An example is shown in Figure 2(a), and the
operation and machine sequence are shown in it as follows:
(�31,	1), (�11,	4), (�21,	2), (�32,	1), (�12,	3), (�22,
	4), (�41,	2), (�33,	3), (�42,	5), (�13,	5), (�34,	4),
and (�23,	5); then we can get the value of objectives of the
work by referring to Table 1.

When the chromosome representation is decoded, each
operation starts as soon as possible following the precedence
and machine constraints [31]. A schedule generated by using
this decoding method can be ensured to be active schedule
[40]. �e procedure of decoding is implemented as follows.

Step 1. Identify the machine of all operations based on the
machine assignment vector.

Step 2. Identify the set of machines used to process every job.

Step 3. Identify the set of operations for every machine.

Step 4.Determine the allowable starting time of every opera-
tion.B%�� = ��(�−1), whereB%�� denotes the allowable starting
time of operation ���, and ��(�−1) is the completion time of
operation ��(�−1) for the same job.

Step 5. Calculate the idle time of the machine of operation
���, and get the idle areas [t start, t end], where t start is the
start time of these idle areas and t end is the end time of
these idle areas. Scanning these areas from le� to right, if
max (B%��, � start) + ���� ≤ � end, the earliest starting time
is %�� = � start; else %�� = max(B%��, ��(�−1)).

Step 6. Calculate the completion time of every operation.
��� = %�� + ����.

Step 7.Generate the sets of starting time and completion time
for every operation of every job.

By using the above procedure, a feasible schedule for the
FJSP is obtained. Figure 2 shows the examples of encoding
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and decodingmethods, and the processing time andmachine
date of jobs can be seen from Table 1. �is example contains
4 jobs and 5machines. Job 1 and job 2 both have 3 operations;
job 3 and job 4 contains 4 and 2 operations, respectively.
Figure 2(a) shows a chromosome which contains two parts:
the operation sequence vector and the machine assignment
vector. �e operation sequence vector is an unpartitioned
permutation with repetitions of job numbers. It contains
three 1s, three 2s, four 3s, and two 4s, because there are 4 jobs:
job 1 contains 3 operations, job 2 contains 3 operations, job
3 contains 4 operations, and job 4 contains 2 operations. Its
length is 12.�emachine assignment vector consists of 4 parts
because of 4 jobs. Its length is also 12. Each part presents the
machines selected for the corresponding operations of job.
For example, the 	rst part contains 3 numbers which are 4, 3,
and 5. Number 4 means that machine 4 is selected for opera-
tion 1 of job 1, number 3meansmachine 3 is selected for oper-
ation 2 of job 1, and number 5meansmachine 5 is selected for
operation 3 of job 1. A Gantt chart of a schedule based on the
chromosome in Figure 2(a) is shown in Figure 2(b).

3.2.3. Crossover Operators. In this paper, the proposed algo-
rithm contains two optimization stages. In order to expand
the searching space and avoid premature of local optimal
solutions, we use di
erent crossover operators in these two
stages.

At the 	rst stage, a single-point crossover (SPX) or multi-
point crossover (MPX) operator is selected randomly (50%)
for the operation sequence vector, and a two-point crossover
(TPX) operator is selected for themachine assignment vector.

�e procedure of SPX is described as follows (1 and 2
are used to denote two parents;�1 and�2 are used to denote
two o
spring).

Step 1. A random parameter 
 that meets the inequality 0 <

 <  (the length of operation sequence vector) is generated
to determine the position of the crossover.

Step 2. �e elements from 1 to 
 in 1 are duplicated to �1
in the same positions; and the elements from 1 to 
 in 2 are
duplicated to �2 in the same positions.

Step 3. Calculate the total number of each element (in this
example, the total number of 1, 2, 3, and 4 is three, three, four,
and two, resp.).

Step 4. �e elements in 2 are appended to the remaining
empty positions in�1 from le� to right until the total number
of each element in �1 equals each one in 1. �e elements
in 1 are appended to the remaining empty positions in �2
from le� to right until the total number of each element in�2
equals each one in 2.

�e procedure of MPX is described as follows (1 and 2
are used to denote two parents;�1 and�2 are used to denote
two o
spring).

Step 1. Two random parameters 
1 and 
2 that meet the
inequality 0 < 
1 < 
2 <  as well as 
1 ̸= 
2 are generated to
determine the positions of crossover.

3 1 2 4 1 2 4 3 3 1 3 2

3 1 2 4 1 3 2 1 2 4 3 3

1 3 2 1 2 2 4 3 4 1 3 3

1 3 2 1 3 1 2 4 2 4 3 3

3 1 2 4 1 2 4 3 3 1 3 2

O1

O2

P1

P1

P2

Figure 3: SPX crossover.

3 1 2 4 1 2 4 3 3 1 3 2

1 2 4 1 3 2 1 2 4 3 3 3

1 3 2 1 2 2 4 3 4 1 3 3

3 2 1 3 1 2 4 1 2 4 3 3

3 1 2 4 1 2 4 3 3 1 3 2

O1

O2

P1

P1

P2

Figure 4: MPX crossover.

Step 2.�e elements from 
1 to 
2 in 1 are appended to the
le�most positions of�1; and the elements from 
1 to 
2 in 2
are appended to the le�most positions of �2.

Step 3. Calculate the total number of each element (in this
example, the total number of 1, 2, 3, and 4 is three, three, four,
and two, resp.).

Step 4. �e elements in 2 are appended to the remaining
empty positions in�1 from le� to right until the total number
of each element in �1 equals each one in 1. �e elements
in 1 are appended to the remaining empty positions in �2
from le� to right until the total number of each element in�2
equals each one in 2.

�e examples of SPX andMPX are, respectively, shown in
Figures 3 and 4.

For themachine assignment vector, a two-point crossover
(TPX) has been adopted here as the crossover operator. �e
procedure of it is described as follows (1 and 2 are used
to denote two parents; �1 and �2 are used to denote two
o
spring).

Step 1. Two random parameters 
1 and 
2 that meet the
inequality 0 < 
1 < 
2 <  as well as 
1 ̸= 
2 are generated to
determine the positions of crossover.

Step 2. Append the elements between 
1 and 
2 positions in
2 to the same positions in�1, append the elements before 
1
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4 3 5 2 4 5 1 1 3 4 2 5

4 3 5 1 2 5 1 1 3 4 2 5

3 4 5 1 2 4 3 2 5 1 2 3

3 4 5 2 4 4 3 2 5 1 2 3

4 3 5 2 4 5 1 1 3 4 2 5

O1

O2

P1

P1

P2

J3 J4J2J1

Figure 5: TPX crossover.

and a�er 
2 positions in 1 to the same positions in �1, and
use the same process to generate �2.

Based on the above procedure, we can obtain feasible
o
spring if the parents are feasible. An example of TPX
crossover is shown in Figure 5.

At the second stage, a precedence operation crossover
(POX) or job-based crossover (JBX), which is determined by
equation (11), is selected for operation sequence vector and
the TPX is also selected for machine assignment vector.

�e main procedure of POX is described as follows (1
and 2 are used to denote two parents; �1 and �2 are used to
denote two o
spring).

Step 1. �e Job set is randomly divided into two subsets:
Jobset1 and Jobset2.

Step 2.�e element(s) which belong(s) to Jobset1 in1 is (are)
appended to the same position(s) in �1 and deleted in 1;
and the element(s) which belong(s) to Jobset2 in 2 is (are)
appended to the same positions in �2 and deleted in 2.

Step 3.Append the elements remaining in1 to the remaining
empty positions in �2 from le� to right; and append the
elements remaining in 2 to the remaining empty positions
in �1 from le� to right.

�e main procedure of JBX is described as follows (1
and 2 are used to denote two parents; �1 and �2 are used
to denote two o
spring).

Step 1. �e Job set is randomly divided into two subsets:
Jobset1 and Jobset2.

Step 2.�e element(s) which belong(s) to Jobset1 in1 is (are)
appended to the same position(s) in �1; and the element(s)
which belong(s) to Jobset2 in 2 is (are) appended to the same
positions in �2.

Step 3.�eelement(s) which belong(s) to Jobset2 in2 is (are)
appended to the remained empty positions in �1 from le� to
right; and the element(s) which belong(s) to Jobset1 in 1 is
(are) appended to the remained empty positions in �2 from
le� to right.

3 1 2 4 1 2 4 3 3 1 3 2

3 1 2 2 1 2 4 3 3 1 3 4

1 3 2 1 2 2 4 3 4 1 3 3

1 3 2 1 4 2 4 3 2 1 3 3

3 1 2 4 1 2 4 3 3 1 3 2

Jobset1 = {1, 3}; Jobset2 = {2, 4}

O1

O2

P1

P1

P2

Figure 6: POX crossover.

3 1 2 4 1 2 4 3 3 1 3 2

3 1 2 2 1 2 4 3 3 1 3 4

1 3 2 1 2 2 4 3 4 1 3 3

3 1 2 1 2 2 4 3 4 3 1 3

3 1 2 4 1 2 4 3 3 1 3 2

Jobset1 = {1, 3}; Jobset2 = {2, 4}

O1

O2

P1

P1

P2

Figure 7: JBX crossover.

�e examples of POX and JBX are, respectively, shown in
Figures 6 and 7.

3.2.4. Mutation Operators. In this paper, we have adopted
di
erent mutation operators at two stages for purpose of
expanding the solution space as well as maintaining the good
solutions.

At the 	rst stage, a swapping mutation or reverse muta-
tion operator is selected randomly (50%) with probability D�
(set as 0.1 in our algorithm) for operation sequence vector.
And a multipoint mutation (MPM) operator is selected for
machine assignment vector.

�e main procedure of swapping mutation operator is
described as follows (1 and �1 are used to denote a parent
and o
spring, resp.).

Step 1. Randomly select two positions in 1.

Step 2. Swap the elements in the selected positions to generate
�1.

�e main procedure of reverse mutation operator is
described as follows (1 and �1 are used to denote a parent
and o
spring, resp.).

Step 1. Randomly select two positions in 1.

Step 2. Reverse the numbers between the selected two posi-
tions to generate �1.
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3 1 2 4 1 2 4 3 3 1 3 2

3 1 2 4 3 2 4 1 3 1 3 2O1

P1

Figure 8: Swapping mutation operator.

3 1 2 4 1 2 4 3 3 1 3 2

3 1 2 1 4 2 4 3 3 1 3 2O1

P1

Figure 9: Reverse mutation operator.

�e main procedure of MPM operator is described as
follows (1 and �1 are used to denote a parent and o
spring,
resp.).

Step 1. Randomly select 
 positions in 1 (
 equals the half of
the length of the machine assignment vector).

Step 2.Change the value of these selected positions according
to their optional machine sets selected for process the
corresponding operations.

At the second stage, if the individual is at the forefront of
Pareto, it will select the swappingmutation; otherwise choose
the two binding mutation (TBM) or reverse mutation for
operation sequence vector.�eMPMoperator is also selected
for the machine assignment vector.

�e main procedure of TBM is described as follows (1
and �1 are used to denote a parent and o
spring, resp.).

Step 1. A random parameter � (� < the length of the
operation sequence vector subtract 3) is generated in 1.

Step 2. Exchange the elements � with � + 3 and � + 1 with
� + 2 in 1 to generate �1.

�e examples of swapping mutation operator, reverse
mutation operator, TBM operator, and MPM operator are,
respectively, shown in Figures 8, 9, 10, and 11.

4. Experimental Studies and Discussions

�e proposed BEG-NSGA-II algorithm was coded in MAT-
LAB R2014a and implemented on a computer con	gured
with Intel Core i3 CPU with 2.67GHz frequency and 4GB
RAM. Four famous benchmarks that include 53 open prob-
lems of FJSP are chosen to estimate the proposed algorithm,
which were also used by many researchers to evaluate their
approaches. In order to illustrate the performance of the
proposed algorithm, we compare our algorithm with other
state-of-the-art reported ones. �e computational time used
to solve these benchmarks is also compared to show the good
eciency of the proposed method. Because the computation
time and implementing performance are not only a
ected
by the algorithm itself but also a
ected by the computer
hardware, implementing so�ware, and coding skills, we also

3 1 2 4 1 2 4 3 3 1 3 2

3 1 2 3 3 2 4 4 1 1 3 2O1

P1

Figure 10: TBMmutation operator.

4 3 5 2 4 5 1 1 3 4 2 5

2 3 3 2 5 5 1 3 3 4 1 4

J3 J4J2J1

O1

P1

Figure 11: MPM operator for machine assignment vector.

Table 2: Parameters of the BEG-NSGA-II.

Parameters Value

Population size 100

Maximal total generation 300

Iteration times of 	rst stage 100

Iteration times of second stage 200

Crossover probability 1

Mutation probability 0.1

append the information of hardware and so�ware, as well
as the original computational time with the corresponding
algorithms. All experimental simulations were run 20 times,
respectively, for each problem of these benchmarks. �e
adopted parameters of the BEG-NSGA-II are listed in Table 2.

4.1. Experiment 1. �e data of Experiment 1 are taken from
Kacem et al. [31]. It contains 4 representative instances
(problem 4 × 5, problem 8 × 8, problem 10 × 10, and problem
15×10).�e experimental results and comparisonswith other
well-known algorithms are shown in Table 3 (� × � means
that the problem includes � jobs and�machines; �1, �2, and
�3 mean the optimization objectives of makespan, MW, and
TW, resp. � means the average computer-independent CPU
times in minute spent on each problem of these benchmarks;
the symbol “—” means the time has not been given in the
paper). BEG-NSGA-II denotes the proposed algorithm. �e
results ofALwhich are taken fromKacemet al. [31], PSO+SA
which are taken from Xia andWu [41], hGA which are taken
from Gao et al. [24], MOGA which are taken from Wang
et al. [34], hPSO which are taken from Shao et al. [42], and
OO approaches which are taken from Kaplanoğlu [38] are
used to make comparison with the proposed algorithm. �e
bolded results are the new Pareto-optimal solutions found in
our algorithms.

For the problem 4 × 5, the proposed BEG-NSGA-II algo-
rithm obtains not only all best solutions in these compared
algorithms, but also another new Pareto-optimal solution
(�1 = 13, �2 = 7, and �3 = 33). �e Gantt chart of this new
Pareto solution is shown in Figure 12. For the problems 8 × 8,
10×10, and 15×10, the proposed algorithm getsmore Pareto-
optimal solutions than other listed algorithms but hPSO, and
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Figure 12: A new Pareto solution of problem 4 × 5 in Experiment 1.
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Figure 13: Gantt chart of a solution of problem 18a in Experiment 2.

although it obtains the same results with hPSO, it seems to
consume less computation time than the hPSO does.

4.2. Experiment 2. �e data of Experiment 2 are taken from
Dauzère-Pérès and Paulli [10]. It contains 18 problems. �e
experimental results and comparisonswith otherwell-known
algorithms are shown in Table 4 (� × � means that the
problem includes � jobs and � machines, �1, �2, and �3
mean the optimization objectives of makespan, MW, and
TW, resp. � means the average computer-independent CPU
times inminute spent on each problemof these benchmarks).
BEG-NSGA-II denotes the proposed algorithm. �e results
of MOGA are adopted from Wang et al. [34]. �e bolded
results are the new Pareto-optimal solutions found in our
algorithms. From Table 4, except the problem 01a, we can
see that our algorithm can obtain some new Pareto-optimal
solutions which are better for objectives �2 or �3, or both of

them, but a little worse for the objective �1. For the problem
01a, our algorithm gets the same solutions as MOGA. For
all problems, our algorithm consumes less computational
time than MOGA. Figure 13 illustrates the Gantt chart of the
problem 18a (�1 = 2,634, �2 = 2,156, and �3 = 21,005).

4.3. Experiment 3. �e data of Experiment 3 are taken from
Brandimarte [9]. It contains 10 problems. �e experimental
results and comparisons with other well-known algorithms
are shown in Table 5 (� ×�means that the problem includes
� jobs and�machines, �1, �2, and �3 mean the optimization
objectives ofmakespan,MW, andTW, resp.�means the aver-
age computer-independent CPU times in minute spent on
each problem of these benchmarks). BEG-NSGA-II denotes
the proposed algorithm. �e results of SM and MOGA are
adopted from [26, 34].�e bolded results are the new Pareto-
optimal solutions found in our algorithms. From Table 5,
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Table 4: Results on Experiment 2.

Problem (� × �) MOGAa BEG-NSGA-IIb

�1 �2 �3 � �1 �2 �3 �

01a (10 × 5)
2,568 2,505 11,137 2.04 2,568 2,505 11,137 1.91

2,572 2,568 11,137 2,572 2,568 11,137

2,594 2,554 11,137 2,594 2,554 11,137

02a (10 × 5)
2,289 2,263 11,137 2.56 2,487 2,237 11,137 2.13

2,313 2,238 11,137 3,014 2,234 11,137

2,564 2,236 11,137

03a (10 × 5) 2,287 2,248 11,137 2.90 2,492 2,247 11,137 2.5

2,256 2,252 11,137 2,516 2,234 11,137

04a (10 × 5)

2,550 2,503 11,090 2.07 2,882 2,572 11,069 2.03

2,569 2,565 11,076 2,912 2,552 11,070

2,579 2,552 11,080 2,904 2,626 11,067

3,095 2,727 11,064 3,019 2,665 11,066

2,997 2,523 11,073

2,933 2,688 11,065

2,953 2,668 11,066

2,938 2,606 11,068

2,955 2,503 11,074

05a (10 × 5)

2,292 2,252 11,077 2.37 2,740 2,250 10,981 2.12

2,293 2,242 11,091 2,846 2,212 10,986

2,297 2,255 11,054 2,747 2,229 10,988

2,315 2,272 11,063 2,700 2,255 10,977

2,343 2,298 11,050 2,915 2,231 10,981

2,358 2,322 11,038 2,818 2,208 10,990

2,376 2,243 11,022 2,787 2,350 10,970

2,904 2,620 10,941 2,759 2,320 10,971

2,945 2,571 10,941 2,667 2,237 10,983

3,056 2,507 10,941 2,686 2,277 10,974

2,641 2,332 10,974

2,687 2,221 11,000

2,779 2,237 10,981

2,707 2,299 10,972

2,702 2,233 10,989

06a (10 × 5)

2,250 2,233 11,009 3.09 2,673 2,194 10,893 2.86

2,254 2,223 10,994 2,716 2,194 10,891

2,398 2,219 10,973 2,683 2,245 10,890

2,437 2,280 10,988 2,666 2,248 10,893

2,744 2,448 10,850 2,679 2,229 10,892

2,902 2,439 10,847 2,816 2,186 10,903

2,967 2,840 10,839 2,898 2,186 10,899

2,713 2,234 10,889

2,758 2,209 10,890

2,722 2,229 10,890

07a (15 × 8)

2,450 2,413 16,485 7.63 2,927 2,187 16,485 6.21

2,457 2,299 16,485 2,910 2,213 16,485

2,484 2,289 16,485 2,889 2,264 16,485

2,891 2,219 16,485

2,922 2,190 16,485

08a (15 × 8)
2,187 2,102 16,485 8.27 2,621 2,091 16,485 6.35

2,171 2,104 16,485 2,770 2,089 16,485

2,780 2,080 16,485
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Table 4: Continued.

Problem (� × �) MOGAa BEG-NSGA-IIb

�1 �2 �3 � �1 �2 �3 �

09a (15 × 8)
2,157 2,113 16,485 10.16 2,442 2,103 16,485 7.26

2,144 2,119 16,485 2,470 2,074 16,485

2,158 2,102 16,485 2,455 2,081 16,485

10a (15 × 8)

2,461 2,433 16,505 7.55 2,998 2,317 16,487 6.43

2,470 2,310 16,537 3,036 2,363 16,482

2,478 2,330 16,533 3,091 2,491 16,473

2,482 2,360 16,499 2,984 2,319 16,486

2,501 2,265 16,547 3,052 2,377 16,477

2,501 2,312 16,528 3,098 2,491 16,472

2,547 2,476 16,490 3,013 2,293 16,487

3,064 2,734 16,464 3,136 2,457 16,471

3,025 2,377 16,480

3,041 2,351 16,481

2,980 2,258 16,494

3,021 2,319 16,484

11a (15 × 8)

2,182 2,170 16,449 10.14 2,551 2,116 16,229 7.25

2,202 2,114 16,476 2,599 2,131 16,224

2,210 2,113 16,442 2,612 2,146 16,222

2,337 2,185 16,377 2,573 2,058 16,231

2,874 2,389 16,247 2,753 2,186 16,217

2,894 2,330 16,247 2,628 2,102 16,224

2,962 2,312 16,247 2,702 2,098 16,223

2,658 2,089 16,224

2,555 2,111 16,229

2,664 2,063 16,228

12a (15 × 8)

2,161 2,107 16,295 11.92 2,624 2,049 16,055 8.22

2,168 2,130 16,220 2,620 2,022 16,068

2,191 2,084 16,355 2,587 2,035 16,065

2,210 2,103 16,331 2,614 2,057 16,051

2,315 2,125 16,292 2,585 2,043 16,061

2,366 2,105 16,237 2,659 2,038 16,055

2,493 2,297 16,124 2,617 2,024 16,065

2,631 2,309 16,112 2,575 2,057 16,057

2,637 2,303 16,113 2,587 2,050 16,059

2,683 2,397 16,104 2,582 2,098 16,052

13a (20 × 10)

2,595 2,036 16,059

2,566 2,044 16,061

2,408 2,326 21,610 23.99 2,894 2,277 21,610 10.27

2,928 2,233 21,610

2,896 2,244 21,610

2,877 2,282 21,610

14a (20 × 10)
2,340 2,251 21,610 29.05 2,649 2,186 21,610 12.39

2,334 2,258 21,610 2,664 2,183 21,610

2,641 2,207 21,610

2,738 2,182 21,610

15a (20 × 10)

2,285 2,247 21,610 33.29 2,627 2,216 21,610 13.60

2,287 2,218 21,610 2,681 2,196 21,610

2,645 2,215 21,610

2,652 2,201 21,610

2,668 2,197 21,610

2,682 2,178 21,610
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Table 4: Continued.

Problem (� × �) MOGAa BEG-NSGA-IIb

�1 �2 �3 � �1 �2 �3 �

16a (20 × 10)

2,447 2,354 21,602 21.52 2,965 2,279 21,534 11.48

2,450 2,380 21,590 3,158 2,303 21,504

2,487 2,454 21,584 3,184 2,400 21,490

2,492 2,417 21,576 3,039 2,279 21,523

2,540 2,396 21,547 3,050 2,318 21,507

2,550 2,492 21,545 3,071 2,286 21,513

2,568 2,428 21,540 3,275 2,281 21,511

3,013 2,588 21,478 3,105 2,352 21,496

3,106 2,548 21,478 3,175 2,344 21,497

3,180 2,293 21,507

3,130 2,312 21,503

3,034 2,352 21,503

17a (20 × 10)

2,322 2,240 21,433 28.47 2,806 2,195 21,096 13.92

2,322 2,280 21,362 2,750 2,165 21,120

2,323 2,238 21,454 2,791 2,141 21,114

2,343 2,224 21,420 2,716 2,157 21,129

2,480 2,285 21,344 2,849 2,148 21,107

2,528 2,231 21,313 2,769 2,166 21,111

2,789 2,448 21,198 2,856 2,183 21,098

2,808 2,303 21,200 2,773 2,145 21,111

2,816 2,370 21,197 2,856 2,142 21,105

2,803 2,203 21,094

2,759 2,186 21,106

2,789 2,176 21,101

2,772 2,202 21,101

18a (20 × 10)

2,267 2,235 21,483 33.01 2,634 2,156 21,005 16.23

2,269 2,206 21,408 2,642 2,126 21,006

2,320 2,208 21,354 2,638 2,185 20,999

2,437 2,221 21,311 2,638 2,148 21,002

2,531 2,310 21,285 2,674 2,148 21,000

2,545 2,305 21,282 2,644 2,145 21,002

2,651 2,140 21,005

2,641 2,157 21,000

2,664 2,145 21,001

2,621 2,181 21,002

2,659 2,140 21,003

2,661 2,137 21,004

2,651 2,181 20,999

2,669 2,126 21,005

2,708 2,125 21,009

a�e CPU time on a PC with 2GHz CPU and 2GB of RAMmemory in C++.
b�e CPU time on an Intel Core i3, 2.67GHz processor with 4GB RAM in MATLAB R2014a.

we can see that our algorithm can obtain some new Pareto-
optimal solutions in problems MK01, MK04, MK05, MK08,
and MK10 compared with SM and MOGA and the same
solutions in MK2, MK3, MK6, MK7, and MK9 as MOGA.
For all problems, our algorithm consumes less computational
time than MOGA. Figure 14 illustrates the Gantt chart of the
problem MK08 (�1 = 541, �2 = 533, and �3 = 2,516).

4.4. Experiment 4. �e data of Experiment 4 are taken from
Barnes and Chambers [43]. It contains 21 problems. �e
experimental results and comparisonswith otherwell-known
algorithms are shown in Table 6 (� × � means that the
problem includes � jobs and � machines, �1, �2, and �3
mean the optimization objectives of makespan, MW, and
TW, resp. � means the average computer-independent CPU
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Table 5: Results on Experiment 3.

Problem (� × �) SMa MOGAb BEG-NSGA-IIb

�1 �2 �3 � �1 �2 �3 � �1 �2 �3 �

MK01 (10 × 6)

42 42 162 4.78 42 39 158 0.49 42 39 158 0.36

44 40 154 44 40 154

43 40 155 43 40 155

40 36 169 40 36 169

47 36 167

47 37 165

49 37 164

50 38 162

MK02 (10 × 6)

28 28 155 3.02 26 26 151 0.75 26 26 151 0.70

27 27 146 27 27 146

29 27 145 29 27 145

29 29 143 29 29 143

31 31 141 31 31 141

33 33 140 33 33 140

MK03 (15 × 8)

204 204 852 26.14 204 199 855 4.75 204 199 855 3.66

204 144 871 204 144 871

204 135 882 204 135 882

204 133 884 204 133 884

213 199 850 213 199 850

214 210 849 214 210 849

221 199 847 221 199 847

222 199 848 222 199 848

231 188 848 231 188 848

230 177 848 230 177 848

MK04 (15 × 8)

68 67 352 17.74 66 63 345 1.76 66 63 345 1.63

65 63 362 65 63 362

63 61 371 63 61 371

62 61 373 60 59 390

61 60 382 74 54 349

60 59 390 74 55 348

73 55 350 72 72 342

74 54 349 78 78 339

74 55 348 72 66 348

90 76 331 73 72 343

MK05 (15 × 4)

177 177 702 8.26 173 173 683 2.34 173 173 683 1.96

175 175 682 175 175 682

183 183 677 183 183 677

185 185 676 179 179 679

179 179 679 199 199 674

193 193 675

183 183 677

MK06 (10 × 15)

67 431 18.79 62 55 424 1.93 62 55 424 1.85

65 54 417 65 54 417

60 58 441 60 58 441

62 60 440 62 60 440

76 60 362 76 60 362

76 74 356 76 74 356

78 60 361 78 60 361

73 72 360 73 72 360

72 72 361 72 72 361

100 90 330 100 90 330
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Table 5: Continued.

Problem (� × �) SMa MOGAb BEG-NSGA-IIb

�1 �2 �3 � �1 �2 �3 � �1 �2 �3 �

MK07 (20 × 5)

150 150 717 5.68 139 139 693 4.92 139 139 693 3.12

140 138 686 140 138 686

144 144 673 144 144 673

151 151 667 151 151 667

157 157 662 157 157 662

162 162 659 162 162 659

166 166 657 166 166 657

MK08 (20 × 10)

523 523 2,524 67.67 523 515 2,524 12.04 523 515 2,524 8.34

523 497 2,534 523 497 2,534

524 524 2,519 524 524 2,519

578 578 2,489 578 578 2,489

587 587 2,484 587 587 2,484

541 533 2,516

542 542 2,511

560 560 2,505

MK09 (20 × 10)

311 299 2,374 77.76 311 299 2,290 19.48 311 299 2,290 10.15

310 299 3514 310 299 3514

311 301 2,287 311 301 2,287

314 299 2,315 314 299 2,315

315 299 2,283 315 299 2,283

332 302 2,265 332 302 2,265

329 301 2,266 329 301 2,266

328 308 2,259 328 308 2,259

325 299 2,275 325 299 2,275

MK10 (20 × 15)

227 221 1,989 122.52 224 219 1,980 17.87 224 219 1,980 12.38

225 211 1,976 235 225 1,895

233 214 1,919 240 215 1,905

235 218 1,897 246 215 1,896

235 225 1,895 252 224 1,884

240 215 1,905 256 211 1,919

240 216 1,888 260 244 1,869

242 214 1,913 266 254 1,864

246 215 1,896 246 206 1,938

252 224 1,884 246 204 1,948

256 211 1,919 246 205 1,940

260 244 1,869 251 202 1,948

266 254 1,864 253 207 1,930

268 264 1,858 249 203 1,947

276 256 1,857 255 202 1,943

281 268 1,854 260 210 1,926

217 207 2,064 250 205 1,935

214 204 2,082 254 203 1,942

244 207 1,935

a�e CPU time on a Pentium IV 2.4GHz processor with 1.0 GB of RAMmemory in MATLAB.
b�e CPU time on a PC with 2GHz CPU and 2GB of RAMmemory in C++.
c�e CPU time on an Intel Core i3, 2.67GHz processor with 4GB RAM in MATLAB R2014a.
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Table 6: Results on Experiment 4.

Problem (� × �) HGTSa HAb BEG-NSGA-IIc

�1 � �1 � �1 �2 �3 �
mt10c1 (10 × 11) 927 0.22 927 0.20 1,092 631 5,109 0.18

mt10cc (10 × 12) 908 0.22 908 0.16 1,005 631 5,109 0.20

mt10x (10 × 11) 918 0.25 918 0.18 1,117 556 5,109 0.18

mt10xx (10 × 12) 918 0.20 918 0.18 1,117 556 5,109 0.18

mt10xxx (10 × 13) 918 0.20 918 0.18 1,100 556 5,109 0.19

mt10xy (10 × 12) 905 0.22 905 0.19 1,061 548 5,109 0.21

mt10xyz (10 × 13) 847 0.30 847 0.16 925 534 5,109 0.23

setb4c9 (15 × 11) 914 0.27 914 0.26 1,035 857 7,727 0.25

setb4cc (15 × 12) 907 0.25 907 0.25 1,023 857 7,727 0.24

setb4x (15 × 11) 925 0.25 925 0.21 1,030 846 7,727 0.20

setb4xx (15 × 12) 925 0.23 925 0.09 1,030 846 7,727 0.10

setb4xxx (15 × 13) 925 0.25 925 0.15 1,033 846 7,727 0.16

setb4xy (15 × 12) 910 0.32 910 0.20 1,020 845 7,727 0.22

setb4xyz (15 × 13) 905 0.25 905 0.24 1,011 838 7,727 0.23

seti5c12 (15 × 16) 1,170 0.68 1,170 0.52 1,319 1,027 11,472 0.48

seti5cc (15 × 17) 1,136 0.57 1,136 0.28 1,301 888 11,472 0.29

seti5x (15 × 16) 1,199 0.63 1,198 0.46 1,368 938 11,472 0.52

seti5xx (15 × 17) 1,197 0.57 1,197 0.48 1,346 938 11,472 0.55

seti5xxx (15 × 18) 1,197 0.52 1,197 0.32 1,346 938 11,472 0.37

seti5xy (15 × 17) 1,136 0.57 1,136 0.29 1,301 888 11,472 0.27

seti5xyz (15 × 18) 1,125 0.72 1,125 0.55 1,270 835 11,472 0.61
a�e CPU time on a Xeon E5520 processor with 24GB of RAMmemory in C++.
b�e CPU time on an Intel 2.0 GHz Core (TM) 2 Duo processor with 8.0GB of RAMmemory in C++.
c�e CPU time on an Intel Core i3, 2.67GHz processor with 4GB RAM in MATLAB R2014a.
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Figure 14: Gantt chart of a solution of problem MK08 in Experiment 3.



18 Computational Intelligence and Neuroscience

1270

60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 12600

M1

M2

M3

M4

M5

M10

M11

M12

M13

M14

M15

M16

M17

M18

M6

M7

M8

M9

Figure 15: Gantt chart of problem seti5xyz in Experiment 4.

times inminute spent on each problemof these benchmarks).
BEG-NSGA-II denotes the proposed algorithm. �e results
of HGTS and HA are adopted from [44, 45], and there are no
other multiobjective optimization algorithms to compare for
these problems in the up to date literatures.�e bolded results
are the new multiobjective optimization solution found in
our algorithms. From Table 6, we can see that our algorithm
can solve these problems with little worse objective �1 but
simultaneously get the other two objectives �2 and �3 with
less computation time. Figure 15 illustrates the Gantt chart of
the problem seti5xyz (�1 = 1270, �2 = 835, and �3 = 11,472).

4.5. Discussions. From the simulation results of test examples
1–3, we can see that our proposed BEG-NSGA-II could obtain
the same or more di
erent Pareto-optimal solutions for the
most benchmarks of MFJSP with less computation time.
�at means more schemes can be chosen by the production
managers when they make scheduling decisions with high
eciency. From the simulation results of test example 4,
we can see that our proposed algorithm of BEG-NSGA-II
works better in multiobjective optimization as well as single-
objective optimization.

5. Conclusions and Future Studies

In this paper, in order to fully play the respective advantages
of nondominated sorting genetic algorithm II (NSGA-II)
algorithm and the algorithms with a two-stage optimization
scheme and to overcome the disadvantages of them, we
developed a bee evolutionary guiding nondominated sorting
genetic algorithm II (BEG-NSGA-II) for solving the multi-
objective �exible job-shop scheduling problem with the opti-
mization objectives of minimizing the maximal completion
time, the workload of the most loaded machine, and the
total workload of all machines. A two-stage optimization
mechanism is constructed in the optimization process. In the
	rst stage, the NSGA-II algorithm with � iteration times is
	rst used to obtain the initial population � which consists

of three parts changing with the iteration times. In this stage,
an e
ective local search operator is invented to extensively
exploit the solution space. In the second stage, the NSGA-
II algorithm with GEN iteration times is used to obtain the
Pareto-optimal solutions, in which an updating mechanism
and some useful genetic operators were employed to enhance
the searching ability and avoid the premature convergence.
From the simulation results, we can get the conclusions that
our proposed algorithm BEG-NSGA-II could obtain more
di
erent Pareto-optimal solutions for most benchmarks of
MO-FJSPwith less computation time.Hence, it could provide
more schemes for the production managers to choose when
they make scheduling decisions. �is proposed computa-
tional intelligence method (BEG-NSGA-II) could be widely
used in �exible job-shop scheduling problems, especially the
multiobjective optimization problems in scheduling 	led.

In the future, we will concentrate on the dynamic and
real-time scheduling problems which possibly include newly
inserted jobs during the production process. Meanwhile, the
redistribution of job operations and machine breakdowns
may also be taken into consideration.

Notations

�: Total number of jobs
�: Total number of machines
��: Total number of operations of job �
���: �e �th operation of job �
	��: �e set of available machines for the operation

���: Processing time of ��� on machine 

����: Starting time of operation ��� on machine 

���: Completion time of the operation ���
�, ℎ: Index of jobs, �, ℎ = 1, 2, . . . , �

: Index of machines, 
 = 1, 2 . . . , �
�, �: Index of operation sequence, �, � = 1, 2 . . . , ��
��: �e completion time of	�
��: �e workload of	�.
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[38] V. Kaplanoğlu, “An object-oriented approach for multi-
objective �exible job-shop scheduling problem,” Expert Systems
with Applications, vol. 45, pp. 71–84, 2016.

[39] I. Kacem, S. Hammadi, and P. Borne, “Approach by localization
and multiobjective evolutionary optimization for �exible job-
shop scheduling problems,” IEEE Transactions on Systems, Man
& Cybernetics Part C: Applications & Reviews, vol. 32, no. 1, pp.
1–13, 2002.

[40] R. Cheng, M. Gen, and Y. Tsujimura, “A tutorial survey of
job-shop scheduling problems using genetic algorithms—I.
Representation,” Computers & Industrial Engineering, vol. 30,
no. 4, pp. 983–997, 1996.

[41] W. Xia and Z. Wu, “An e
ective hybrid optimization approach
for multi-objective �exible job-shop scheduling problems,”
Computers & Industrial Engineering, vol. 48, no. 2, pp. 409–425,
2005.

[42] X. Shao, W. Liu, Q. Liu, and C. Zhang, “Hybrid discrete particle
swarm optimization formulti-objective �exible job-shop sched-
uling problem,” International Journal of Advanced Manufactur-
ing Technology, vol. 67, no. 9–12, pp. 2885–2901, 2013.

[43] J. W. Barnes and J. B. Chambers, “Flexible job shop scheduling
by tabu search, Graduate program in operations research and
industrial engineering,” Tech. Rep., University of Texas, Austin,
Tex, USA, 1996.
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