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Since the introduction of covariance-based structural equation modeling (SEM) by

Jöreskog in 1973, this technique has been received with considerable interest among

empirical researchers. However, the predominance of LISREL, certainly the most

well-known tool to perform this kind of analysis, has led to the fact that not all re-

searchers are aware of alternative techniques for SEM, such as partial least squares

(PLS) analysis. Therefore, the objective of this article is to provide an easily compre-

hensible introduction to this technique, which is particularly suited to situations in

which constructs are measured by a very large number of indicators and where maxi-

mum likelihood covariance-based SEM tools reach their limit. Because this article is

intended as a general introduction, it avoids mathematical details as far as possible

and instead focuses on a presentation of PLS, which can be understood without an

in-depth knowledge of SEM.

partial least squares, structural equation modeling, PLS, LISREL, SEM

First-generation techniques, such as regression-based approaches (e.g., multiple re-

gression analysis, discriminant analysis, logistic regression, analysis of variance)

and factor or cluster analysis, belong to the core set of statistical instruments which

can be used to either identify or confirm theoretical hypothesis based on the analysis

of empirical data. Many researchers in various disciplines have applied one of these
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methods togenerate findings thathavesignificantlyshaped thewaywesee theworld

today, such as Spearman’s (1904) work on general intelligence for psychology (fac-

tor analysis), Hofstede’s (1983) publication on cross-cultural differences for sociol-

ogy (factor and cluster analysis), and Altman’s (1968) article on forecasting corpo-

rate bankruptcy for management research (discriminant analysis).

However, a common factor for all these methods is that they share three limita-

tions, namely, (a) the postulation of a simple model structure (at least in the case of

regression-based approaches); (b) the assumption that all variables can be consid-

ered as observable; and (c) the conjecture that all variables are measured without

error, which may limit their applicability in some research situations.

Where the first assumption, the postulation of a simple model structure (i.e.,

one dependent and several independent variables) is concerned, Jacoby (1978)

stated that “we live in a complex, multivariate world [and that] studying the impact

of one or two variables in isolation, would seem … relatively artificial and incon-

sequential” (p. 91). Although model building always implies omitting some aspect

of reality (Shugan, 2002), this assumption of regression-based approaches may be

too limiting for an analysis of more complex and more realistic situations. This be-

comes, for example, especially obvious when one wants to investigate the poten-

tial effect of mediating or moderating variables (for a detailed definition of these

two terms, see Baron & Kenny, 1986) on the relationship between one or more de-

pendent and independent variables, which may result in some dependent variables

influencing other dependent variables.

With respect to the second limitation, the assumption that all variables can be

considered as observable, McDonald (1996) stressed that a variable can be called

observable “if and only if its value can be obtained by means of a real-world sam-

pling experiment” (p. 239). Therefore, any variable that does not correspond di-

rectly to anything observable must be considered as unobservable (Dijkstra,

1983). This definition makes it obvious that only a handful of relevant variables,

such as age and gender, can be considered as observable, whereas “the effects and

properties of molecules, processes, genes, viruses, and bacteria are usually ob-

served only indirectly” (S. Wold, 1993, p. 138)

Regarding the conjecture of variables measured without error, one has to bear

in mind that each observation of the real world is accompanied by a certain mea-

surement error, which may comprise two parts (Bagozzi, Yi, & Philipps, 1991): (a)

random error (e.g., caused by the order of items in a questionnaire or respondent

fatigue; Heeler & Ray, 1972) and (b) systematic error, such as method variance

(i.e., variance attributable to the measurement method rather than the construct of

interest; Bagozzi et al., 1991). Because the observed score of an item is therefore

always the sum of three parts, namely, the true score of the variable, random error,

and systematic error (Churchill, 1979), first-generation techniques are, strictly

speaking, only applicable when there is neither a systematic nor a random error

component—a rare situation in reality.
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To overcome these limitations of first-generation techniques, more and more

authors started using structural equation modeling (SEM) as an alternative.

Compared to regression-based approaches, which analyze only one layer of link-

ages between independent and dependent variables at the same time, SEM, as a

second-generation technique, allows the simultaneous modeling of relationships

among multiple independent and dependent constructs (Gefen, Straub, &

Boudreau, 2000). Therefore, one no longer differentiates between dependent and

independent variables but

distinguishes between the exogenous and endogenous latent variables, the former be-

ing variables which are not explained by the postulated model (i.e. act always as inde-

pendent variables) and the latter being variables that are explained by the relation-

ships contained in the model. (Diamantopoulos, 1994, pp. 108)

Additionally, SEM enables the researcher to construct unobservable variables

measured by indicators (also called items, manifest variables, or observed mea-

sures) as well as to explicitly model measurement error for the observed variables

(Chin, 1998a), and hence it overcomes the limitations of first-generation tech-

niques described earlier and consequently gives the researcher the flexibility to

“statistically test a priori substantive/theoretical and measurement assumptions

against empirical data (i.e. confirmatory analysis)” (Chin, 1998a, p. vii).

In general, there are two approaches to estimating the parameters of an SEM,

namely, the covariance-based approach and the variance-based (or compo-

nents-based) approach. Covariance-based SEM, in particular, has received high

prominence during the last few decades and, “to many social science researchers,

the covariance-based procedure is tautologically synonymous with the term SEM”

(Chin, 1998b, p. 295). Although there are several different tools that can be used to

perform this kind of analysis, such as EQS, AMOS, SEPATH, and COSAN, the

LISREL program developed by Jöreskog in 1975 became the most popular one

and, consequently, the term LISREL is sometimes used as a synonym for

covariance-based SEM.

The focus of this article is to give an introduction to the other side of the coin,

variance-based SEM, and to present partial least squares (PLS) analysis as one

technique from this group in more detail. In contrast to articles already published

in this area (e.g., Cassel, Hackl, & Westlund, 1999; Dijkstra, 1983; Garthwaite,

1994), our focus is on an easily understandable presentation of this topic, accessi-

ble to beginners without extensive knowledge of statistics in general or SEM in

particular. Additionally, we try to answer the question under which circumstances

a researcher might want to prefer variance-based over covariance-based SEM,

given the specific assumptions and limitations of each of these methods.

For this purpose, our article is structured as follows: In the next section, we pro-

vide a short introduction to theories, SEM, and the measurement of unobservable
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variables as necessary background to understanding the fundamentals behind

SEM. We then proceed to the main topic of this article, an introduction to PLS

analysis, explaining the basics of this technique as well as statistical assumptions

and limitations associated with it. The article concludes with some recommenda-

tions regarding the suitability of PLS for SEM, focusing particularly on situations

in which covariance-based SEM might not be appropriate.

THEORIES, SEM, AND INDICATORS

As indicated in the beginning of this article, SEM can be (and often is) used to test

(and consequently to either support or reject) theoretical assumptions with empiri-

cal data. It is therefore essential to have a sound understanding of the structure of

theories to understand the different components of a structural equation model.

According to Bagozzi and Philipps (1982), a theory may contain three different

types of concepts: (a) theoretical concepts that “are abstract, unobservable proper-

ties or attributes of a social unit of entity” (p. 465); (b) empirical concepts which

“refer to properties or relations whose presence or absence in a given case can be

inter-subjectively ascertained, under suitable circumstances, by direct observa-

tions” (Bagozzi & Philipps, 1982, p. 465); and (c) derived concepts, which are

unobservable (like theoretical concepts) but “unlike theoretical concepts … must

be tied directly to empirical concepts” (Bagozzi & Philipps, 1982, p. 465). Addi-

tionally, there are three possible types of relationship that link these concepts: (a)

nonobservational hypotheses, which link theoretical concepts with other theoreti-

cal concepts; (b) theoretical definitions, which connect theoretical and derived

concepts; and (c) correspondence rules, which link theoretical or derived to empir-

ical concepts and serve “to provide empirical significance to theoretical terms”

(Bagozzi, 1984, p. 17).

Using this framework, it ispossible toconstructa researchmodel that representsa

certain theory, simply by converting theoretical and derived concepts into

unobservable (latent) variables, and empirical concepts into indicators, which are

linked by a set of hypotheses (representing either nonobservational hypotheses, the-

oretical definitions, or correspondence rules). This model can then be represented

graphically by a path diagram (also called an arrow scheme; see Figure 1), which

shows how the various elements relate to one another (Diamantopoulos, 1994).

Based on the path diagram (and using Figure 1 as an example), it is then possi-

ble to set up three sets of equations, which can be used to describe the relationships

between the different parameters of the research model.

The first set relates the indicators of the exogenous variables (x) to their associ-

ated measurement error (δ) and the latent exogenous variables (ξ):

x1 = λx11 ξ1 + δ1
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x2 = λx21 ξ1 + δ2

x3 = λx32 ξ2 + δ3

x4 = λx42 ξ2 + δ4

x5 = λx53 ξ3 + δ5

x6 = λx63 ξ3 + δ6

The second set describes the relationship between the indicators of the endoge-

nous variables (y), their associated measurement error (ε), and the latent endoge-

nous variables (η ):

y1 = λy11 η 1 + ε1

y2 = λy21 η1 + ε2

y3 = λy32 η 2 + ε3

y4 = λy42 η 2 + ε4

Finally, the last set deals with the relationship between the latent endogenous

(η) and exogenous (ξ) variables:

η 1 = γ11 ξ1 + ζ1

η2 = β21 η 1 + γ21 ξ1 + γ22 ξ2 + γ23 ξ3 + ζ2.
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FIGURE 1 Relationship between theory and path diagram/arrow scheme (Bagozzi &

Philipps, 1982; Diamantopoulos, 1994). η (eta) = latent endogenous variable; ξ (xi) = latent ex-

ogenous (i.e., independent) variable; ζ (zeta) = random disturbance term; γ (gamma) = path coef-

ficient; φ (phi) noncausal relationship between two latent exogenous variables; yi = indicators of

endogenous variables; εi (epsilon) = measurement errors for indicators of endogenous variable;

λyi (lambda y) = loadings of indicators of endogenous variable; xi = indicators of endogenous

variable; δi (delta) = measurment errors for indicators of exogenous variable; λxi = (lambda x)

loadings of indicators of exogenous variable.



In contrast to the equations just formulated, the random disturbance terms ζ do

not reflect measurement error but are known as “errors in equations” and “reflect

random disturbances (i.e. they indicate that the endogenous variables are not per-

fectly explained by the independent variables)” (Diamantopoulos, 1994, p. 110).

By using matrix algebra, these three sets of equations can also be written in the

following way:

x = Λx � + �, (1)

y = Λy � + �, (2)

� = Β � + Γ � + �. (3)

This results in a set of theoretical equations (Equation 3), representing

nonobservational hypotheses and theoretical definitions, and measurement equa-

tions (Equations 1 and 2), representing correspondence rules (Bagozzi & Philipps,

1982). The theoretical equations are then also referred to as the structural model,

whereas the measurement equations build the measurement model, and both com-

bined can be subsumed by the term structural equation model.

As Bagozzi (1984) emphasized, there are three different types of unobservable

variables: (a) variables that are unobservable in principle (e.g., theoretical terms);

(b) variables that are unobservable in principle but either imply empirical concepts

or can be inferred from observations (e.g., attitudes, which might be reflected in

evaluations); and (c) unobservable variables that are defined in terms of

observables. Because none of these types can be measured directly, the researcher

needs to measure indicators instead, which cover different facets of the

unobservable variable. In general, indicators can be split into two groups: (a) re-

flective indicators that depend on the construct and (b) formative ones (also known

as cause measures) that cause the formation of or changes in an unobservable vari-

able (Bollen & Lennox, 1991).

Written in mathematical terms (see Figure 2), this difference becomes obvious.

Whereas reflective indicators can be expressed as a function of their associated la-

tent variables, such as

y1 = λy1 η + ε1

y2 = λy2 η + ε2

y3 = λy3 η + ε3

or, by using matrix algebra,

y = Λy � + �,
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formative indicators are not influenced by but influence the latent variables, so that

η = γx1 x1 + γx2 x2 + γx3 x3 + ζ.

Consequently, if the unobservable can be considered as giving “rise to some-

thing observed,” as is the case when, for example, the unobservable describes a

personality trait or attitude, reflective indicators should be used. For example,

Moorman, Deshpandeé, and Zaltman (1993) operationalized the unobservable

variable “timeliness” by the following three reflective indicators: (a) accommoda-

tion of last-minute requests, (b) punctuality in meeting deadlines, and (c) speed of

returning phone calls. In contrast, formative indicators are appropriate if con-

structs “are perceived as explanatory combinations of indicators” (Fornell &

Bookstein, 1982, p. 442), such as the unobservable variable “life stress,” which

can be considered as a combination of formative indicators such as job loss, di-

vorce, a recent accident, and death in the family (Chin & Newsted, 1999).

This leads to one major difference between formative and reflective indicators:

Whereas reflective indicators should have a high correlation (as they are all depend-

ent on the same unobservable variable), formative indicators of the same construct

can have positive, negative, or zero correlation with one another (Hulland, 1999),

which means that a change in one indicator does not necessarily imply a similar di-

rectional change inothers (Chin,1998a). In theexamplesgivenearlier, apersonwho

is considered more timely than another is expected to accommodate last-minute re-

quests more often and to be more punctual in meetings and to return phone calls

more promptly. On the other hand, a higher degree of life stress does not imply that a

BEGINNER’S GUIDE TO PARTIAL LEAST SQUARES ANALYSIS 289

FIGURE 2 Reflective versus formative indicators.



person has become unemployed, got divorced, and lost his or her parents all at the

same time—one of these events alone may be sufficient to increase stress.

PLS ANALYSIS: BASIC IDEA AND UNDERLYING

ASSUMPTIONS

As highlighted in the beginning of this article, there are two approaches to estimate

the parameters of an SEM, that is, the covariance-based approach and the vari-

ance-based approach.

The covariance-based approach “attempts to minimize the difference between

the sample covariances and those predicted by the theoretical model. … Therefore,

the parameter estimation process attempts to reproduce the covariance matrix of

the observed measures” (Chin & Newsted, 1999, p. 309). Because of the popular-

ity of covariance-based SEM, there is a wide variety of articles that provide an in-

troduction to this technique, and because a detailed description of that method

goes beyond the scope of this article, the reader is referred to Diamantopoulos

(1994) for an excellent and easily understandable presentation of

covariance-based SEM and LISREL. We come back to some points related to this

approach later, when we highlight the circumstances under which a researcher

might want to prefer variance-based over covariance-based SEM.

Unlike covariance-based SEM, PLS, first introduced by H. Wold (1975) under

the name NIPALS (nonlinear iterative partial least squares), focuses on maximiz-

ing the variance of the dependent variables explained by the independent ones in-

stead of reproducing the empirical covariance matrix. Like any SEM, a PLS model

consists of a structural part, which reflects the relationships between the latent

variables, and a measurement component, which shows how the latent variables

and their indicators are related; but it also has a third component, the weight rela-

tions, which are used to estimate case values for the latent variables (Chin &

Newsted, 1999).

In contrast to covariance-based SEM, which estimates first model parameters

and then case values (i.e., estimated values for each latent variable in each data set)

by regressing them onto the set of all indicators (Dijkstra, 1983), PLS starts by cal-

culating case values. For this purpose, the “unobservable variables are estimated

as exact linear combinations of their empirical indicators” (Fornell & Bookstein,

1982, p. 441), and PLS treats these estimated proxies as perfect substitutes for the

latent variables (Dijkstra, 1983). The weights used to determine these case values

are estimated so that the resulting case values capture most of the variance of the

independent variables that is useful for predicting the dependent variable

(Garthwaite, 1994). This is based on the implicit assumption that all measured

variance of the variables in the model is useful variance that should be explained

(Chin, Marcolin, & Newsted, 1996). Using these weights, it is then possible to de-
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termine a value for each unobservable variable, simply by calculating a weighted

average of its indicators. This results in a model in which all unobservable vari-

ables are approximated by a set of case values and that can, therefore, be estimated

by a set of simple, first-generation, ordinary least squares regressions. Conse-

quently, the basic idea of PLS is quite straightforward: First, the weight relations,

which link the indicators to their respective unobservable variables, are estimated.

Second, case values for each unobservable variable are calculated, based on a

weighted average of its indicators, using the weight relations as an input. Finally,

these case values are used in a set of regression equations to determine the parame-

ters for the structural relations (Fornell & Bookstein, 1982).

This explanation makes it obvious that the most crucial part of a PLS analysis is

the estimation of the weight relations. Of course, it would be easier simply to as-

sume equal weights for all indicators, but this approach has two disadvantages:

First, there is no theoretical rationale for all indicators to have the same weighting.

Because it can be assumed that the resulting parameter estimates of the structural

model depend on the type of weighting used, at least as long as the number of indi-

cators is not excessively large (McDonald, 1996), the (exogenous) assumption of

equal weights makes the results highly arbitrary. Second, as Chin, Marcolin, and

Newsted (2003b) stressed, such a procedure does not take into account the fact that

some indicators may be more reliable than others and should, therefore, receive

higher weights.

Consequently, PLS uses a more complex, two-step estimation process to deter-

mine the weights (wi): First, it starts with an outside approximation, in which case

values for each latent variable (e.g. η 2 in Figure 1) are estimated, based on a

weighted average of their respective indicators (e.g., ). The

weights used to calculate this aggregation are determined in a manner similar to a

principal-components analysis for reflective or regression analysis for formative

indicators (Cassel, Hackl, & Westlund, 1999). In the next step, the inside approxi-

mation, improved case values are determined as a weighted average of neighbor-

ing latent variables (e.g., ). For this process,

there are three different weighting schemes available (centroid, factor, and path

weighting scheme; for a detailed description, see Lohmöller, 1989), but one can

demonstrate that the choice between them has only a minor impact on the final re-

sults. Using this second estimate of the case values, the weight relations are modi-

fied (e.g., ) and the process of inside and outside approximation

starts from the beginning again and is repeated until convergence of the case val-

ues is achieved (Cassel et al., 1999).

Hence, being a limited information approach (Dijkstra, 1983), PLS has the ad-

vantage that it “involves no assumptions about the population or scale of measure-

ment” (Fornell & Bookstein, 1982, p. 443) and consequently works without

distributional assumptions and with nominal, ordinal, and interval scaled variables.

However, one has to bear in mind that PLS, like any statistical technique, also re-
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quires certain assumptions to be fulfilled. Beyond those known from the standard

(i.e., Gaussian classical linear ordinary least squares) regression model (see, e.g.,

Gujarati, 1995), the most important assumption is predictor specification (Chin &

Newsted, 1999). This requirement states that the systematic part of the linear regres-

sion must be equal to the conditional expectation of the dependent variable (for a

mathematical formulation, see H. Wold, 1975) and can be considered as fulfilled in

most cases. Furthermore, by using a Monte Carlo simulation, Cassel et al. (1999)

showed that PLS is quite robust with regard to several inadequacies (e.g. skewness

or multicollinearity of the indicators, misspecification of the structural model) and

that the latent variable scores always conform to the true values.

However, there is also another side of the coin, namely, the problem of consis-

tency at large. In general, a consistent estimator can be described as “one that con-

verges in probability to the value of the parameter being estimated as the sample

size increases” (McDonald, 1996, p. 248). However, because the case values for

the latent variables in PLS are aggregates of manifest variables that involve mea-

surement error, they must be considered as inconsistent (Fornell & Cha, 1994).

Therefore, “the path coefficients estimated through PLS converge on the parame-

ters of the latent-variable model [only] as both the sample size and the number of

indicators of each latent variable become infinite” (McDonald, 1996, p. 248)—a

problem known under the term consistency at large. Hence in all real-life situa-

tions, in which both the number of cases in the sample and the number of indicators

per latent variable will be finite, PLS tends to underestimate the correlations be-

tween the latent variables and overestimate the loadings (i.e., the parameters of the

measurement model; Dijkstra, 1983). Only when the number of cases in the sam-

ple and the number of indicators per latent variable increase to infinity do the latent

variable case values approach the true values and this problem disappears

(Lohmöller, 1989).

CHOICE BETWEEN COVARIANCE-

AND VARIANCE-BASED SEM

Given this problem of consistency at large, one might question the suitability of

PLS and by right ask why a technique that cannot guarantee one of the key features

of any statistical model, namely, consistency of estimators, should be presented to

the reader of a statistics journal at all.

The answer to this question is that PLS comes into its own principally in situa-

tions in which covariance-based SEM tools reach their limit, namely, when the

number of indicators per latent variable becomes excessively large.

As stated earlier, the goal of covariance-based SEM is to determine the matrix

of model parameters Φ in such a way that the resulting covariance matrix predicted

by the theoretical model Σ(Φ) is as close as possible to the sample covariance ma-

trix S. For this, one needs to define a discrepancy function F(S, Σ), which “takes on

292 HAENLEIN AND KAPLAN



a value of zero only when S = Σ and otherwise is positive, increasing as the differ-

ence between S and Σ increases” (MacCallum, Browne, & Sugawara, 1996, p.

132). Given that the sample covariance matrix is based on p measured indicators,

the most commonly used such function is the normal-theory maximum likelihood

function, defined as

FML = ln |Σ|–ln |S| + Tr (SΣ–1)–p

(MacCallum et al., 1996).

Regarding thenumberof indicatorsper latentvariablep, the researchershould try

to identifyasmanyof themaspossible, since“noseriousworkonpathmodels…can

be done without using a very large number of indicators for each attribute” (McDon-

ald, 1996, p. 267). For example, the work of Marsh, Hau, Balla, and Grayson (1998)

gave an indication that more indicators per latent variable lead to fewer improper so-

lutions and more stable results, and similar findings were generated by Nasser and

Wisenbaker (2003). Although in some areas, such as management research, re-

searchers rarely have more than a handful of indicators per unobservable variable to

their disposition (Baumgartner & Homburg, 1996), there are also disciplines in

which this number can be very large, as many as 500 indicators per latent variable or

more. For example, Bookstein, Sampson, Streissguth, and Barr (1996) analyzed the

influence of prenatal alcohol exposure on neurobehavioural functioning by using

474 indicators to measure the latter construct. Another area in which this might be

applicable is that of functional magnetic resonance imaging studies in which brain

functions (e.g., remembrance, addiction) are analyzed by using a “surrogate”

hemodynamic response as an indicator for neuronal response (for an introduction

into functional magnetic resonance imaging, see Parry & Matthews, 2000).

However, in these cases, the sample covariance matrix can easily reach a size that

is difficult to handle with conventional computer systems because based on p mea-

sured indicators the sample covariance matrix has p(p + 1)/2 distinct elements (i.e.,

p2 elements in total, excluding [p2 – p]/2 in the upper or lower triangular matrix).

Using the example of a simple SEM with q = 5 latent variables (similar to the

one in Figure 1), each measured by 200 indicators, this results in

200q (200q + 1)/2,

or 500,500 distinct elements of the sample covariance matrix.

Additionally, and probably more seriously, the statistical power of such a

model would be so large that it would in fact be impossible to apply any kind of fit

test to judge overall model quality.

Using the preceding example, the minimum sample size Nmin to estimate such a

model would be
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Nmin = 200q,

or 1,000, as it is a necessary condition that the number of cases at least exceeds the

number of indicators, because otherwise the input matrix is not definite (Marsh et

al., 1998). Additionally, the number of degrees of freedom can be determined as

df = [200q (200q + 1)/2] – 2 × 200q – k,

where k is the number of parameters in the structural model to be estimated because

in the measurement model each indicator is associated with two parameters: (a)

measurement error (either δ or ε) and (b) a loading on the associated latent variable

(either λx or λy). In the case of a model similar to the one shown in Figure 1, the

structural model has k = 13 parameters to be estimated, resulting in df = 498,487.

Hence, the statistical power for the test of model fit based on root-mean-square er-

ror of approximation using α = .05, ε0 = 0.05, and εa = 0.08 (see MacCallum et al.,

1996, for details), would be 1.0000. Therefore, one would probably be able to de-

tect rounding errors to the 10th place and the model would be likely to fail even with

simulated data.

On the other hand, the problem of consistency at large would no longer be an is-

sue in PLS because “with a sufficiently large number of indicators, the choice of

weights ceases to have any influence on the parameters of the path model” (Mc-

Donald, 1996). The PLS composite model would be very close to the underlying

factor model, and the distinction between linear composites and underlying factors

would become vanishingly small. Therefore, the researcher would be well advised

to use PLS instead of covariance-based SEM in such situations. Recapitulating

these arguments by using the words of S. Wold (1993), H. Wold’s son, one can say

that “the natural domain for LV [latent variable] models such as PLS … is where

the number of ‘significant’ LV’s is small, much smaller than the number of mea-

sured variables … and than the number of observations.” (p. 137).

SUMMARY AND OUTLOOK

There are many additional points regarding PLS that deserve mention, we discuss

briefly two of them in the following paragraphs. For example, another situation in

which PLS might be preferable to LISREL are cases in which constructs are mea-

suredprimarilybyformative indicators.Thismaybeacommonoccurrence inmana-

gerial research, as the work of Jarvis, MacKenzie, and Podsakoff (2003) gave an in-

dication that managerial constructs might be reflected better by formative than by

reflective indicators. As MacCallum and Browne (1993) showed, the predominance

of formative indicators may lead to severe (identification) problems, implied

covariances of zero among some indicators, and/or the existence of equivalent mod-

els in covariance-based SEM. PLS, in contrast, does not create problems with re-
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spect to analyzing formative indicators and can therefore be used for models with ei-

ther reflective, formative,orboth typesof indicators (Fornell&Bookstein,1982).

One more area in which PLS is typically recommended is that of situations in

which the sample size is small. For covariance-based SEM, it is generally advisable

that the “sample size should exceed 100 observations regardless of other data char-

acteristics to avoid problematic solutions and obtain acceptable fit concurrently”

(Nasser&Wisenbaker,2003,p.754),andmanyresearchersevenrecommendamin-

imum sample size of 200 cases (e.g., Marsh et al., 1998) to avoid results that cannot

be interpreted, such as negative variance estimates (i.e., Heywood cases) or correla-

tions greater than one (i.e., improper solutions; Dillon, Kumar, & Mulani, 1987).

PLS, on the other hand, is applicable even under conditions of very small sample

sizes. Although a detailed discussion of this point can only be made for each individ-

ual model based on statistical power analysis, a Monte Carlo simulation performed

by Chin and Newsted (1999) indicated that PLS can be performed with a sample size

as low as 50, and H. Wold even “analysed 27 variables using two latent constructs

with a data set consisting of ten cases” (Chin, Marcolin, & Newsted, 2003a, Appen-

dix A, p. 5). However, given the problem of consistency at large, the question of

whether such results are actually of any usability is very difficult to answer.

In summary, we hope that this article helps give readers a first impression about

PLS analysis, the assumptions underlying this approach, and the advantages it has

compared to traditional covariance-based SEM in certain situations. For additional

information, readers are referred to H. Wold’s (1975) first presentation of PLS,

Lohmöller’s (1989) extensive discussion of this approach, and MacDonald’s

(1996) article regarding path analysis with composite variables. Readers who plan

to use PLS for their own research are referred to PLS Graph (Chin, 2001), a freely

available software tool with an intuitive graphical user interface.
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