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Abstract—One of the goals of Software-Defined Networking
(SDN) is to allow users to specify high-level policies into lower
level network rules. Managing a network and decide what policy
set is appropriate requires, however, expertise and low level
know-how. An emerging SDN paradigm is to allow higher-
level network level decisions wishes in the form of “intents”.
Despite its importance in simplifying network management,
intent specification is not yet standardized. In this work, we
propose a northbound interface (NBI) for intent declaration,
based on Behavior-Driven Development. In our approach, intents
are specified in plain English and translated by our system into
pre-compiled network policies, that are in turn, converted into
low-level rules by the software-defined infrastructure e.g. an SDN
controller. We demonstrated our behavior-driven approach with
two practical use cases: service function chaining deployed on
OpenStack, supported by both ONOS and Ryu controllers, and
dynamic firewall programming. We also measured the overhead
and response time of our NBI. We believe that our approach is
far more general and paves the way for a more expressive and
simplified northbound interface for intent-driven networking.

I. INTRODUCTION

The Network Function Virtualization (NFV) paradigm advo-

cates moving middlebox functionality — Network Functions

(NFs) — from dedicated hardware devices to software ap-

plications that run in virtual environments on top of shared

hardware [1]. One of the key paradigms to effectively sup-

port the deployment of NFV is Software-Defined Networking

(SDN), which enables network programmability by taking

advantage of (mostly) vendor-agnostic open application pro-

gramming interfaces (APIs) [2]. Sharing similar goals with

researchers in programming languages, the focus of network

programmability has typically been on (i) making (network)

programming easier and more accessible, or (ii) to enable

safer (network) programming, e.g., via formal methods and

verification techniques. Several successful attempts were made

to make network programming safer [3]–[5], or easier to

debug and test [6]–[8]. Most of these approaches rely on

OpenFlow [9], which defines the open southbound API to-

wards network equipment. Despite the successful control-

plane decoupling between programming directives and vendor-

specific data forwarding mechanisms, OpenFlow — the de-

facto standard SDN control plane protocol — is still dependent

on low-level technical details for correct data forwarding, such

as switch IDs, port numbers, MAC addresses, etc.

With the aim of generalizing network programmability

operations, researchers today are seeking new ways to manage

Software-Defined Infrastructures (SDIs) — including SDN and

NFV environments, cloud computing platforms, and any other

form of communication infrastructure controlled by software.

The main goal is to define a simple and usable northbound

interface (NBI) that provides a high level of abstraction

for programming SDI controllers and easily deploying new

services. Such NBI could be in many cases helpful to make

network programming easier to application developers and

network administrators running DevOps, but also to allow

personnel with less technical skills, e.g. business managers or

technical group leaders, to specify a desired set of operations

or services by merely knowing some (but not many) low-level

aspects.

To inspire the design of such NBI, the Open Networking

Foundation has loosely defined the notion of intent as a

form of network service abstraction at a higher level than

typical policy instantiation or composition in SDIs [10]. In

literature the words “policies” and “intents” have often been

used interchangeably, see for instance [11]. Differently, in this

paper by intent we mean a high-level predicate or keyword

that can be used to program a mechanism directly, or via

instantiation of a policy set. The idea of having an intent-

based network interface is then to declaratively allow “what

should be achieved,” either loosely or tightly, with a high-level

description rather than with a detailed specification of “how it

should be achieved.”

A key challenge that has yet to be addressed, which we plan

to tackle in this paper, is how to provide an intuitive intent pro-

gramming northbound abstraction for SDIs that, even though

not being rigorous as a programming language, is simple and

expressive enough to deploy service policies and mechanisms

on top of any SDI, without requiring neither network operator

expertise nor heavy programming experience.

Recent work attempted at defining domain-specific lan-

guages for network programmability, raising the level of

abstraction [11]–[16]. Although those solutions focus on high-

level policies expression, they still require knowledge of differ-

ent low-level details, e.g., the declarative or functional syntax

of the specification language. Such languages or abstractions

for northbound interfaces: (i) are not simple to use, (ii)
focus on policy specification, not intent, and (iii) still require

underlying mechanisms expertise, merely shifting the entry

barrier for network programmability without lowering it.

Two more recent solutions share at the high level our same

design goals [17], [18]. They both attempt to use human

semantics of a text in English to abstract out the low-level



details of a network; these solutions require to either use

a Natural Language Processing [17] or to solve a complex

optimization problem to interpret a set of intents (despite not

calling them intents) [18].

Our Contributions. In this paper, we design and implement

a NBI abstraction layer for SDI management where intents can

be specified in plain English (or even Mandarin Chinese).1

Our design principle is based on Behavior-Driven Develop-

ment (BDD) [19], an agile software development technique,

corollary of the Test-Driven Development paradigm [20]. A

Behavior-Driven Development framework provides the ability

of expressing (network level) wishes in a simple way, i.e.,

using natural language. The expressed wishes, in our case

intents, are then translated into (SDI) policies and implemented

through relevant network mechanisms by means of appropriate

interpreter functionalities. Our focus in this paper is to demon-

strate how it is feasible to allow network programmability

without having to be familiar with the lower level details of

any policy of the underlying SDI.

To this end, we prototyped our approach by applying the

behavior-driven, intent-based SDI management to two practi-

cal use cases: (i) service function chaining on a NFV environ-

ment, deployed on the OpenStack cloud platform,2 integrating

our BDD layer with an interpreter that manages two different

SDN controllers — ONOS3 and Ryu;4 (ii) dynamic firewall

programming with iptables, the native Linux Kernel packet

filtering software tool. While the former use case refers to the

management of a relatively complex SDI, facilitated by the

use of off-the-shelf cloud and SDN controllers, we decided to

include the latter use case to demonstrate that our approach

is not limited to an OpenFlow-based SDN environment to

translate high level intents into policies [21].

How are we different? We are different from the afore-

mentioned relevant work [17], [18] for two main reasons. The

first is that we not only focus on defining an intent-based

NBI taking advantage of natural language features, but we also

consider the support of previously compiled underlying net-

work behaviors. To interpret (or compile) any general English

(or Mandarin) sentence and translate it into an action would

be infeasible [22]. Instead, by restricting the scope of our

framework to pre-defined feasible behaviors, we enable SDI

management to expressed and verified in the form of intents

following the Behavior-Driven Development philosophy. The

second main difference with existing approaches is that we

prove our concept on several application scenarios based on

off-the-shelf SDI software tools demonstrating the flexibility

of our solution.

The rest of the paper is organized as follows: In Section II

we describe our behavior-driven intent NBI design. Then in

Section III we describe the workflow of an intent specification,

while in Section IV we discuss some implementation details of

1Our approach can easily support different languages.
2http://openstack.org
3https://onosproject.org
4https://osrg.github.io/ryu
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Fig. 1. Behavior-driven intent specification architecture for SDI management.
Intents specified in English using the Gherkin language are interpreted by the
Gherkin parser and translated by step functions into policies in the form of
instructions for the underlying SDI management tools. The picture shows
the specialized architecture for the case of a SDI based on NFV and SDN
components, as well as the case of a firewall programmed with iptables.

the considered use cases. In Section V we detail the evaluation

of our approach, and we conclude in Section VI.

II. BEHAVIOR-DRIVEN INTENT SPECIFICATION DESIGN

In this section we highlight the main components of our

behavior-driven approach and its design principles. Our intent

specification layer is composed by (i) a language definition

framework based on Gherkin, (ii) an intent-policy interpreter,

the core of our northbound interface, and (iii) a set of plugins

that act as a middleware between the intent declaration and

the underlying SDI management layer. The system architec-

ture, specialized for the use cases presented in this paper, is

represented in Figure 1.

Intent definition in plain English with Gherkin. Behavior-

driven development (or BDD) is an agile software devel-

opment technique that was designed to encourage collab-

oration between developers, Quality Assurance (QA) engi-

neers and non-technical or business participants in a software

project [19]. We extended the BDD notion to behavior-driven

SDI management, by focusing its general notion of declar-

ative requirement specification to network programmability

via intent specification. We define our network intents with

Gherkin,5 a language used by non-computer scientists to define

requirements in plain English. The following listing shows an

example of Gherkin-generated intent that is possible to specify

with our framework:

F e a t u r e : l o a d b a l a n c i n g v i a NFV
S c e n a r i o : modify NF c h a i n a f t e r h i gh l o a d

d e t e c t i o n
Given t r a f f i c i s f l o w i n g on NF1
And t r a f f i c i s f l o w i n g on s w i t c h SW1
When r e s p o n s e t i me of NF1 i s t o o h igh
Then s t a r t a new network f u n c t i o n NF2
And r e d i r e c t h a l f o f t h e t r a f f i c t o NF2

Gherkin was designed so that business (not network) man-

agers would be allowed to express application or service

requirements with little but not null technical expertise. For

5https://docs.cucumber.io/gherkin



example, a network manager may want to subsequently author

such feature with the aim of expressing another policy to

perform load balancing when the end-to-end delay becomes

higher than a given threshold. The keywords Given, When,

Then, And, are sufficient to compose complex intent predi-

cates, and the language interpreter can be easily extended.

Having shown a concrete example of how simple our

approach can be to specify network intents, we continue this

section describing its three design principles: (i) usability, (ii)
being verification-agnostic, and (iii) being controller-agnostic.

Usability. Users, managers, applications and network pro-

grammers have to have the ability to quickly start, stop or

modify basic or complex service behaviors on the SDI, with

minimal coding and network management expertise. It is

then responsibility of the interpreter to convert those English

sentences into a policy set that can be used to program the

underlying SDI via northbound API. Note how existing SDN

controllers, such as ONOS, already have an intent specification

NBI, but programming intents requires low-level expertise.

Verification-agnostic. When we program in a dynamically-

typed language such as Python or JavaScript, we do not have

any proof that the program will be safe. It is (arguably) clear

that writing Python code is easier for newbies. Developers do

however, write unit or integration tests to verify correctness

of their code. Similarly, our intent management layer does

not use any formal verification techniques, but can be used to

verify software-defined network behaviors. For example, we

could specify intents that ensure that a given packet header is

generated after another one is received by a given NF.

Controller-agnostic. Existing intent specification frameworks

are controller-specific. Successful abstractions are by defini-

tion agnostic from the underlying software-defined infrastruc-

ture. In the rest of the paper we show how our approach

can adapt to different controllers and to networks that do not

support a centralized controller.

III. INTENT INTERPRETATION WORKFLOW

In this section, we describe the general workflow of an intent

specification when applied to the use case of a service function

chain deployment. To apply an intent, the workflow first has

to input the specification of the intent in plain (English) text,

and then our intent-policy interpreter binds the policy to the

underlying SDI management tool, e.g., the Ryu and/or ONOS

controllers.

A. General Workflow

Our intents are specified using the Gherkin language, which

enables the description of the desired (virtual) network chain

or other service behavior. Business and network managers

may leverage Gherkin to describe the feature they desire.

Features can represent higher level goals, as well as lower

level protocol policies (i.e., NFV constraints on the software-

defined infrastructure). A feature file may or may not start

with a title, used as tag to group set of intents, and it is

followed by a few lines that provide context and describe the

benefits or the feature itself. A Gherkin specification envisages

a scenario and (possibly) multiple steps; the details of the

intent specifications start with a Gherkin keyword that has the

purpose of providing some context or preconditions, and define

what managers should expect as outcome. Outcomes can be

tests, protocol messages, logs, network service deployment or

termination.

With our approach, not only we are able to express higher-

level intents using Gherkin keywords, but also terms that are

relevant to specific use cases scenarios. Examples of such

terms are those that describe service flows crossing function

chain components, or firewall-ing states, e.g., incoming/outgo-

ing/malicious/dangerous traffic, or blacklist. All those terms

are seen as keywords for each relevant scenario. Such terms

or keywords constitute the information set adopted to achieve

infrastructure-independence in the intent specification, as well

as to implement mappings among layer-specific terms. Once

the intent specification is complete, it is interpreted by our

engine, capable of matching previously defined regular expres-

sions, just as in a standard programming language compiler.

When there is a matching, our interpreter translates the

intents into policies by calling the appropriate callback func-

tion that in turn may call an underlying mechanism. Our

approach may be supported by any SDN controller exposing a

programmable NBI — although our current implementation6

is limited to ONOS and Ryu only — as well as by any other

form of network programmability.

B. Chain Intent Interpretation Workflow

Let us assume that a user, e.g., a startup CTO, a technical

leader or a network manager, wishes to enforce an intent

defined by the deployment of a service function chain on

their infrastructure. The ordered set of network functions

will be implemented on an SDI by means of an OpenFlow-

based controller. The controller, responsible for translating the

service function chain policy into lower-level infrastructure

rules, will then deploy the required service.

With our system, the user, through a user interface such as

a keyboard (or a script), expresses such intent with Gherkin

syntax, defining a feature file. Together with this file, to

support the intent specification, a set of rules called step

functions need to be implemented by the system interpreter.

These steps functions are interpreter functionalities and act as

callbacks; their signature has a regular expression that needs

to be matched against the text subsequent to a defined Gherkin

keyword in the feature (intent) file. For instance, in our use

case the system interpreter generates from the intent/feature

file a JSON policy configuration file that is then sent to

the SDI management tool through a REST API call [23].

The management tool runs an application that exposes the

service function chaining service as a REST API endpoint.

Once such call is received, it is responsibility of the SDI

management tool to translate this policy into lower level rules

that will be applied to the underlying infrastructure through

the ONOS/Ryu controller NBIs. We implemented and tested

this example, as presented in the following sections.

6https://github.com/flavioesposito/BeA
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virtual machine or container instances. The OpenStack test

bed we used in our experiments is shown in Figure 2 and

is composed by a network node co-located with a controller

and a compute node, plus two additional compute nodes.

Each node includes several virtual elements that form the

internal network infrastructure. A set of Open vSwitch (OvS)

virtual bridges provide a programmable, distributed virtual

networking environment. In recent releases of OpenStack, each

compute node also runs an instance of the Ryu SDN controller,

used for controlling the internal virtual network components.

With a minor intervention on the OpenStack configuration

files, it is possible to expose the Ryu REST interface, allowing

direct interaction with the controller and facilitating intra-node

network programmability in a native way. In our test bed,

the connectivity between OpenStack nodes is provided by a

flat data network interconnected via an OvS bridge running
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interpretation, as well as in the resulting policy enforcement

in the underlying SDI.

In our experiment we submit to the Gherkin parser the

following intent, which considers the case of changing the

service chain between two endpoints when network congestion

is detected.

F e a t u r e : A d a p t i v e S e r v i c e F u n c t i o n C h a i n i n g
To p r o v i d e a d a p t i v e SFC , de p l oy s e r v i c e c h a i n s
and m o n i t o r t h e ne twork

@ f i r s t d e p l o y m e n t
S c e n a r i o : F i r s t SFC deployment

Given I want t o de p l oy a s e r v i c e c h a i n
from s o u r c e NODE−A t o d e s t i n a t i o n NOCE−C t h a t
i n c l u d e s , e x a c t l y i n t h i s o r d e r , a ne twork
f u n c t i o n VF−1, t r a v e r s e d u p s t r e a m on l y

And a ne twork f u n c t i o n VF−3, t r a v e r s e d
bo th u p s t r e a m and downstream

Then d e p l o y s e r v i c e c h a i n

@conges t ion
S c e n a r i o : C o n g e s t i o n

Given t h a t ne twork m o n i t o r i n g s e r v i c e
d e t e c t s c o n g e s t i o n , I want t o de p l o y a s e r v i c e
c h a i n from s o u r c e NODE−A t o d e s t i n a t i o n NOCE−C
t h a t i n c l u d e s , e x a c t l y i n t h i s o r d e r , a t r a f f i c
s h a p i n g ne twork f u n c t i o n VF−T , u p s t r e a m on ly

And a ne twork f u n c t i o n VF−1, bo t h u p s t r e a m
and downstream

And a ne twork f u n c t i o n VF−3, bo t h u p s t r e a m
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and downstream
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We start at time t = 30s by generating a 10 Mbits/s

iperf traffic flow between NODE-A and NODE-C (hosted

on Compute3 and Compute2, respectively). Then we send

the Adaptive Service Function Chaining intent specification

listed above to the parser. As a result, we expect the following

chain to be deployed: NODE-A / VF-1 / VF-3 / NODE-C,

where VF-1 and VF-3 are generic virtual functions hosted on

Compute3 and Compute2, respectively. After the intent has

been correctly interpreted and the relevant policies have been

enforced in the SDI, we verify that the service chain has been

actually deployed. This is shown in Figure 5, which reports

the input traffic flow bitrate measured at relevant VNF ports.

We verify that traffic flow starts crossing VF-1 and VF-3

at around t = 60s. When network congestion is detected,

at around t = 90s, the congestion scenario is executed (see

listing above), resulting in the update of the chain between

the source and destination, as follows: NODE-A / VF-T /

VF-1 / VF-3 / NODE-C. VF-T is a traffic shaper hosted

on Compute3, which is added to the chain in order to limit

the bitrate to 1 Mbits/s. The traffic flow finally stops at around

t = 120s. Chaining is hence properly accomplished for both

scenarios described in the intent specification.

Table I shows the response times of the different software

layers involved in our system, with reference to the workflow

illustrated in Figure 6. The overall time t1 needed for the



TABLE I
BEHAVIOR-DRIVEN INTENT SPECIFICATION RESPONSE TIME

Mean [ms] Conf. Int. 95% [ms]

t1 2868.999 2632.375 - 3105.622

t2 2725.459 2488.884 - 2962.033

t3 4.861 4.724 - 4.998

t4 4.997 4.543 - 5.451

complete enforcement of an intent in the system is, on average,

smaller than 3 seconds, which is a quite reasonable value as

a service chain setup time. Most of it, i.e. t2, is spent by the

intent-policy interpreter for the computation of the technology-

specific instructions to be submitted to the SDI so as to obtain

the requested service function chain. Times t3 and t4 represent

the system calls to the REST interfaces of the SDN controllers

used to steer traffic inside and outside OpenStack nodes. For

each of them, the interpreter awaits for a positive response,

and in turn it returns a positive response to its caller, the intent

processor.

VI. CONCLUSION

In this paper we presented a northbound interface solution

for network intent specification based on Behavior-Driven De-

velopment. Our approach allows intent expressiveness in En-

glish, Mandarin, or any other natural language, by leveraging

the Gherkin programming language. Our prototype includes

an intent processor, an intent-policy interpreter, and several

Software-defined infrastructure specific policy actuators.

To demonstrate the feasibility, practicality and portability of

our approach, we prototyped it over two practical use cases:

service function chaining deployed on OpenStack, supported

by both ONOS and Ryu controllers, and dynamic firewall

programming. We have shown our approach at work with

intents that launched dynamic chaining of network functions

and dynamic access control rules. We also found that the

overhead and response time of our NBI scales reasonably well

with up to 1000 intents. We believe that the expressiveness of

our behavior-driven northbound intent specification could be

in many cases helpful to make network programming easier

to application developers and network administrators running

DevOps, but also to allow personnel with less technical skills,

e.g. business managers or technical group leaders, to specify a

desired set of operations or services by merely knowing some

(but not many) low-level aspects.
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