
A Behavior Language for Story-based Believable Agents

Michael Mateas 
Carnegie Mellon University 

5000 Forbes Avenue 
Pittsburgh, PA 15213 

michaelm@cs.cmu.edu 
www.cs.cmu.edu/~michaelm 

 

Andrew Stern 
InteractiveStory.net 

andrew@interactivestory.net 
www.interactivestory.net 

 
 
 
 

Abstract 
ABL is a reactive planning language, based on the Oz 
Project language Hap, designed specifically for authoring 
believable agents - characters which express rich 
personality, and which, in our case, play roles in an 
interactive, dramatic story world. Here we give a brief 
overview of the language Hap and discuss the new features 
in ABL, focusing on ABL’s support for multi-character 
coordination. We also describe the ABL idioms we are 
using to organize character behaviors in the context of an 
interactive drama. 

Introduction 

Façade is a serious attempt to move beyond traditional 
branching or hyper-linked narrative, to create a fully-
realized interactive drama - a dramatically interesting 
virtual world inhabited by computer-controlled characters, 
within which the user (hereafter referred to as the player) 
experiences a story from a first person perspective 
(Mateas and Stern 2002, Mateas and Stern 2000). The 
complete, real-time 3D, one-act interactive drama will be 
available in a free public release at the end of 2002. In the 
story, Grace and Trip, a married couple in their early 
thirties, has invited the player over for drinks. 
Unbeknownst to the player, their marriage is in serious 
trouble, and in fact, tonight is the night that all their 
troubles are going to come to the surface. Whether and 
how their marriage falls apart, and the state of the player’s 
relationship with Grace and Trip at the end of the story, 
depends on how the player interacts in the world. The 
player interacts by navigating in the world, manipulating 
objects, and, most significantly, through natural language 
dialog. This project raises a number of interesting AI 
research issues, including drama management for 
coordinating plot-level interactivity, broad but shallow 
support for natural language understanding and discourse 
management, and autonomous believable agents in the 
context of interactive story worlds. This paper focuses on 
the last issue, describing the custom believable agent 
language developed for this project, and the idioms 
developed within this language for organizing character 
behaviors. 

ABL overview 

ABL (A Behavior Language, pronounced “able”) is based 
on the Oz Project (Bates 1992) believable agent language 
Hap developed by A. B. Loyall (Loyall 1997, Bates, 
Loyall and Reilly 1992, Loyall and Bates 1991). The 
ABL compiler is written in Java and targets Java; the 
generated Java code is supported by the ABL runtime 
system.  
 ABL modifies Hap in a number of ways, changing the 
syntax (making it more Java-like), generalizing the 
mechanisms by which an ABL agent connects to a 
sensory-motor system, and, most significantly, adding 
new constructs to the language, including language 
support for multi-agent coordination in the carrying out of 
dramatic action. This section provides an overview of the 
ABL language and discusses some of the ways in which 
ABL modifies or extends Hap. The discussion of joint 
behaviors, the mechanism for multi-agent coordination, 
occurs in its own section below. 

Hap Semantics  
Since ABL builds on top of Hap, here we briefly describe 
the organization and semantics of a Hap program by 
walking through a series of examples. All examples use 
the ABL syntax.  
 Hap/ABL programs are organized as collections of 
behaviors. In sequential behaviors, the steps of the 
behavior are accomplished serially. As each step is 
executed, it either succeeds or fails; step success makes 
the next step available for execution. If any step fails, it 
causes the enclosing behavior to fail. An example 
sequential behavior is shown below. 

sequential behavior AnswerTheDoor() { 
  WME w;    
  with success_test { w = (KnockWME) } wait; 
  act sigh(); 
  subgoal OpenDoor(); 
  subgoal GreetGuest(); 
  mental_act { deleteWME(w); } 
} 

 In this sequential behavior, an agent waits for someone 
to knock on a door, sighs, then opens the door and greets 
the guest. This behavior demonstrates the four basic step 
types, namely wait , act , subgoal , and 

From: AAAI Technical Report SS-02-01. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved. 



mental_act . Wait steps are never chosen for execution; 
a naked wait step in a sequential behavior would block the 
behavior from executing past the wait. However, when 
combined with a success test, a wait step can be used to 
make a demon which waits for a condition to become 
true. Success tests are continuously monitored conditions 
which, when they become true, cause their associated step 
to immediately succeed. Though in this example the 
success test is associated with a wait step to make a 
demon, it can be associated with any step type.  
 Success tests, as well as other tests which will be 
described shortly, perform their test against the agent’s 
working memory. A working memory contains a number 
of working memory elements (WMEs) which hold 
information. WMEs are like classes in an object oriented 
language; every WME has a type plus some number of 
typed fields which can take on values. As described later 
on in the paper, WMEs are also the mechanism by which 
an agent becomes aware of sensed information. In this 
example, the success test is looking for WMEs of type 
KnockWME, which presumably is placed in the agent’s 
working memory when someone knocks on a door. Since 
there are no field constraints in the test, the test succeeds 
as soon as a KnockWME appears.  
 An act step tells the agent’s body (sensory-motor 
system) to perform an action. For graphical environments 
such as Façade, physical acts will ultimately be translated 
into calls to the animation engine, though the details of 
this translation are hidden from the Hap/ABL program. In 
this example, the act makes the body sigh. Note that 
physical acts can fail - if the sensory-motor system 
determines that it is unable to carry out the action, the 
corresponding act step fails, causing the enclosing 
behavior to fail.  
 Subgoal steps establish goals that must be 
accomplished in order to accomplish the behavior. The 
pursuit of a subgoal within a behavior recursively results 
in the selection of a behavior to accomplish the subgoal.  
 Mental acts are used to perform bits of pure 
computation, such as mathematical computations or 
modifications to working memory. In the final step of the 
example, the mental_act deletes the KnockWME (making 
a call to a method defined on ABL agent), since the 
knocking has now been dealt with. In ABL, mental acts 
are written in Java.  
 The next example demonstrates how Hap/ABL selects 
a behavior to accomplish a subgoal through signature 
matching and precondition satisfaction. 

sequential behavior OpenDoor() {  
 precondition {  
    (KnockWME doorID :: door) 
    (PosWME spriteID == door pos :: doorPos) 
    (PosWME spriteID == me  pos :: myPos) 
    (Util.computeDistance(doorPos, myPos) > 100)  
  } 
 specificity 2; 
 // Too far to walk, yell for knocker to come in 
 subgoal YellAndWaitForGuestToEnter(doorID); 
} 
 
sequential behavior OpenDoor() { 
 precondition { (KnockWME doorID :: door) } 

  specificity 1; 
 // Default behavior - walk to door and open 
  . . . 
} 

In this example there are two sequential behaviors 
OpenDoor() , either of which could potentially be used 
to satisfy the goal OpenDoor() . The first behavior 
opens the door by yelling for the guest to come in and 
waiting for them to open the door. The second behavior 
(details elided) opens the door by walking to the door and 
opening it. When AnswerTheDoor()  pursues the 
subgoal OpenDoor() , Hap/ABL determines, based on 
signature matching, that there are two behaviors which 
could possibly open the door. The precondition of both 
behaviors is executed. In the event that only one of the 
preconditions is satisfied, that behavior is chosen as the 
method to use to accomplish the subgoal. In the event that 
both preconditions are satisfied, the behavior with the 
highest specificity is chosen. If there are multiple satisfied 
behaviors with highest specificity, one is chosen at 
random. In this example, the first OpenDoor()  behavior 
is chosen if the lazy agent is too far from the door to walk 
there (“too far” is arbitrarily represented as a distance > 
“100”).  
 The precondition demonstrates the testing of the fields 
of a WME. The ::  operator assigns the value of the 
named WME field on the left of the operator to the 
variable on the right.1 This can be used both to grab 
values from working memory which are then used in the 
body of the behavior, and to chain constraints through the 
WME test.  
 The last example demonstrates parallel behaviors and 
context conditions.  

parallel behavior  
YellAndWaitForGuestToEnter(int doorID) { 
  precondition { (CurrentTimeWME t :: startT) } 
  context_condition {  
    (CurrentTimeWME t <= startT + 10000) } 
  number_needed_for_success 1; 
 
  with success_test {  
    (DoorOpenWME door == doorID) } wait; 
  with (persistent) subgoal YellForGuest(doorID); 
} 

In a parallel behavior, the steps are pursued 
simultaneously. 
YellAndWaitForGuestToEnter(int) 
simultaneously yells “come in” towards the door (the door 
specified by the integer parameter) and waits to actually 
see the door open. The persistent modifier on the 
YellForGuest(int)  subgoal makes the subgoal be 
repeatedly pursued, regardless of whether the subgoal 
succeeds or fails (one would imagine that the behavior 
that does the yelling always succeeds). The 
number _needed _for _success  annotation (only 
usable on parallel behaviors) specifies that only one step 
                                                
1 In ABL, a locally-scoped appropriately typed variable is 
automatically declared if it is assigned to in a WME test 
and has not been previously explicitly declared. 



has to succeed in order for the behavior to succeed. In this 
case, that one step would be the demon step waiting for 
the door to actually open. The context condition is a 
continuously monitored condition which must remain true 
during the execution of a behavior. If the context 
condition fails during execution, then the behavior 
immediately fails. In this example, the context condition 
tests the current time, measured in milliseconds, against 
the time at which the behavior started. If after 10 seconds 
the door hasn’t yet opened (the guest isn’t coming in), 
then the context condition will cause the behavior to fail.  
 As failure propagates upwards through the subgoal 
chain, it will cause the first OpenDoor()  behavior to 
fail, and eventually reach the OpenDoor()  subgoal in 
AnswerTheDoor() . The subgoal will then note that 
there is another OpenDoor()  behavior which has not 
been tried yet and whose precondition is satisfied; this 
behavior will be chosen in an attempt to satisfy the 
subgoal. So if the guest doesn’t enter when the agent yells 
for awhile, the agent will then walk over to the door and 
open it.  
 Finally, note that parallel behaviors introduce multiple 
lines of expansion into a Hap/ABL program. 
Consequently, the current execution state of the program 
is represented by a tree, the active behavior tree (ABT), 
where the leaves of the tree constitute the current set of 
executable steps. 
 These examples give a sense for the Hap semantics 
which ABL reimplements and extends. There are many 
other features of Hap (also implemented in ABL) which it 
is not possible to re-describe here, including how multiple 
lines of expansion mix (based on priority, blocking on 
physical acts, and a preference for pursing the current line 
of expansion), declaration of behavior and step conflicts  
(and the resulting concept of suspended steps and 
behaviors), and numerous annotations which modify the 
default semantics of failure and success propagation. The 
definitive reference on Hap is of course Loyall’s 
dissertation (Loyall 1997).  

ABL Extensions 
ABL extends Hap in a number of ways, including: 

 • Generalizing the mechanisms for connecting to the 
sensory-motor system. The ABL runtime provides 
abstract superclasses for sensors and actions. To 
connect an ABL program to a new sensory-motor 
system (e.g. animation engine, robot), the author 
merely defines specific sensors and actions as concrete 
subclasses of the abstract sensor and action classes. 
ABL also includes additional language constructs for 
binding sensors to WMEs. ABL then takes 
responsibility for calling the sensors appropriately 
when bound WMEs are referenced in working memory 
tests. 

• Atomic behaviors. Atomic behaviors prevent other 
active behaviors from mixing in. Atomic behaviors are 
useful for atomically updating state (e.g. updating 

multiple WMEs atomically), though they should be 
used sparingly, as a time-consuming atomic behavior 
could impair reactivity.  

• Reflection. ABL gives behaviors reflective access to 
the current state of the ABT, supporting the authoring 
of meta-behaviors which match on patterns in the ABT 
and dynamically modify other running behaviors. 
Supported ABT modifications include succeeding, 
failing or suspending a goal or behavior, and modifying 
the annotations of a subgoal step, such as changing the 
persistence or priority. Safe reflection is provided by 
wrapping all ABT nodes in special WMEs. Pattern 
matching on ABT state is then accomplished through 
normal WME tests. A behavior can only touch the ABT 
through the reflection API provided on these wrapper 
WMEs. 

• Multiple named memories. Working memories can be 
given a public name, which then, through the name, are  
available to all ABL agents. Any WME test can 
simultaneously reference multiple memories (the 
default memory is the agent’s private memory). Named 
memories are used by the joint behavior mechanisms 
(see below) for the construction of team memories. In 
Façade, named memories are also useful for giving 
agents access to a global story memory.  

• Goal spawning. In addition to subgoaling, which roots 
the selected behavior at the subgoal step of the parent 
behavior, a behavior can spawn a goal, which roots the 
subgoal elsewhere in the tree (the default is the root 
collection behavior). Unlike a normal subgoal, the 
success or failure of a spawned goal does not effect the 
success or failure of the behavior which spawned the 
goal (though it will effect the success or failure of the 
behavior where it is rooted). The spawned goal 
continues to be held after the behavior which spawned 
the goal goes away (succeeds or fails). Goal spawning 
is useful for starting a behavior which should continue 
past the end (and during the suspension) of the 
spawning parent.  

Beat Idioms 

Developing a believable agent language such as ABL 
involves simultaneously defining and implementing 
language constructs which support the authoring of 
expressive behavior, and the exploration of idioms for 
expressive behavior using the language. In Façade, 
character behavior is organized around the dramatic beat, 
in the theory of dramatic writing the smallest unit of 
dramatic action (see for example McKee 1997). This 
section describes the ABL idioms used in authoring beat 
behaviors.  
 Beat behaviors are divided into three categories: beat 
goals, handlers, and cross-beat behaviors. A greeting 
beat, in which Trip greets the player at the door, will 



provide examples of these three behaviors categories and 
the relationships between the categories.1  
 In the greeting beat, Trip wants to initially greet the 
player (“Hey! So glad you could make it. Thanks for 
coming over man.”), yell for Grace (“Grace, come on out! 
Our guest is here.”), and invite the player in (“Come on 
in, don’t be shy”). These are the three beat goals of the 
greeting beat and should be accomplished sequentially.  
 Of course, during this greeting, the player will engage 
in various actions which should be handled in the context 
of the greeting. These interactions take the form of 
physical movement, object manipulation, and natural 
language text typed by the player. At the beat behavior 
level, player text is captured by WMEs representing the 
meaning of the text as a discourse act.2 Handlers are 
demons responsible for handling player interaction. For 
the purposes of this example, assume that the greeting 
beat wants to handle the cases of the player greeting Trip, 
the player referring to Grace, and the player preemptively 
walking into the apartment before she has been invited 
in.3 The code below starts the handlers and begins the 
sequence of beat goals.  

parallel behavior StartTheBeat() { 
  with (priority 1) 
  subgoal StartTheHandlers(); 
  subgoal BeatGoals(); 
} 
 
parallel behavior StartTheHandlers() { 
  with (persistent, priority 20)  
    subgoal handlerDAGreet(); 
  with (persistent, priority 15) 
    subgoal handlerDAReferTo_grace(); 
  with (priority 10, ignore_failure) 
    subgoal handlerPreInviteAptMove(); 
} 
 
sequential behavior BeatGoals() { 
  with (persistent when_fails)  
    bgOpenDoorAndGreetPlayer(); 
  with (persistent when_fails) bgYellForGrace(); 
  with (persistent when_fails) bgInviteIntoApt(); 
} 

 Handlers are started in various priority tiers 
corresponding to the relative importance of handling that 
interaction. Priorities are used to resolve cases where 
another player interaction happens in the middle of 
handling the previous player interaction, or when 
simultaneous player interactions occur. A higher priority 
handler can interrupt a lower priority handler, while same 
                                                
1 To simplify the discussion, the example will focus on a 
beat in which only a single character interacts with the 
player. See the next section for a discussion of ABL’s 
support for multi-agent coordination. 
2 For translating surface text into formally represented 
discourse acts, Façade employs a custom rule language for 
specifying templates and discourse chaining rules. The 
discourse rule compiler targets Jess, a CLIPS-like forward-
chaining rule language (available at 
http://herzberg.ca.sandia.gov/jess/). 
3 The real greeting beat employs ~50 handlers. 

or lower priority handlers must wait for a higher priority 
handler to finish before handling the nested interaction. 
Generally handlers are persistent; when a handler finishes 
responding to an interaction, it should “reset” and be 
ready to deal with another interaction in the same 
category. In general handlers are higher priority than beat 
goals so that if an interaction occurs in the middle of the 
beat goal, the handler will “wake up” and interrupt it.  
 In general, handlers are meta-behaviors, that is, they 
make use of reflection to directly modify the ABT state. 
When a handler triggers, it fails the current beat goal, 
potentially succeeds other beat goals, possibly pursues a 
beat goal within the handler (effectively reordering beat 
goals), and engages in its own bit of handler specific 
behavior. In some cases the handler specific behavior may 
entail mapping the recognized action to a different 
recognized action, which will then trigger a different 
corresponding handler. Below is a simplified version of 
handlerDAReferTo _grace() .  

sequential behavior handlerDAReferTo_grace() { 
  with (success_test { (DAReferToWME topicID ==  
            eTopic_grace) } ) wait; 
  with (ignore_failure) subgoal    
    handlerDAReferTo_grace_Body();  
  subgoal DAReferTo_grace_Cleanup();       
} 
 
// by mentioning Grace, we will say "Grace? uh  
// yeah" and then yell for Grace but only if we 
// aren't currently doing bgYellForGrace! 
sequential behavior handlerDAReferTo_grace_Body() 
{ 
 precondition {  
    (GoalStepWME signature == "bgYellForGrace()"     
                 isExecuting == false) } 
  subgoal handlerDA_InterruptWith( 
    eTripScript_graceuhyeah, 
    eFullExpression_blank);     
 subgoal handlerDAReferTo_grace_Body2(); 
} 
 
// we aren't currently doing yellForGrace, and if 
// we haven't completed yellForGrace, then do it 
sequential behavior   
  handlerDAReferTo_grace_Body2() { 
  // Goal still exists in the ABT so it hasn't  
  // been completed 
  precondition {  
   (GoalStepWME signature == "bgYellForGrace()")   
  }  
  specificity 2; 
  subgoal SetBeatGoalSatisfied( 
    "bgYellForGrace()", true); 
 with (persistent when_fails) 
    subgoal bgYellForGrace(); 

} 
 
// otherwise we must have already completed  
// yellForGrace, so say "She's coming, I don't  
// know where she's hiding" 
sequential behavior  
  handlerDAReferTo_grace_Body2() { 
 specificity 1; 
 subgoal handlerDA_InterruptWith( 
    etripScript_shescomingidontknow,  
    eFullExpression_smallSmile);     
} 

 When the player refers to Grace (perhaps saying, “I’m 
looking forward to meeting Grace”, or “Where is Grace”, 
or “Hi Grace”) this handler is triggered. The handler body 



behavior uses reflection to test if the beat goal to yell for 
Grace is currently not executing. If it is executing (e.g. 
Trip was in the middle of yelling for Grace when the 
player said “Where’s Grace”), the body precondition fails, 
causing the handler to fail, which then restarts because of 
the persistence annotation, leaving Trip ready to handle 
another reference to Grace. Effectively Trip ignores 
references to Grace if he’s in the middle of yelling for 
Grace. Otherwise, Trip interrupts whatever he is saying 
with “Oh, yeah…”. handlerDAInterruptWith  uses 
reflection to fail the currently executing beat goal, thus, as 
the name implies, interrupting the beat goal. When the 
handler is finished, the persistent _when_fails  
annotation will causes any handler-failed beat goals to 
restart. After saying “Oh yeah…” Trip either performs the 
yell for Grace beat goal within the handler (and succeeds 
it out of the BeatGoals  behavior) or, if yell for Grace 
has already happened, says “She’s coming. I don’t know 
where she’s hiding.” This handler demonstrates how 
player interaction can cause beat goals to be interrupted, 
effectively reordered, and responded to in a way 
dependent on what has happened in the beat so far.  
 The final category of beat behaviors are the cross-beat 
behaviors. These are behaviors that cross beat goal and 
handler boundaries. An example beat goal behavior is the 
staging behavior which an agent uses to move to certain 
dramatically significant positions (e.g. close or far 
conversation position with the player or another agent, 
into position to pickup or manipulate another object, etc.). 
A staging request to move to close conversation position 
with the player might be initiated by the first beat goal in 
a beat. The staging goal is spawned to another part of the 
ABT. After the first beat goal completes its behavior, 
other beat goals and handlers can happen as the agent 
continues to walk towards the requested staging point. Of 
course at any time during a cross-beat behavior, beat 
goals and handlers can use reflection to find out what 
cross-beat behaviors are currently happening and succeed 
or fail them if the cross-beat behaviors are inappropriate 
for the current beat goal’s or handler’s situation.  

Support for Joint Action 

In (Mateas and Stern 2000) we argued that much work in 
believable agents is organized around the principle of 
strong autonomy, and that, for story-based believable 
agents, this assumption of strong autonomy is 
problematic. An agent organized around the notion of 
strong autonomy chooses its next action based on local 
perception of its environment plus internal state 
corresponding to the goals and possibly the emotional 
state of the agent. All decision making is organized 
around the accomplishment of the individual, private 
goals of the agent. But believable agents in a story must 
also participate in story events, which requires making 
decisions based on global story state (the entire past 
history of interaction considered as a story) and tightly 
coordinating the activity of multiple agents so as to 

accomplish joint story goals. In order to resolve the 
tension between local and global control of characters, we 
proposed organizing behaviors around the dramatic beat. 
In order to facilitate the coordination of multiple 
characters, we proposed extending the semantics of Hap, 
in a manner analogous to the STEAM multi-agent 
coordination framework (Tambe 1997). This section 
describes joint behaviors, ABL’s support for multi-agent 
coordination. 
 The driving design goal of joint behaviors is to 
combine the rich semantics for individual expressive 
behavior offered by Hap with support for the automatic 
synchronization of behavior across multiple agents. 

Joint Behaviors 
In ABL, the basic unit of coordination is the joint 
behavior. When a behavior is marked as joint, ABL 
enforces synchronized entry and exit into the behavior. 
Part of the specification for an “offer the player a drink” 
behavior from Façade is shown below. To simplify the 
discussion, the example leaves out the specification of 
how player activity would modify the performance of this 
beat. This will be used as the guiding behavior 
specification in the joint behavior examples provided in 
this paper. 

(At the beginning of the behavior, Trip starts walking 
to the bar. If he gets to the bar before the end of the 
behavior, he stands behind it while delivering lines.) 
Trip : A beer? Glass of wine?  (Grace smiles at 
player. Short pause)  
Trip : You know I make a mean martini. (Grace 
glances at Trip with slight frown partway into line. 
At the end of line, rolls her eyes at the ceiling.) 
Grace: (shaking her head, smiling) Tch, Trip just 
bought these fancy new cocktail shakers. He’s 
always looking for a chance to show them off. (If 
Trip is still walking to the bar, he stops at “shakers”. 
At “shakers” Trip looks at Grace and frowns slightly. 
At the end of the line he looks back at player and 
smiles. If he was still on the way to the bar, he 
resumes walking to the bar). 

In order to perform this coordinated activity, the first 
thing that Grace and Trip must do is synchronize on 
offering a drink, so that they both know they are working 
together to offer the drink. Grace and Trip both have the 
following behavior definition in their respective behavior 
libraries.  
 
joint sequential behavior OfferDrink() { 
  team Grace, Trip; 
  // The steps of Grace’s and Trip’s OfferDrink() 
  // behaviors differ. 
} 
 
The declaration of a behavior as joint tells ABL that entry 
into and exit from the behavior must be coordinated with 
team members, in this case Grace and Trip. Entry into a 
behavior occurs when the behavior is chosen to satisfy a 
subgoal. Exit from the behavior occurs when the behavior 



succeeds, fails, or is suspended. Synchronization is 
achieved by means of a three-phase commit protocol: 

1. The initiating agent broadcasts an intention (to enter, 
succeed, fail or suspend) to the team.  

2. All agents receiving an intention respond by, in the 
case of an entry intention, signaling their own intention 
to enter or a rejection of entry, or in the case of exit 
signaling their intention own intention to succeed, fail, 
or suspend. 

3. When an agent receives intentions from all team 
members, it sends a ready message. When ready 
messages from all agents have been received, the agent 
performs the appropriate entry into or exit from the 
behavior.1  

 Imagine that Trip pursues an OfferDrink()  subgoal 
and picks the joint OfferDrink()  behavior to 
accomplish the subgoal. After the behavior has been 
chosen, but before it is added to the ABT, Trip negotiates 
entry with his teammate Grace. On receipt of the 
intention-to-enter OfferDrink() , Grace checks if she 
has a joint behavior OfferDrink()  with a satisfied 
precondition. If she does, she signals her intention-to-
enter. Trip and Grace then exchange ready-messages and 
enter the behavior. In Trip’s case the behavior is rooted 
normally in the ABT at the subgoal which initiated 
behavior selection, while in Grace the spawned subgoal 
and corresponding joint behavior are rooted at the 
collection behavior at the root of the ABT.2 If Grace 
didn’t have a satisfied joint OfferDrink()  behavior, 
she would send a reject message to Trip, which would 
cause Trip’s OfferDrink()  subgoal to fail, with all the 
normal effects of failure propagation (perhaps causing 
Trip to instead choose a lower specificity individual 
OfferDrink()  behavior). Note that during the 
negotiation protocol, the agents continue to pursue other 
lines of expansion in their ABT’s; if the protocol takes 
awhile to negotiate, behavior continues along these other 
lines.  
 The negotiation protocol may seem overly complex. In 
the case that all the team members are on the same 
machine (the case for Façade), one can assume that 
negotiation will be very fast and no messages will be lost. 
In this case agents only need to exchange a pair of 
messages for behavior entry, while the initiator only needs 
to send a single message for behavior exit. However, this 
simplified protocol would break in the distributed case 
where team member’s messages may be lost, or in cases 
where an agent might disappear unexpectedly (e.g. a 
game where agents can be killed) in the middle of the 
negotiation. More interestingly, the more complex 
                                                
1 Appropriate timeouts handle the case of non-responding 
agents who fail to send appropriate intention or ready 
messages. 
2 A collection behavior is a variety of parallel behavior in 
which every step need only be attempted for the behavior 
to succeed. 

negotiation protocol provides authorial “hooks” for 
attaching transition behaviors to joint behavior entry and 
exit. Sengers, in her analysis of the Luxo Jr. short by 
Pixar, identified behavior transitions as a major means by 
which narrative flow is communicated (Sengers 1998a). 
Animators actively communicate changes in the behavior 
state of their characters (e.g. the change from playing to 
resting) by having the characters engage in short 
transitional behaviors that communicate why the behavior 
change is happening. Sengers’ architectural extensions to 
Hap provided support for authoring individual transition 
behaviors (Sengers 1998a, Sengers 1998b). However, she 
also noted that animators make use of coordinated multi-
character transitions to communicate changes in multi-
character behavioral state, but did not provide 
architectural support for this in her system. By exposing 
the negotiation protocol to the agent programmer, ABL 
can support the authoring of behaviors which 
communicate transitions in multi-agent behavior state. 

Posting Actions and Step Synchronization 
In addition to synchronizing on behavior entry and exit, 
ABL provides other mechanisms for synchronizing 
agents, namely support for posting information to a team 
working memory, and the ability to synchronize the steps 
of sequential behaviors. Below are the two 
OfferDrink()  behaviors for Trip and Grace.  

Trip’s behavior:  

joint sequential behavior OfferDrink() { 
  team Trip, Grace; 
  
  with (post-to OfferDrinkMemory)  
    // Individual behavior for initial offer 
    subgoal iInitialDrinkOffer();  
  subgoal iLookAtPlayerAndWait(0.5); 
  with (synchronize) subgoal jSuggestMartini();  
 
  // react to Grace’s line about fancy shakers 
  with (synchronize) subgoal  
    jFancyCocktailShakers();  
} 

Grace’s behavior: 

joint sequential behavior OfferDrink() { 
  team Trip, Grace; 
 
  // wait for Trip to say first line 
  with (success_test { OfferDrinkMemory 
    (CompletedGoalWME name == iInitialDrinkOffer 
                      status == SUCCEEDED)})     
    wait; 
  subgoal iLookAtPlayerAndWait(0.5); 
 
  // react to Martini suggestion 
  with (synchronize) subgoal jSuggestMartini();  
  with (synchronize) subgoal   
    jFancyCocktailShakers();  
} 

For readability, the subgoals have been named with an 
initial “i” if only an individual behavior is available to 
satisfy the subgoal, and named with an initial “j” if only a 
joint behavior is available.  
 Whenever a joint behavior is entered, the ABL runtime 
automatically creates a new named team working memory 



which persists for the duration of the joint behavior.1 This 
team memory, which can be written to and read from by 
any member of the team, can be used as a communication 
mechanism for coordinating team activity. The first 
subgoal of Trip’s behavior is annotated with a post-to  
annotation; for any subgoal marked with post-to , a 
CompletedGoalWME is added to the named memory 
when the subgoal completes (with either success or 
failure). A CompletedGoalWME, the definition of which 
is provided by the ABL runtime, contains the name of the 
goal, its completion state (success or failure), the name of 
the agent who performed the goal, any goal arguments, 
and a timestamp. The post-to  annotation automatically 
fills in the appropriate arguments. This facility, inspired 
by the sign management system in Senger’s extension of 
Hap (Sengers 1998a, Sengers 1998b), can be used to 
provide an agent with a selective episodic memory. This 
facility is useful even in a single agent situation, as the 
future behavior of an agent may conditionally depend on 
past episodic sequences. Since the ABT no longer has 
state for already completed subgoals and actions, an ABL 
agent’s reflective access to its own ABT doesn’t provide 
access to past episodic sequences. However, in a team 
situation, access to episodic state can be used to 
coordinate team members. In the first line of Grace’s 
behavior, a demon step monitors the team memory for the 
completion of iInitialDrinkOffer() . In the 
behavior spec above, Grace doesn’t begin directly 
reacting to Trip until after Trip’s first line. Keep in mind 
that an ABL agent pursues multiple lines of expansion, so 
while Grace is waiting for Trip to complete his first line, 
she will continue to behave, in this case engaging in small 
idle movements as she smiles at the player. When Trip 
completes his first subgoal, an appropriate 
CompletedGoalWME is posted to the team memory; Trip 
then moves onto his second subgoal, to look at the player 
and wait for about half a second. The posting of the 
CompletedGoalWME causes Grace’s first line to succeed, 
and she also, independently, waits for about half a second. 
One of them will be first to finish waiting, and will move 
onto the next line, which, being a joint behavior, 
reestablishes synchronization. 
 The last two subgoals of Grace’s and Trip’s behaviors 
are annotated with a synchronize  annotation. To 
understand what this does, first imagine the case where 
the annotation is absent. Assume Grace is the first to 
finish the second subgoal (the goal to look at the player 
and wait). Grace will then attempt to satisfy the subgoal 
jSuggestMartini() , causing Trip to spawn this goal 
at the root of his ABT and enter his local version of 
jSuggestMartini() . As they jointly pursue the 
jSuggestMartini()  line of expansion, Trip will 
continue to pursue the OfferDrink()  line of 
expansion, eventually initiating jSuggestMartini()  
                                                
1 By default the name of the team memory is the 
concatenation of the name of the behavior and the string 
“Memory”.  

on his side, causing Grace to spawn the goal at her root 
and enter another copy of the behavior. At this point each 
is pursuing two copies of the joint behavior 
jSuggestMartini() , one copy rooted at the subgoal 
within OfferDrink() , and the other rooted at the root 
of the ABT. This is not what the behavior author 
intended; rather it was intended that when the characters 
synchronize on jSuggestMartini() , they would each 
begin pursing their local version of 
jSuggestMartini()  rooted at the respective subgoals 
within their local versions of OfferDrink() . The 
synchronize  annotation allows a behavior author to 
specify that a joint behavior should be rooted at a specific 
subgoal, rather than at the ABT root. Synchronize  is 
only allowed within joint behaviors as an annotation on a 
goal that has at least one joint behavior with matching 
signature in the behavior library. In the case of sequential 
joint behaviors, synchronization on a synchronize  
subgoal forces the success of all steps between the current 
step counter position and the synchronize  subgoal, 
and moves the step counter up to the synchronize  
subgoal.  
 The example used in this section did not take account 
of player interaction. Multi-agent beats use the same 
idioms as described above for coordinating beat goals, 
responding to player interaction, and pursing longer term 
goals; the various beat behaviors just become joint 
behaviors instead of individual behaviors.  

Conclusion 

ABL provides a rich programming framework for 
authoring story-based believable agents. Here we’ve 
described ABL’s novel features and provided examples of 
how we’re using these features to author characters for 
Façade, an interactive dramatic world. 

References 

Bates, J. 1992. Virtual Reality, Art, and Entertainment. 
Presence: The Journal of Teleoperators and Virtual 
Environments 1(1): 133-138. 

Bates, J., Loyall, A. B., and Reilly, W. S. 1992. 
Integrating Reactivity, Goals, and Emotion in a Broad 
Agent. Proceedings of the Fourteenth Annual Conference 
of the Cognitive Science Society, Bloomington, Indiana, 
July 1992. 

Loyall, A. B. 1997. Believable Agents. Ph.D. thesis, Tech 
report CMU-CS-97-123, Carnegie Mellon University. 

Loyall, A. B., and Bates, J. 1991. Hap: A Reactive, 
Adaptive Architecture for Agents. Technical Report 
CMU-CS-91-147. Department of Computer Science. 
Carnegie Mellon University. 

Mateas, M. and Stern, A. 2000. Towards Integrating Plot 
and Character for Interactive Drama. In Working notes of 
the Social Intelligent Agents: The Human in the Loop 



Symposium. AAAI Fall Symposium Series. Menlo Park, 
CA: AAAI Press. 

Mateas, M. and Stern, A. 2002 (forthcoming). Towards 
Integrating Plot and Character for Interactive Drama. In 
K. Dautenhahn (Ed.), Socially Intelligent Agents: The 
Human in the Loop. Kluwer.  

McKee, R. 1997. Story: Substance, Structure, Style, and 
the Principles of Screenwriting. New York, NY: 
HarperCollins. 

Sengers, P.  1998a. Anti-Boxology: Agent Design in 
Cultural Context. Ph.D. Thesis. School of Computer 
Science, Carnegie Mellon University. 

Sengers, P. 1998b. Do the Thing Right: An Architecture 
for Action-Expression. In Proceedings of the Second 
International Conference on Autonomous Agents. pp. 24-
31. 

Tambe, M. 1997. Towards Flexible Teamwork. Journal of 
Artificial Intelligence Research (7) 83-124. 

 


