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Abstract

We examine the reference-dependent risk preferences of Kőszegi and Rabin (2007), focusing on

their choice-acclimating personal equilibria concept. We relate their model to other existing gen-

eralizations of expected utility. We demonstrate that linear gain-loss choice-acclimating personal

equilibria is equivalent to the intersection of quadratic utility and pessimistic rank-dependent

utility. However, it has only a trivial intersection (i.e. expected utility) with other reference-

dependent preferences. We use these relationships to extend our understanding of Kőszegi and

Rabin’s model: linking their functional form to behavior; demonstrating new applications; and

deriving new tests and looking for support in existing experimental data. (98 words)
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1 Introduction

The notion of reference dependence was first introduced in economics by Markowitz (1952) and was

formalized by Kahneman and Tversky (1979). Their reference-dependent model, prospect theory,

has become popular because it accommodates common behavior that is anomalous within the

expected utility framework. However, Kahneman and Tversky, in both their original formulation

as well follow-up work, did not specify how the reference point was formed, making it difficult to

derive general predictions and tests. Recently, Kőszegi and Rabin (2006, 2007) proposed a model

of reference dependence that specifies how individuals form their reference point. In their model

consumers care about consumption utility (over final wealth) as well as gain-loss utility (utility over

deviations from the reference point). The reference point is determined by the probabilistic beliefs

of the decision-maker about the choice sets she will face, and the decision she will make for each

choice set (i.e. expectations). Since expectations determine the reference point, Kőszegi and Rabin

provide a solution concept that determines expectations endogenously. Kőszegi and Rabin’s model

has inspired numerous applications: Heidhues and Kőszegi (2008, 2012); Sydnor (2010); Herweg,

Müller and Weinschenk (2010); Abeler, Falk, Goette and Huffman (2011); Card and Dahl (2011);

Crawford and Meng (2011); Pope and Schweitzer (2011); Carbajal and Ely (2012); Karle and Peitz

(2012); and Eliaz and Spiegler (2013), among others.

Despite its popularity, it can be difficult to understand the implications of Kőszegi and Rabin’s

model for behavior, even in simple domains, due to its complicated functional form. For example,

examining choice over risk, little is known about how to distinguish their theory from other models of

reference dependence, such the earlier models of Gul (1991), Bell (1985) and Loomes and Sugden

(1986), all which have similar formulations as Kőszegi and Rabin (2007) but specify a different

process of reference point formation.1 More generally, it also is not clear how Kőszegi and Rabin’s

model relates to other model of non-expected utility theory which rely on different psychological

intuitions, such as rank-dependent utility (introduced by Quiggin, 1982).

We focus on preferences induced by Kőszegi and Rabin’s (2007) choice-acclimating personal

equilibrium, as well as those that have linear gain-loss utility, and refer to these preferences as CPE
(we generalize our analysis in Section 6 to accommodate non-linear gain-loss utility).2 Kőszegi

and Rabin (2007) discuss how CPE captures the idea of a decision-maker committing to a choice

long before uncertainty is resolved (as in insurance choice). Therefore, in line with the motivation

1Loomes and Sugden (1982), and Bell (1982) construct models of regret, which have a very different psychological
motivation; comparisons are not across different outcomes for a single lottery, but across different possible lotteries.

2Kőszegi and Rabin (2007) use two other solution concepts. They first consider unacclimated personal equilibrium
(UPE). x is a UPE if it is better than all other options when x is a reference point. The second one is a refinement
of UPE which is called the preferred personal equilibrium (PPE). Unlike PPE, which can induce intransitive choice,
CPE induces choices that satisfy transitivity, and so can be represented using a preference relation. In independent
work Freeman (2012) characterizes the PPE solution concept. He mentions examples of CPE, including quadratic
utility functionals, but does not consider the implications for choice under risk that we do.
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provided by Kőszegi and Rabin (2007), the results in this paper should be interpreted in the context

of choice where uncertainty will not be resolved immediately, but rather in the future, so that the

chosen lottery has time to become the reference point. Due to the relative tractability of CPE
it has been widely applied and tested (e.g. Sydnor, 2010, Herweg, Müller and Weinschenk, 2010,

Abeler, Falk, Goette and Huffman, 2011, Ericson and Fuster, 2011, Gill and Prowse, 2012, and

Barseghyan, Molinari, O’Donoghue, and Teitelbaum, 2013).

We first investigate the relationship between CPE and other major non-expected utility (non-

EU) theories of choice under risk. Our first observation in Section 3 is that CPE is a subset of

the quadratic utility class introduced by Machina (1982) and Chew, Epstein and Segal (1991).

CPE and quadratic utility representations share the feature that they represent deviations from

expected utility as utility distortions with correctly assessed probabilities. Hence deviations occur

not because of mistakes in calculating objective probabilities but rather because of preferences.

As Kőszegi and Rabin (2007) note; “We assume that a person correctly predicts her probabilistic

environment and her own behavior in that environment, so that her beliefs fully reflect the true

probability distribution of outcomes.” Moreover, quadratic utility functionals share a similar psy-

chological intuition to Kőszegi and Rabin (2007), each outcome is evaluated in comparison to all

other outcomes in the support of the lottery.

We next show that CPE is also a subset of rank-dependent utility (RDU). This implies that there

is an equivalence between correct beliefs, but non-standard utility defined over more than just final

wealth à la CPE and a type of distorted beliefs à la rank dependent utility, but standard utility over

final wealth. Moreover, the Bernoulli utility function over degenerate outcomes (the “consumption

utility” of Kőszegi and Rabin, 2007) is the same in the two representations. Therefore, even if utility

over degenerate outcomes can be identified from a different context, we cannot distinguish between

patterns of choice generated by CPE and some types of rank-dependent utility. This is surprising,

since looking purely at the functional form, it would seem to be the case that CPE should generate

similar behavior to cumulative prospect theory (formalized by Tversky and Kahneman, 1992), but

without the effects of probability weighting. As we make clear, in the case of linear gain-loss utility,

the correct comparison is actually the opposite — CPE is exactly equivalent to cumulative prospect

theory, but with only the probability weighting, and no gain-loss utility.

In addition to CPE, there are other models that attempt to capture similar psychological in-

tuitions regarding reference dependence. These models appear on the surface to be quite close in

nature. Kőszegi and Rabin (2007) themselves say, “[e]xcept that we specify the reference point

as a lottery’s full distribution rather than its certainty equivalent, [our] concept is similar to the

disappointment-aversion models of Bell (1985), Loomes and Sugden (1986), and Gul (1991).” How-

ever, an implication of the relationship of CPE to quadratic preferences and RDU is that the

intersection of CPE and other classical models of endogenous reference points, such as the models
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of disappointment aversion introduced by Gul (1991), Bell (1985), and Loomes and Sugden (1986),

is only expected utility. In other words, despite trying to capture the same intuition about the

effect of expectations on preferences, these models do so in distinct ways.3 In fact, if a decision-

maker exhibits preferences consistent with CPE and either Gul’s models or Bell-Loomes-Sugden’s

models of disappointment aversion, then they must be expected utility maximizers; in other words

they must not exhibit any reference dependence at all. Intuitively, models of reference dependence

capture psychological intuitions not only about loss-aversion (or first-order risk aversion) but also

other behavior, such at attitude towards randomization, or the mixing of indifferent lotteries. For

example, preferences in CPE always exhibit aversion to the mixing of indifferent lotteries. In con-

trast, Gul’s preferences always exhibit indifference to the mixing of already indifferent lotteries.

Understanding these distinctions between models of reference dependence allows us to point out

directions in which to differentiate CPE from other models of reference dependence using choice

data, which we do in Section 7.

The relationships between CPE and other non-EU theories can be used as a stepping stone to

generate new results linking choice behavior to CPE’s functional form (characterization) and their

notions of risk and loss aversion (comparative statics), allowing us to better understand CPE. In

Section 4 we first identify the behavioral foundations of CPE: we show that the intersection of

pessimistic RDU and quadratic utility is exactly CPE. Moreover, we show that CPE preferences

have a simple graphical representation — the indifference curves take on the shape of ellipses. The

location of center of the ellipses depends only on the loss aversion parameter. On the other hand,

the direction and relative lengths of the axes of the ellipses is governed solely by the consumption

utility function.

Our characterization allows us to identify loss aversion and consumption utility and compare

them across individuals using observed choices. Although Kőszegi and Rabin (2007) discuss how to

identify loss aversion and the consumption utility function from choice behavior, it relies on indi-

viduals who make choices over risk where there is immediate resolution but delayed consequences,

and so individuals do not experience any gain-loss utility. In contrast, our results hold within the

standard CPE framework. We first identify what specifications of CPE are consistent with classical

notions of risk aversion (i.e. aversion to mean preserving spreads). Our results point to a tight

linkage between whether preferences respect the orderings induced first-order stochastic dominance

and mean preserving spreads. Kőszegi and Rabin (2007) note that their preferences may not respect

first-order stochastic dominance. We are not only able to characterize, in terms of parameters, when

3The results derived in this paper consider an arbitrary number of outcomes. If we examine choice over restricted
domains the relationships can differ. If choices are defined on lotteries over only 2 outcomes, CPE, Gul’s model and
the Bell-Loomes-Sugden model are all subsets of RDU. For example, for CPE the probability weighting function is
p+ (1− λ)(1− p)p. For Gul the weighting function is p(1+β)

1+βp
. Because many studies only look at choices on the set

of lotteries defined over two degenerate outcomes they provide limited data to distinguish many non-expected utility
models from one another.
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such violations occur, but also show that, unless the Bernoulli utility function is linear, whenever

preferences violate first-order stochastic dominance they must also violate the ordering induced by

mean-preserving spreads. That is, we can find a lottery F that is a mean-preserving spread of G

and where F is preferred to G by the decision-maker.

We then go on to show to separately identify within an individual, as well as compare across

individuals, the coefficient of loss aversion and the curvature of the consumption (Bernoulli) utility

function using observed behavior. These results are useful because they link the functional form of

CPE, which can be difficult to use with lotteries over many outcomes, to relatively simple behavioral

postulates which can often be easily verified. Moreover, the identification and comparison of these

components of utility can be accomplished separately. For example, we can identify and compare

loss aversion across individuals without needing to know anything about their consumption utility

functions.

In Section 5 we use the relationships between CPE and other non-EU models of behavior to

apply CPE preferences in a variety of new environments. For example, we show that dynamic,

recursive CPE preferences cannot accommodate a universal preference for early (late) resolution of

uncertainty (as conjectured by Kreps and Porteus, 1978) or a universal preference for one-shot res-

olution of uncertainty (as conjectured by Dillenberger, 2010). Moreover, we show that CPE suffers

from a very similar calibration critique to the one Rabin (2000) leveled against expected utility:

plausible choices over small stakes lotteries imply implausible choices over large stakes lotteries.

Thus, in order to address the Rabin critique we must look beyond linear gain-loss functions.

In Section 6, we do exactly this, considering more general forms of CPE, where the gain-

loss utility function may not be linear. We discuss whether and how our results from previous

subsections extend when more general functional forms are allowed.

In Section 7 we build on our previous results to better relate Kőszegi and Rabin’s model, as

well as other models of non-expected utility, to experimental data. First, our results allow us to use

much of the existing literature on experimental choice over risky outcomes to directly test CPE.

Thus, our results allow us to expand the set of relevant evidence that can be used to evaluate the

predictions of CPE. In looking at this evidence, we find relatively strong evidence against linear

gain-loss utility, and mixed evidence for more general forms of gain-loss utility. Second, we show

how to use existing experiments originally designed to test CPE, such as Abeler, Falk, Goette and

Huffman (2011), to shed light on other models of non-expected utility. Third, we discuss how the

behavioral equivalence between different models of non-expected utility can influence our ability

to identify preference parameters — in particular the shape of the probability weighting function

and the coefficient of loss aversion. Last, we show how the relationships we develop in Section 3

provide new ways to experimentally distinguish CPE from other models of reference dependence.

Section 8 concludes.
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2 Kőszegi-Rabin Preferences

Consider an interval [w, b] = X ⊂ R of money. Let ∆X be the set of all simple lotteries (i.e.

probability measures with finite support) on X. A lottery F ∈ ∆X is a function from X to [0, 1]

such that
∑

x∈X F (x) = 1 and the number of prizes with non-zero probability is finite. F (x)

represents the probability assigned to the outcome x in lottery F . For any lotteries F,G we let

αF + (1−α)G be the lottery that yields x with probability αF (x) + (1−α)G(x). Denote by δx the

degenerate lottery that yields x with probability 1, i.e. δx(x) = 1. We will also refer to δx simply

as x. We will often only consider lotteries over three outcomes. For three outcomes x, y, z ∈ X, we

denote the unit simplex of possible lotteries over those three outcomes as ∆x,y,z, or for an arbitrary

set of 3 outcomes, ∆3. We will refer to the best outcome as δ̄, the worst outcome as δ and the

middle outcome as δ̂. % is a weak order over ∆X which represents the decision-maker’s preferences

over lotteries.

Kőszegi and Rabin (2006), building on Bowman, Minehart and Rabin (1999), extend the idea

of Tversky and Kahneman (1979) by having individuals’ utility depend both on gain-loss utility

(the comparison of outcomes to a reference) and consumption utility (which depends only on the

absolute value of the outcomes, rather than a comparison to a referent). This formulation is applied

to lotteries in Kőszegi and Rabin (2007): the utility value of a lottery F with a reference lottery

F ′ to a decision-maker (DM) is

U(F |F ′) =
∑
x

u(x)F (x)︸ ︷︷ ︸
consumption utility

+
∑
x

∑
y

g(u(x)− u(y)) F (x)F ′(y)︸ ︷︷ ︸
gain-loss utility

where u is a consumption (Bernoulli) utility function over final wealth which is increasing and g is

a gain-loss function, which is also increasing. Like much of Kőszegi and Rabin’s (2007) analysis,

we, for the moment, focus on linear gain-loss functions, where g can be written as

g(z) =

z if z ≥ 0

λz if z < 0

where λ ≥ 1 is the coefficient of loss aversion.4,5 If λ = 1 the preferences reduce to expected utility.

As mentioned, CPE is meant to capture situation where at the time of resolution of uncertainty,

4Although here the gain-loss functional is linear in the difference between the consumption utility levels, we discuss
more general gain-loss functionals later in the paper.

5Although we focus on loss averse agents, for which λ ≥ 1 our results naturally extends to loss loving agents where
λ ≤ 1.
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the choice is indeed the reference point. Hence, the value of a lottery F can be written as:

VCPE(F ) = U(F |F ) =
∑
x

u(x)F (x) +
∑
x

∑
y

g(u(x)− u(y)) F (x)F (y)

In a slight abuse of notation we will use CPE to refer to the set of preferences that can be

represented using VCPE(F ), as well as the representation itself. We refer to the set of monotone

utility functionals (in the sense of respecting first-order stochastic dominance) within CPE as CPEM .

Moreover, we will denote expected utility functionals as the class EU. Our formulation of choice

leads us to a definition that is analogous to that in Kőszegi and Rabin (2007):

Definition: F is a choice-acclimating personal equilibrium (CPE) of a choice set S if F ∈ S and

VCPE(F ) ≥ VCPE(G) for all G in S.

3 Relation to Other Models

In this section we explore the relationship between CPE and other important classes of non-EU

preferences.

Quadratic

CPEM

Rank 
Dependent

Betweenness

EU

Bell-Loomes-Sugden

Gul

Figure 1: Summary of Relationship of Non-EU Models

We show that CPE is a subset of quadratic utility functionals as well as rank-dependent pref-

erences. We also show that the intersection of CPE with a second major model of endogenous

reference formation, Gul’s (1991) disappointment aversion, is only expected utility. This intuition

is quite broad — the intersection of CPE with two generalizations of Gul, betweenness preferences

and NCI preferences (introduced by Dillenberger, 2010), is also only expected utility. Moreover,

we show that CPE is distinct (i.e. the intersection of the two classes is only expected utility) from

the disappointment aversion functionals introduced by Bell (1985) and Loomes and Sugden (1986),
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where the reference point is the expected Bernoulli utility of the lottery. Figure 1 summarizes many

of these results.6,7

3.1 Quadratic Utility

A utility functional is said to be quadratic in probabilities if it can be expressed in the form

VQ(F ) =
∑
x

∑
y

φ(x, y) F (x)F (y)

where φ : X ×X → R is a symmetric function (i.e. φ(x, y) = φ(y, x) for all x, y).8 The quadratic

functional form was introduced in Machina (1982) and further developed in Chew, Epstein, Segal

(1991, 1994). We denote the set of utility functions in the quadratic class as Q. One can think of

φ as function that compares any given outcome to any other given outcome (e.g. it gives the value

of x when y is the reference point). The value of a lottery is then the average value of all of those

comparisons over the outcomes with positive support. Viewed this way, the intuition for Q is very

similar to that of CPE. In fact, our first observation points out that CPE is a subset of quadratic

utility.9,10,11

Observation 1 CPE is a proper subset of Q.

To see why this is true, first observe that we can rewrite the consumption utility term:

∑
x

u(x)F (x) =
∑
x

∑
y

u(x) + u(y)

2
F (x)F (y)

Next, consider the gain-loss utility. Pick any two outcomes x and y. Then the sum of g(u(x)−
u(y)) F (x)F (y) and g(u(y)−u(x)) F (y)F (x) is equal to (1−λ)|u(x)−u(y)| F (x)F (y).12 Thus we

can write

∑
x

∑
y

g(u(x)− u(y)) F (x)F (y) =
∑
x

∑
y

(1− λ)|u(x)− u(y)|
2

F (x)F (y)

6The fact that the intersection of Betweenness and Quadratic preferences, and of Betweenness and Rank-Dependent
preferences, is only expected utility is a known result. The relationship between Bell-Loomes-Sugden’s disappointment
aversion and the other models is not previously known and shown in Masatlioglu and Raymond (2014).

7GCPE refers to preferences which do not necessarily have a linear gain-loss function (see Section 6).
8There is no loss of generality in restricting φ to be symmetric, since an arbitrary φ(x, y) can always be replaced

by φ(x,y)+φ(y,x)
2

.
9Freeman (2012) independently points out the same relationship.

10Our observation is in terms of relationships between functional forms. We can also restate it in terms of behavior.
For example, suppose preferences are in CPEM . Then they satisfy either i) independence or ii) projective independence
(Chew, Epstein and Segal, 1994) and non-betweenness.

11Although we present the proof for Observation 1 in the text, the proofs for the rest of our claims are in the
Appendix.

12This simply extends the idea of Proposition 12 in Kőszegi and Rabin (2007).
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Observation 1 follows from by defining φ as follows

φ(x, y) =
1

2
(u(x) + u(y)) +

1

2
(1− λ)|u(x)− u(y)|

where λ is the coefficient of loss aversion in VCPE. So long as 1 ≤ λ <∞ preferences over degenerate

lotteries respect monotonicity. However, as discussed by Kőszegi and Rabin (2007), CPE does not

necessarily respect first-order stochastic dominance. Proposition 7 of Kőszegi and Rabin (2007)

points out that if loss aversion is a strong enough factor in preferences then a decision-maker will

always choose the best degenerate lottery, thus violating first-order stochastic dominance. In fact,

using Chew, Epstein, Segal (1991), we can clarify exactly when violations of first-order stochastic

dominance occur: if and only if 1 ≤ λ ≤ 2. In other words, when λ > 2, then there exists a

non-degenerate lottery strictly worse than the worst degenerate lottery.13

Observation 2 Assume % is in CPE. Then % in CPEM if and only if 1 ≤ λ ≤ 2.

3.2 Rank-Dependent Utility

A utility functional VRDU is a rank-dependence expected utility functional if there exists a function

v and a strictly increasing, continuous function w : [0, 1] → [0, 1], with w(0) = 0 and w(1) = 1,

such that

VRDU(F ) =
∑
x

v(x)

w
∑
y≥x

F (y)

− w(∑
y>x

F (y)

)
This form was introduced in Quiggin (1982) and has been examined by numerous authors —

see Abdellaoui (2002) for a recent characterization and references to the larger literature. We

will use RDU to denote the class of rank-dependent utility functionals and the preferences that

they represent. Observe that when w is the identity function VRDU reduces to expected util-

ity. Otherwise, w acts to distort the decumulative distribution function associated with lottery

F . w
(∑

y≥x F (y)
)
− w

(∑
y>x F (y)

)
measures the marginal probability contribution of x to the

distorted decumulative distribution function.

The intuition for RDU goes back to the idea, first formalized by Kahneman and Tversky (1979),

that individuals engage in probability weighting— they distort objectively given probabilities in a

consistent fashion. RDU accommodates probability weighting while ensuring preferences respect

first-order stochastic dominance.

13Many applications of reference dependence set λ ≥ 2, which, in combination with CPE, implies that preferences
are not monotone. However, the studies that estimate λ do not use the functional form VCPE, and so it is not clear
how to interpret their estimates of λ in the context of CPE. See Section 7 for more detailed discussion of this issue.
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Our next result points out that CPEM is a subset of RDU. Moreover, this relationships is

strict as RDU respect first-order stochastic dominance. Not only do CPEM preferences have an

equivalent RDU representation, it is the case that the distortions (relative to expected utility) for a

given consumption utility u introduced by gain-loss comparisons is equivalent to distortions induced

by a probability weighting function, with the same u.

Proposition 1 For any preference % in CPEM with a representation (u, λ) there exists a function

wλ such that (u,wλ) is a RDU representation of %. Moreover, wλ(z) = (2− λ)z + (λ− 1)z2.

For all λ ∈ [1, 2], wλ is a convex function, which means that preferences are “pessimistic”— worse

outcomes are overweighted. Therefore, Proposition 1 implies that loss aversion can be considered

a type of pessimism, in that loss averse individuals overweight bad outcomes.

3.3 Other Endogenous Reference-Dependent Models

Gul’s Disappointment Aversion

An important model of endogenous reference formation is Gul’s (1991) model of disappointment

aversion. It was developed to accommodate behavior such as the Allais paradox while still main-

taining much of the structure and tractability of expected utility theory. A utility functional V is

said to be in the class of Gul’s disappointment aversion models G if it can be expressed in the form

VG(F ) =
∑
x

u(x)F (x) + β
∑

x≤u−1(VG(F ))

(u(x)− VG(F )) F (x)

This model imposes a penalty, proportional to β, on disappointing outcomes — those that lie

below the threshold of u−1(VG(F )), the certainty equivalent of the lottery. When β = 0, this model

is identical to EU (i.e. there is no penalty for disappointing outcomes). If β > 0 then the individual

is disappointment averse, and if β < 0 she is disappointment loving.

VG resembles VCPE. They both feature consumption utility and comparative utility with respect

to a reference point. Nevertheless, there are two key differences. The first is that in Gul’s model

there is only loss utility but no gain utility. The second is that the reference point is not a

distribution but rather the certainty equivalent of the lottery.

A commonly used generalization of G are betweenness preferences. Betweenness preferences,

B, were introduced by Chew (1983) and Dekel (1986). Betweenness functionals have the form

VB(F ) =
∑
x

ν(x, VB(F ))F (x)

where ν is continuous and an increasing function of its first argument. The axiom that characterizes
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these preferences, Betweenness, is a weakening of independence. It says that if two lotteries F and

G are indifferent, any mixture of F and G must be indifferent to F .

Betweenness: If F ∼ G, then αF + (1− α)G ∼ F for all α ∈ [0, 1].

Denote the class of preferences, and their associated functionals, that satisfy betweenness, mono-

tonicity, and the standard technical assumptions as B.

A second generalization of G was introduced by Dillenberger (2010) and discussed in more detail

in Cerreia-Vioglio, Dillenberger and Ortoleva (2013). Dillenberger (2010) formulates ‘negative

certainty independence’ (NCI), which captures a certainty effect. The idea is that an individual

has a premium for certainty. Therefore, if a degenerate lottery is worse than some other lottery,

then mixing both with a third lottery in equal proportions cannot reverse that preference.

Negative Certainty Independence: If δx - G, then αδx+(1−α)F - αG+(1−α)F

for all α ∈ [0, 1].

Call the class of preferences (and their associated functionals) that satisfy negative certainty

independence the standard technical assumptions and respect first-order stochastic dominance NCI.
NCI preferences have a the following representation:

VNCI(F ) = infv∈W v−1

(∑
x

v(x)F (x)

)
where W is a set of strictly increasing utility functions over outcomes.

It turns out that despite the similarities between CPE and G, the two models are conceptually

distinct relaxations of the expected utility. Moreover, CPE is distinct not only from Gul’s model

but also from the two aforementioned generalizations of it.

Observation 3 CPE ∩ B = CPE ∩ NCI = CPE ∩G = EU.

Disappointment aversion, along with its generalizations, and CPE are capturing endogenous loss

aversion in distinct ways. An preferences that are fully consistent with CPE’s notion of reference-

dependence, as well as G’s model of reference dependence (or either B or NCI) must not exhibit

any reference dependence at all — they must be EU.

These distinctions point out that models of reference dependence capture intuitions not only

about loss aversion or first-order risk aversion, but also about other important behavior, such

as attitudes towards randomization. Consider two lotteries F and G that a decision-maker is

indifferent between. If her preferences are in B, then she must also be indifferent between F and

any mixture of F and G. If her preferences are in NCI then she must weakly prefer any mixture
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of F and G to F . And, as we will see in Section 4, if her preferences are in CPE, she must weakly

prefer F to any mixture of F and G. These distinctions can allow us to distinguish between models

of reference dependence, a theme we return to in Section 7.

Bell-Loomes-Sugden’s Disappointment Aversion

Predating both Kőszegi and Rabin (2007) and Gul (1991) is the model of disappointment aversion

introduced by Bell (1985) and Loomes and Sugden (1986). This model has proven a quite popular

class of models in applications, as the reference point is neither stochastic nor recursively defined,

but is instead simply the expected consumption (Bernoulli) utility of the lottery. Given a function

u, denote the expected value of u given lottery F as Eu(F ). The value of a lottery is then:

VBLS(F ) =
∑
x

u(x)F (x) +
∑
x

g(u(x)− Eu(F ))F (x)

where g is a piece-wise linear function with g(0) = 0 (as in VCPE).

We denote the this set of functionals, and their associated preferences, as BLS.14 This model

also resembles CPE. Again, it is based consumption utility plus comparative utility. However, here

the reference point is the expected consumption utility of the lottery as opposed to the distribution

of utilities. Despite these similarities, but like the result in the previous subsection, we find that

BLS and CPE are capturing endogenous loss aversion in distinct ways. As with CPE’s relationship

to G, although CPE and BLS capture similar attitudes towards loss aversion, they have distinct

implications about attitudes towards other phenomena, such as the mixing of indifferent lotteries,

which serve to distinguish them behaviorally.

Observation 4 CPE ∩ BLS = EU.

4 A Characterization and Comparative Statics

4.1 Shapes of Indifference Curves

In order to better understand CPE we first investigate the structure of the indifference curves

induced by CPE. Quadratic functionals have simple graphical representations in the Marschak-

Machina triangle; their indifference curves are conic sections (i.e. ellipses, parabolas or hyperbolas).

Therefore, preferences in CPE must have indifference curves that are conic sections; in fact, they

are always sections of concentric ellipses.

14The original papers introducing this model do not require g to be piecewise linear, but we make this restriction
in order to make the model as comparable to CPE as possible.
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Observation 5 For any ∆3, CPE preferences generate indifference curves that are concentric

ellipses. The shared center of the ellipses lies on a line that passes through the best and worst

degenerate outcomes. Moreover, the axes of ellipses are oriented parallel to the best-medium outcome

edge and the worst-medium outcome edge.

The following figure demonstrates what the indifference curves appear like in the Marschak-

Machina triangle for λ = 2 and when the utilities of three outcomes, b (best), m (middle), and

w (worst), are equally spaced, showing the center of the concentric ellipses (C), and how the

indifference curves extend beyond the unit simplex.

C	
  

w	
  

b	
  

m	
  

Figure 2: CPE Indifference Curves when u(b)− u(m) = u(m)− u(w)

CPE functionals have two factors that influence how lotteries are valued: the consumption

(Bernoulli) utility function u and the coefficient of loss aversion λ. Each of these determines a

particular part of the structure of the ellipse. First, the center of the ellipses is always along the

best to worst outcome line; moreover, the center’s location along the best to worst outcome line

varies with λ, but not with u. For example, if gain-loss utility is a strong component of VCPE

(λ > 2) so that preferences are non-monotone, then the center is within the unit simplex and is the

worst lottery. As the loss aversion coefficient falls to 1, the center shifts down and to the right. EU
is when the center is infinitely far from the best outcome. Figure 3 demonstrates how the center

changes with λ, with Ci being the center of the concentric ellipses for individual i, where i = A,B,

and C. It is the case that individual A is more loss averse than individual B, who is more loss

averse than individual C: λA > λB = 2 > λC .
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Figure 3: Changing Loss Aversion Coefficient (λ): λA > λB = 2 > λC

While λ governs the location of the center of the ellipses, it does not affect their orientation

(i.e. the orientation and relative length of the axes of the ellipses). Instead, this is governed solely

by the consumption utility functional u. The two axes of the ellipses are always aligned with the

horizontal and vertical axes of the unit simplex — the edge connecting the medium and worst

outcomes and the edge connecting the medium and best outcome respectively. If the individual

is consumption risk neutral (i.e. u is linear) and the outcomes are equally spaced (i.e. w = 0,

m = 1 and b = 2), then their indifference curves are circles. As the individual becomes more

consumption risk averse, i.e. u becomes more concave, the vertical axis becomes relatively longer

than the horizontal axis (and vice versa for less consumption risk averse). Figure 4 demonstrates

what happens as consumption risk aversion changes. Individual B is more consumption risk averse

than individuals A — uB is more concave than uA.

C	
  

IB	
  IA	
  

Figure 4: Changing Consumption Risk Aversion (u)

Later in this section we formalize these graphical intuitions and relate the constituent parts of

CPE functionals, u and λ, to observable preferences.
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4.2 Characterization

In the previous section we observed that CPEM is a subset of both Q and RDU. We now discuss

what additional restrictions are needed within the set Q ∩ RDU to fully identify CPEM . These

additional restrictions provide insight regarding the behavioral implications of CPEM .

A well known property in the literature on non-EU is mixture aversion. Preferences satisfy

mixture aversion if it is the case when two lotteries are indifferent, then any mixture of them must

be worse than the original lotteries (mixture loving can be defined analogously).

Mixture Aversion (MA): If F ∼ G, then αF + (1− α)G - F for all α ∈ [0, 1]

Mixture aversion is not a necessary condition of either Q or RDU. However, CPE preferences

are always mixture averse.15 For monotone preferences, this observation is a corollary of Wakker

(1994), who showed that for preferences in RDU, pessimism is equivalent to mixture aversion.

Observation 6 Every preference in CPE satisfies mixture aversion.

The restrictions on preferences implied by Q and RDU, along with mixture aversion, are enough

to characterize CPEM .16

Theorem 1 % satisfies MA and is in Q ∩ RDU if and only if it is in CPEM .

Theorem 1 completely characterizes CPE preferences. Moreover, we can readily translate theo-

rem into observable preferences. Q has been characterized using preferences in Chew, Epstein and

Segal (1991, 1994). There exist numerous characterizations of RDU using preferences; a recent one

is Abdellouai (2002). One way to interpret Theorem 1 is to recall that pessimistic rank-dependent

preferences are exactly those rank-dependent preferences that satisfy MA. Thus CPEM is equivalent

to the intersection of Q and pessimistic RDU.

In order relate u and λ to behavior, as we do in the following subsections, we first need to know

to what extent u and λ are uniquely identified from behavior.

Proposition 2 For any preference in CPE, u is unique up to affine transformation and λ is unique.

Proposition 2 demonstrates that u has the standard property of being unique up to affine

transformations. In addition, the coefficient of loss aversion λ is uniquely determined by behavior.

15Freeman (2012) looks at mixture aversion in the context of other solution concepts of Kőszegi and Rabin (2007),
but his results are formally unrelated to ours.

16If we keep the functional form of CPE but allow λ to take on any value between 0 and 2, and call such preferences
ˆCPE, then an extension of Theorem 1 shows that ˆCPE = Q ∩ RDU.
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4.3 Comparative Classical Risk Aversion

Given the uniqueness of the representation, we can analyze how behavior relates u and λ (i.e. risk

and loss aversion). First, we examine when individuals’ observed preferences are in accordance

with the classical notion of risk aversion — aversion to mean preserving spreads.17

Definition % is risk averse if whenever G differs from F by a mean preserving spread, F % G.

Intuitively it seems to be the case that loss aversion should enhance any aversion to mean

preserving spreads that u alone induces. This is true if u is linear. However, more generally it is

not the case that there is a ‘trade-off’ between risk and loss aversion in terms of observed behavior.

Instead both a concave u and loss aversion are necessary conditions for an individual to be risk

averse.18 These conditions are not sufficient though. An individual who has a non-linear u, and is

also so loss averse so that their preferences are no longer monotone, will not always be averse to

mean preserving spreads.

Proposition 3

1. If % is in CPEM then % is risk averse if and only if u is concave.

2. If % is in CPE\CPEM then % is risk averse if and only if u is linear.

Kőszegi and Rabin (2007) develops intuitions relating riskiness of a lottery to preferences when

u is linear (e.g. their Proposition 13): adding mean-preserving risk to a degenerate lottery reduces

the value of the lottery for preferences in CPE. However, Proposition 3 implies that these intuitions

relating riskiness to preferences do not generalize when preferences are non-monotone and u is non-

linear. Not only do all non-monotone preferences violate first-order stochastic dominance, but when

u is non-linear they also violate second order stochastic dominance. Thus, respecting the ordering

induced by first-order stochastic dominance is a necessary condition for preferences to respect the

ordering induced by mean preserving spreads whenever an individual’s Bernoulli utility function is

not linear. This implies that intuitions developed around increases in risk for CPEM will generally

not extend to CPE\CPEM . Moreover, Kőszegi and Rabin (2007) mention that violations of first-

order stochastic dominance could be interpreted as a form of risk aversion: “[w]e also feel that the

preference for a stochastically dominated lottery captures in extreme form the strong risk aversion

consumers display.” In fact, as Proposition 3 points out, unless u is linear, violations of first-order

stochastic dominance are inconsistent with standard notions of risk aversion.

17An alternative way of defining risk aversion is that the certainty equivalent of a lottery is less than the expected
value of that lottery. CPEM are risk averse in this sense if and only if u is concave. But in the case of non-monotone
CPE a certainty equivalent is not always well defined.

18A simple extension of Proposition 3 shows that an individual who is a loss lover cannot be risk averse.
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We can extend Proposition 3 in order to compare risk aversion across individuals. Following

Chew, Karni and Safra (1987), we define comparative risk aversion.

Definition: Individual A is more risk averse than B if G %A F whenever F ∼B G and there exists

an x0 ∈ X such that F (x) ≥ G(x) for all x < x0 and F (x) ≤ G(x) for all x ≥ x0.

Given the results of Proposition 3 we will restrict ourselves to considering preferences in CPEM .

As Proposition 3 would suggest, it is the case that the relative curvature of u and value of λ jointly

determine comparative risk aversion.

Proposition 4 Let %i be in CPEM for i ∈ {A,B} and represented by (ui, λi). Then individual

A is more risk averse than individual B if and only if uA is a concave transformation of uB and

2 ≥ λA ≥ λB ≥ 1.

Again, it is not the case that there is a tradeoff between the concavity of u and the amount of

loss aversion. Proposition 4 tells us that for A to be more risk averse than B it must be the case

that uA is more concave than uB and A is more loss averse than B. Regardless of how much more

concave uA is than uB, if B is even slightly more loss averse than A, then A cannot be more risk

averse than B.

4.4 Identifying and Comparing Loss Aversion

We now turn to examining the relationship between behavior and the coefficient of loss aversion λ.

Given the results of the previous sub-section we will focus on the case of monotone preferences.19

Many people intuitively interpret loss aversion, as a separate phenomenon from aversion to risk,

as implying that individuals should be averse to small-stakes lotteries — for example, Bowman,

Minehart and Rabin (1999). In line with this Kőszegi and Rabin’s (2007) specifically describe

λ > 1 as capturing loss aversion over small stakes. Extending this, we will demonstrate how to

both identify λ from choice behavior and compare λ across individuals using behavior. In order to

do so we will first define comparative loss aversion between two individuals using the relative sizes

of λ.

Definition: Let %i be in CPEM for i ∈ {A,B} and represented by (ui, λi). Individual A is more

loss averse than individual B if 1 ≤ λB ≤ λA ≤ 2.

This definition is in terms of a parameter of the model, rather than behavior. We first relate the

parameter λ to risk preferences over small-stakes lotteries, showing that the intuitive relationship

between λ and small-stakes risk preferences holds. However, this relationship is not directly testable

in terms of behavior, because it relies on a result that holds only at stakes get arbitrarily small.

19The results can easily be extended to include non-monotone preferences.
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Therefore, we go on to develop new tools that characterize comparative loss aversion using directly

testable behavior.

In order to relate λ to small-stakes risk preferences we will rely on Segal and Spivak’s (1990)

analysis of first-order risk aversion. Individuals who are first-order risk averse display an aversion

to small-stakes lotteries. As in Segal and Spivak (1990) we will measure the extent to which

individuals dislike small-stakes lotteries using the notion of risk premium, i.e. the difference between

the expected value and certainty equivalent of a lottery. Denote π(F ) as the risk premium of the

lottery F . An individual is first-order risk averse if the derivative of the risk premium of a fair

lottery does not goes to zero as the stakes in the lottery become arbitrarily small. We will focus

on looking situations where individuals have a wealth level w and are facing a lottery εF , where ε

is a scalar that multiplies the the sizes of all the outcomes in lottery F . We denote this situation

as w + εF .

Definition: Preferences exhibit first-order risk aversion at wealth level w if for all F 6= δ0, where

E(F ) = 0, ∂π(w+εF )
∂ε |ε=0+ 6= 0.

If ∂π(w+εF )
∂ε |ε=0+ 6= 0 then the individual not risk neutral over arbitrarily small lotteries. More-

over, as Segal and Spivak (1990) observe, if ∂π(w+εF )
∂ε |ε=0+ < 0 then the individual will refuse all

better than fair sufficiently small lotteries. Thus, in a similar exercise to Bowman, Minehart and

Rabin (1999), we can link λ to behavior (refusing small-stakes lotteries). First, it is the case that

CPE preferences can exhibit first-order risk aversion, and whether they do or not is governed en-

tirely by λ. In order to simplify our statements, we will make the assumption that u is differentiable

everywhere on it’s domain (which we refer to as ‘everywhere differentiable’).20

Proposition 5 Let % be in CPEM and represented by (u, λ) with u everywhere differentiable. Then

% is first-order risk averse at all wealth levels if and only if λ > 1.

Moreover, we can extend previous analyses by ordering individuals’ degree of first-order risk

aversion by the absolute size of ∂π(w+εF )
∂ε |ε=0+ .

Definition: Individual A is more first-order risk averse than individual B at wealth level w if
∂π(w+εF )

∂ε |ε=0+ ≤
∂π(w+εF )

∂ε |ε=0+.

This definition allows us to relate λ to preferences over small stakes lotteries (as captured by

the risk premia attached to those lotteries).

Proposition 6 Suppose %i is in CPEM for i ∈ {A,B} and represented by (ui, λi) with ui every-

where differentiable. Then individual A is more loss averse than individual B if and only if A is

more first-order risk averse than B at all wealth levels.

20If u is not differentiable, then because it is monotonically increasing it must be the case that it is differentiable
almost everywhere and the definitions and propositions can be appropriately modified.
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Although the definition of first-order risk aversion, and its associated behavior of refusing small-

stakes better than fair lotteries, capture an intuitive description of what we think loss aversion

should be, they are not behaviorally verifiable — it is impossible to know whether the lotteries

we are examining are of small enough scale in order to generate behavior that is dependent only

on λ. However, we know that loss aversion does have behavioral content — if preferences are in

CPEM then they are loss averse if and only if the preferences violate the independence axiom. We

can extend these intuitions to show that comparative loss aversion also has behaviorally verifiable

content.

A key factor in understanding the behavioral content of loss aversion is the fact that observed

choices over lotteries (i.e. observed risk aversion) is generated by both λ and u. We want to observe

choices that relate only to the value of λ and not to u. In order to understand what choices these

might be we first must develop intuition regarding the relaxation of Independence that holds for

CPE preferences. This will be useful not only for understanding the results of this subsection but

also the next.

In order develop intuition we will revisit an insight from Chew, Epstein and Segal (1991, 1994).

They consider the ‘expansion paths’ of the indifference curves. Two points F and G lie on the same

expansion path if there is a common sub-gradient to the indifference curves at F and G. Chew,

Epstein and Segal (1991) show that for quadratic utility functionals, all expansion paths are linear

and perspective (they share a single point of intersection). Moreover, Independence holds along

the expansion paths. In other words mixing along expansion paths does not affect the direction of

preferences.21

In order to understand this formulation more clearly, we will construct expansion paths within

the interior of the Marschak-Machina triangle. Consider a Fα = αδ̄ + (1− α)δ and a slope σ > 0.

Denote the set of lotteries (a ‘budget constraint’) that lie on a line of slope σ and that pass

through F as γ(F, σ). We can define an upper linear budget set using γ(F, σ): B(F,σ) = {G|G ∈
∆3 and G lies above γ(F, σ) in ∆3}. For a given Fα and σ we can pick out the %-worst element of

B(Fα,σ) and denote it wα,σ. For a given σ we can trace out the set of strictly interior wα,σ. These

form an expansion path.

Recall from Observation 5 that the center of the ellipses which define the indifference curves must

lie on the line that connects the best and the worst outcome for any ∆3. Therefore, an expansion

path must lie on the best to worst outcome edge if preferences are in CPE. The construction we

use to behaviorally identify loss aversion relies on this fact. In the Marschak-Machina triangle the

expansions paths for individual i all intersect at ( λi
2(λi−1) ,

2−λi
2(1−λi)). Since one expansion path is

the line connecting the best to worst outcomes, only a second expansion path is needed to locate

the center of the indifference curves — which is the single common point of intersection of the

21However, in general, quadratic functionals, including CPE, will violate Independence.
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expansion paths. This identifies λi. Of course, if preferences are in EU then all points lie on a

single expansion path (because all indifference curves have the same slope). In this case indifference

curves are linear, and although the intuition in the paragraph fails, it is easy to identify that λ = 1

in this scenario (and similarly, if λ > 1 then indifference curves cannot be linear).

We can use this construction to compare loss aversion across individuals. Individual A is more

loss averse than B if the center of A’s indifference curves is closer to the best degenerate outcome.

Because the center of A’s indifference curves is closer to the best degenerate outcome than the

center of B’s indifference curves, for any point F , A’s expansion path through F will be steeper

than B’s.

Consider a DM i whose preferences over ∆3 are in CPEM . Let F ′ = α1δ̄ + (1 − α1)δ, and

G = α2δ̂+ (1−α2)δ, for some α1, α2 ∈ (0, 1) so that α1 > α2. Denote G′i = α′iδ̄+ (1−α′i)δ, so that

G′i ∼i G. G′i will always exist since the i has monotone preferences.
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Figure 5: Constructing Expansion Paths

For some combinations of F ′ and G we can define an Fi such that Fi ∼i F ′ and βiFi+(1−βi)G ∼
βiF

′+ (1− βi)G′i for all βi ∈ (0, 1). Denote the weight applied to the high outcome in Fi as hi and

to the middle outcome as mi. Importantly, so long as both DMs’ preferences are in CPEM\EU,

then if hA
mA
≥ hB

mB
for a particular F ′, G combination that define an Fi, then the inequality will also

hold for all F ′, G combinations. Figure 5 demonstrates the construction of F ′, G′, Gi and Fi, along

with the steepness of the respective expansion paths EPi. Importantly, because λ alone governs the

steepness of the expansion paths, if A and B both have CPEM preferences and A exhibits steeper

expansion paths than B in a single ∆3 then A exhibits steeper expansion paths than B in all ∆3.

Because full independence holds if preferences are in EU, the procedure we just defined is not well

defined. Thus, we will define the ratio hi
mi

to be equal to ∞ if %i∈ EU

Definition: Individual A has steeper expansion paths than individual B if hA
mA
≥ hB

mB
for an F,G

that define an Fi for a given ∆3.
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The steepness of the expansions paths reflects the location of the center of the ellipses that

define the indifference curves. Therefore, the steepness of the expansion paths characterize the loss

aversion of an individual.

Proposition 7 Let %i be in CPEM for i ∈ {A,B} and represented by (ui, λi). Then individual A

is less loss averse than individual B if and only if A has steeper expansion paths than B for all ∆3.

4.5 Comparative Consumption Risk Aversion

The other component of CPEM preferences is u. We now discuss the behavioral implications of the

curvature of u both in terms of comparing curvature across individuals and identifying curvature

within an individual. We will define the consumption risk aversion of an individual using the

curvature of u.22

Definition: Let %i be in CPEM for i ∈ {A,B} and represented by (ui, λi). Individual A is more

consumption risk averse than individual B if uA is a concave transformation of uB.

To gain intuition for our next results we will fix three outcomes and look at the induced

Marschak-Machina triangle. Consider some lottery F = αδ̄ + (1 − α)δ and a slope σ ≥ 0. Repli-

cating the discussion in the previous subsection, denote the set of lotteries (a ‘budget constraint’)

that lie on a line of slope σ and that pass through F as γ(F, σ). We can define an upper linear

budget set using γ(F, σ): BF,σ = {G′|G′ ∈ ∆3 and G′ lies above γ(F, σ) in ∆3}.
For a given F = αδ̄ + (1 − α)δ, and individual i we can find a σ such that F is the �i worst

element in BF,σ. Denote this slope as σi,F . Moreover, denote Gi,F as the binary lottery that is

on γ(F, σ) and places some weight on the middle outcome. We can compare the slopes of the σi,F

across different individuals by comparing Gi,F . Figure 6 demonstrates the construction of F , Bi,F

and Gi,F .

Definition: Individual A has steeper budget constraints than B if GB,F first-order stochastically

dominates GA,F for all F for a given ∆3.

The slope σi,F is determined by the tangency of the indifference curves of i passing through

the best to worst outcome line. Moreover, the center of the ellipses that define the indifference

curves are also always on this line. Because the center of the ellipses is determined only by λ and

the shape of the ellipses only by u, the tangency condition on this edge is determined only by u,

not λ. In the Marschak-Machina triangle the slope of σi,F is simply 1−ui(δ̂)
ui(δ̂)

. Thus we can easily

recover the utility value of δ̂ for any individual (after normalizing ui(δ̄) = 1 and ui(δ) = 0). Thus

22Again, the analysis easily extends to non-monotone preferences because the center of the elliptical indifference
curves is in ∆3. Therefore, it becomes easy to identify the relative length of the axes of the ellipse.

21



CB

CA

F

GB,F

GA,F

BCA,F

BCB,F

Figure 6: Constructing Upper Linear Budget Constraints

changing the center of an ellipse, but not the relative length of its axes, will leave the tangency

condition unchanged. This allows us to also comparative the curvature of u across individuals. The

next proposition formalizes the intuition that the steepness of the budget constraints characterizes

consumption risk aversion.

Proposition 8 Let %i be in CPEM for i ∈ {A,B} and represented by (ui, λi). Then individual A

is more consumption risk averse than individual B if and only if A has steeper budget constraints

than B in all ∆3.

5 Applications

5.1 Compound Lotteries and Information

Kőszegi and Rabin (2009), Kreps and Porteus (1978) and Dillenberger (2010), among others, dis-

cuss preferences for the resolution of information in dynamic settings. We will show that natural

dynamic, recursive extension of CPEM preferences are not flexible enough to accommodate a prefer-

ence for early (late) resolution of uncertainty or a preference for one-shot resolution of uncertainty.

We focus on recursive dynamic CPEM models because recursive models are extremely tractable

and typically used in macroeconomic models.23

In order to provide results on preferences for information we will extend our domain of analysis

23Although our dynamic model differs from Kőszegi and Rabin (2009) (because it, unlike theirs, is recursive) it
shares the essential features of being loss averse over beliefs.
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to two-stage compound lotteries, and denote the preferences over these lotteries as %̂.24

Two-stage compound lotteries are lotteries over lotteries. Imagine, for example, that there are

two simple (one-stage) lotteries F and F ′. Let F give an outcome of 1 with probability 1
4 and 0

with probability 3
4 and F ′ give an outcome of 1 with probability 3

4 and 0 with probability 1
4 . An

example of a compound lottery P is a lottery that in the first stage, with some probability P (F )

gives lottery F and with some probability P (F ′) give lottery F ′ (since we have only two lotteries,

in our case P (F ′) = 1 − P (F ). In the second stage the the decision-maker faces either F or F ′,

which gives either 1 or 0 with the appropriate probability (see Figure 7).

P
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0

1

0

P (F )

P (F ′)

.25

.75
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.25

Figure 7: A Two-stage Compound Lottery

Following the notation of Dillenberger (2010) and Segal (1990), particularly important subsets

of two-stage compound lotteries are:

• Γ: the the set of late resolving lotteries and

• Λ: the set of early resolving lotteries.

Early resolving lotteries have all uncertainty resolved in the first stage and so the second stage

lotteries are degenerate. In contrast, late resolving lotteries have all uncertainty resolved in the

second stage and so their first stage is degenerate. Figure 8 provides an example of both early and

late resolving compound lotteries. In both cases the outcomes of 1 and 0 are realized with equal

probability. The early resolving lottery PE , has, in its second stage, two degenerate lotteries δ0 and

δ1. In its first stage it gives δ0 with probability 0.5 and δ1 with probability 0.5. The late resolving

lottery PL has, in its second stage, a single lottery F , which gives 1 with probability 0.5 and 0 with

probability 0.5, and in its first stage gives F with probability 1. We will assume that the restriction

of %̂ to either Γ or Λ is in the class CPEM (we denote those preferences %̂Γ and %̂Λ).

We will assume that %̂ satisfies the standard assumption of recursivity (see Segal, 1990). Re-

cursivity is useful because decision-makers with recursive preferences evaluate compound lotteries

using a folding-back procedure — preferences over two stage lotteries can be evaluated using pref-

erences over one stage lotteries. Decision-makers replace the second stage of any given compound

24We will define concepts informally in the text of this subsection. Formal definitions are provided in the proof of
Observations 7 and 8.
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Figure 8: Early versus Late Resolving Compound Lotteries

lottery by the certainty equivalent generated by %̂Γ. The resulting lottery is evaluated using %̂Λ.

For example, denote the utility function used to evaluate second-stage (first-stage) lotteries as uΓ

(uΛ). In order to calculate the value of P the decision-maker first evaluates the possible second

stage lotteries separately. Thus, she evaluates F according to uΓ and finds the certainty equivalent

u−1
Γ (0.25uΓ(1) + 0.75uΓ(0)). She also evaluates F ′ according to uΓ and finds the certainty equiva-

lent u−1
Γ (0.75uΓ(1) + 0.25uΓ(0)). In order to evaluate P , she substitutes for F and F ′ their respec-

tive certainty equivalents. This generates a one-stage lottery that with probability 0.5 gives outcome

u−1
Γ (0.25uΓ(1) + 0.75uΓ(0)) and with probability 0.5 gives outcome u−1

Γ (0.75uΓ(1) + 0.25uΓ(0)).

She then evaluates this lottery using uΛ.

A large number of papers, beginning with Kreps and Porteus (1978), have discussed the im-

portance of a preference for early resolution of information. Individuals have a preference for early

resolution of uncertainty if, given two lotteries which generate the same reduced form probabilities

over the same outcomes, they always prefer a compound lottery which is more Blackwell informa-

tive in the first stage. We show here that recursive CPEM preferences are limited in how they can

address resolution of uncertainty while maintaining first-order loss aversion.

Observation 7 Suppose %̂Γ and %̂Λ are in CPEM . If %̂Λ (respectively %̂Γ) satisfy risk aversion

and %̂ always exhibits a preference for early (respectively late) resolution of information, then %̂Λ

(respectively %̂Γ) must be in EU.

Observation 7 is a corollary of Grant, Kajii and Polak (2000). It says that if an individual always

has a preference for early or late resolution of uncertainty in a dynamic setting, and they are risk

averse over early-resolving lotteries, their static preferences cannot both be strictly loss-averse and

in CPEM . Similarly, if static preferences are always in CPEM , risk averse and strictly loss-averse,

then they cannot have a uniform attitude towards early and late resolution of information.

An important intuition regarding dynamic loss-aversion is that loss aversion makes an individual

averse to receiving information piecemeal — i.e. individuals should exhibit a preference for one-shot

resolution of uncertainty or clumping of information (see Kőszegi and Rabin (2009) for an example

of this). To simplify the analysis, we will assume (like Dillenberger, 2010) that preferences are time

neutral — individuals are indifferent between a lottery in Λ and a lottery in Γ which give the same
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reduced form probabilities over the same outcomes. Dillenberger (2010) says a preference relation

exhibits a preference for one-shot resolution of uncertainty (PORU) if any lottery in Γ or Λ is weakly

preferred to any other compound lottery that gives the same reduced form probabilities over the

same outcomes. Unlike the intuition in Kőszegi and Rabin (2009), we show that an individual with

CPE preferences cannot always exhibit a preference for one-shot resolution of uncertainty.

Observation 8 Suppose %̂Γ and %̂Λ are in CPEM\EU and preferences are time neutral. Then

preferences cannot exhibit a preference for one-shot resolution of uncertainty.

Observation 8 is a simple application of Dillenberger (2010). It implies that although the

intuition that dynamic loss aversion implies a preference for clumping of information seems very

strong in simple environments, it is not an intuition that applies more broadly.25

5.2 Small and Large Stake Choices

An important argument against the plausibility of expected utility is the Rabin (2000) critique

— if a decision-maker has preferences in EU then one cannot construct preferences that generate

plausible behavior over both small and large stakes lotteries. Rabin’s calibration result and Safra

and Segal’s (2005) extension show how local behavior relates to global behavior. Many authors (e.g.

Cox and Sadiraj, 2006) have discussed how utility being defined over gains and losses may help

avoid the calibration critique. However, even when utility functions are defined over gains versus

losses, local behavior may imply strong restriction on global behavior. Safra and Segal (2005) point

this out in the case of disappointment aversion.

As we will show, CPEM also suffers from a modified version of Rabin’s critique. Because

CPEM ⊂ RDU, we know that CPEM preferences also suffer from the calibration critique of Theorem

5 in Safra and Segal (2005).26 Safra and Segal (2005) show that if (i) preferences are in RDU, (ii) u

is either decreasing absolute risk aversion everywhere or increasing absolute risk aversion, and (iii)

the decision maker plausible rejects small lotteries when added to any gamble defined over relevant

wealth levels then she should also (implausibly) reject very attractive large stakes lotteries. For

example, assume u exhibits decreasing absolute risk aversion. Then if the decision maker rejects a

lottery that gives −100 with probability 0.5 and 110 with probability 0.5 when added to all gambles

defined over a large enough wealth level with a lower bound of w then she will reject a lottery that

gives −20, 000 with probability 0.0054, and 100, 000− ζ with probability .9946 for a sequence of ζ

converging to 0 at wealth level w. See Figure 10 for an illustration of this example (for simplicity

we depict the lotteries as over changes in wealth, not final wealth).

25However, whether the critique here extends to Kőszegi and Rabin (2009) is an open question, since their dynamic
model is not recursive.

26Neilson (2001) makes a related calibrational critique of RDU.
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Figure 9: Small versus Large Stake Choices

Our observation shows that CPEM suffer from similar problems. Of course, the conclusions of

the theorem depend on the rejection of small-stakes lotteries when added to all gambles defined

over a large wealth level (a stronger requirement than Rabin’s original requirement that lotteries be

rejected at all degenerate gambles over a large wealth level). As Freeman (2013) notes, if individuals

do not reduce compound lotteries, and interpret combination of background risk and any additional

lottery as a compound lottery, then Safra and Segal’s critique will not hold. This is similar in spirit

to assuming that individuals narrowly bracket risky choices. Thus, understanding how individuals

perceive these situations is essential in interpreting these results.

Cox and Sadiraj (2006) provide an example of a gain-loss function that does not generate

calibration problems in the context of the reference point being current wealth. Similarly, if the

restriction on g (the gain-loss function) to be linear is relaxed, it is possible to generate plausible

small and large stakes risk aversion. For example, Kőszegi and Rabin’s (2007) Table 1 does exactly

this. Our result points out that the most tractable form of Kőszegi and Rabin’s (2007) model —

that with linear gain-loss utility, cannot avoid an extension of the Rabin critique. Thus, in order

to model individuals who exhibit plausible behavior over both small and large stakes lotteries, we

must turn to non-linear gain-loss functionals.

5.3 Other Applications

The relationships we describe can also be used to understand CPE in a variety of other environments.

Rank-dependent models have been extensively analyzed in the literature, and results regarding

pessimistic rank-dependent utility functionals can be naturally extended to CPEM . There is a large

literature analyzing rank-dependent utility functionals in the context of insurance design, including

papers such as Konrad and Skaperdas (1993), Schlesinger (1997) and Gollier and Schlesinger (1996).

Bernard, He, Yan and Zhou (2012) have a simple summary of the results of this literature. For

example, they discuss how the optimal insurance indemnity is a deductible for rank-dependent

utility functions with a convex probability weighting function (and so for CPEM preferences). The

effects of RDU preferences have also been looked at in the context of macroeconomics: Bleichrodt

and Eeckhoudt (2005) consider savings problems, Xia and Zhou (2013) examine the existence and

structure of Arrow-Debreu equilibria and Xu and Zhou (2013) look at optimal stopping.
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6 Non-Linear Gain-Loss Functionals

Up until this point we have focused on the case of linear gain-loss utility. However, there is no

reason to assume that this is always the case. In fact, our analysis of choice over small and large

stakes lotteries suggests that researchers may want to focus on non-linear gain-loss utility in order

to better match real-world behavior. In this section we consider a more general structure, where

the gain-loss function does not have to be linear. This can be thought of as a way of allowing

the degree of exhibited loss aversion to be stake-dependent. We define the general CPE (GCPE)

functional as:

VGCPE(F ) =
∑
x∈F

u(x)F (x) +
∑
x∈F

∑
y∈F

g(u(x)− u(y))F (x)F (y)

where

g(z) =

f(z) if z ≥ 0

−λf(−z) if z < 0

where λ, the loss aversion parameter, is greater than 1. Moreover, f is a continuous strictly

increasing function that maps from the positive reals to the positive reals, f(0) = 0 and f is

differentiable everywhere on its domain. In line with the literature we will also focus on the case

where f exhibits diminishing sensitivity — f is concave. This class of preferences nests those

considered in the earlier sections of the paper.27

Many of the relationships between CPE and other non-EU models of choice discussed in Section

3 extend easily. However, GCPE is not a subset of RDU. This is true even if we restrict ourselves

to monotone preferences within GCPE.

Observation 9 GCPE ⊂ Q.

Observation 9 immediately implies that GCPE ∩ B = GCPE ∩ NCI = GCPE ∩ G = EU, and

so there is still no common set of preferences, outside of EU, which accommodate both GCPE and

other models of reference dependence and the certainty effect such as G and NCI. Despite the

fact we lose the ability to use the RDU toolkit, we can still use methods developed for Q to make

statement about GCPE.

In a similar vein, we can use similar techniques as before in order to understand what preferences

look like in the Marschak-Machina triangle. Because GCPE ⊂ Q we can again think about the

shapes of the indifference curves by using commonly known properties of conic sections.28

27Although we restrict our formal results to these assumptions, similar results apply to situations when f is not
necessarily concave, when λ is not necessarily greater than 1, or when g is not necessarily symmetric other than by
scalar multiplication around 0.

28Similar results extend to more general formulations. For example, f is more concave than x2 if and only if the
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Observation 10 If % is in GCPE, then indifference curves are ellipses for any ∆3.

Although the indifference curves are ellipses there are two key differences — the center of the

elliptical indifference curves may not lie on a line connecting the best to worst degenerate outcomes,

and the axes of the ellipses may not be vertically and horizontally oriented.

An immediate implication of the previous observation is that preferences in GCPE are always

mixture averse.29 This provide a powerful test of the predictions of CPE preferences.

Observation 11 If % is in GCPE, then % satisfy MA.

We next turn to understanding when GCPE preferences respect first-order stochastic dominance

and when they are risk averse. As is fairly clear, because GCPE models have different gain-loss

utility functions f we must interpret the weighting of gains relative to losses (i.e. λ) different in

terms of behavior.30

Observation 12 Suppose % is in GCPE. Then % respects first-order stochastic dominance if and

only if 1
λ−1 ≥ f

′(0).

Observe that this condition says that in order for preferences to respect first-order stochastic

dominance there must be a relationship between the value of λ and the value of f ′(z).31 In

particular, in the case of linear gain-loss utility, where f ′(z) = 1 for all z ≥ 0, this condition

reduces to 1 ≤ λ ≤ 2, exactly what we derived previously.32

Next we consider when preferences are classically risk averse — preferences respect the ordering

of mean preserving spreads. An immediate implication of Chew, Epstein and Segal (1991) is that

GCPE preferences are risk averse if and only if u(x) + u(y) + (1− λ)f(|u(x)− u(y)|) is concave in

x for all y. For example, for linear utility, this reduces down to checking if x+ y+ (1−λ)f(|x− y|)
is concave.

indifference curves are ellipses for any ∆3, while f is equal to x2 if and only if the indifference curves are parabolas
for any ∆3, and f is more convex than x2 if and only if the indifference curves are hyperbolas for any ∆3.

29Although this result is straightforward when f exhibits decreasing marginal sensitivity, the intuition extends
more broadly. In fact, if we keep the functional form of GCPE but relax the assumption of decreasing marginal
sensitivity, it is still the case that preferences satisfy mixture aversion. Even more generally, if we relax the definition
of g, then VGCPE satisfies mixture aversion if and only if the functional Vg =

∑
x∈F

∑
y∈F g(u(x) − u(y))F (x)F (y)

satisfies mixture aversion.
30This raises an important point for calibration exercises — that one must be careful about taking estimates of λ

derived from one model and applying them to a second with a different f , as the same λ can generate quite different
behavior. For a related discussion, see Section 7.2.

31Because f and λ− 1 are unique up to joint multiplicative transformations αf and λ−1
α

for α > 0 this condition
is well-defined.

32More generally, preferences respect first-order stochastic dominance if and only if u(x) + u(y) + g(u(x)− u(y)) is
increasing in x for all y.
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Although we have focused our attention on situations where f exhibits decreasing marginal

sensitivity, we would like show that at least one important class of preferences is equivalent to

GCPE when f exhibits increasing marginal sensitivity. If f(z) = z2, then we obtain mean-variance

preferences.

Observation 13 If f(z) = z2, then VGCPE(F ) =
∑

x u(x)F (x) + (1− λ)(V arF (u(x))).

7 Experimental Evidence

The relationships developed in Section 3 provide new opportunities to relate theory to data. First,

they allow us to relate experimental evidence to models in two new ways: we can test CPE using

existing data originally designed to test other models of choice under risk (e.g. RDU) and we can

take existing experiments that test CPE and use them to test RDU and Q. Thus, subject to the

experimental design correctly capturing the psychology underlying CPE, our results allows us to

bring over twenty years of existing experimental evidence to bear on CPE. Second, they raise issues

about model misspecification — in particular how well identified preference parameters related to

probability weighting and loss aversion might be. Third, the relationships can help us design new

experiments that can distinguish CPE from other non-EU models.

7.1 Using Existing Evidence

In interpreting existing evidence with respect to CPE (and GCPE) we want to highlight the fact that

interpreting choices as being driven by CPE requires an assumption about how quickly individuals

update their reference point. As we previously noted, Kőszegi and Rabin (2007) interpret choice-

acclimating personal equilibria as capturing situations where the resolution of uncertainty will

be delayed, so that individual’s choice will be their reference point when uncertainty is resolved.

To the extent that experimental settings do not allow for enough delay between choice and the

resolution of uncertainty, we should be cautious in interpreting these results. However, conditional

on this requirement being met, existing experiments originally designed to test other theories of

non-expected utility can now be used to test CPE and GCPE.

Survey evidence indicates some support for preferences being consistent with the predictions of

CPE. Hey and Orme (1994) find that of the non-EU models they consider, rank dependent and

quadratic functionals fit the data best. Moreover, surveying the literature, Starmer (2000) indicates

that the theories most consistent with existing experimental evidence are those in the class RDU.

In contrast, in a different survey, Harless and Camerer (1994), find weak support for all theories of

choice under risk, although RDU and Q are not dominated in the data by other models. In order

to carefully evaluate how well the predictions of CPE fit existing data, we will revisit much of the
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experimental literature testing choice over lotteries, focusing on tests of RDU and mixture aversion.

We find that, for the most part, the existing experimental evidence is not strongly supportive of

CPE nor GCPE.

First, we consider tests of RDU. Since CPEM ⊂ RDU these experiments can serve to evalu-

ate CPEM as well. Although Starmer (2000) cites strong support for RDU preference, he finds

that those studies that assume rank-dependence and then attempt to ascertain the shape of the

probability weighting function generally do not find that it is convex (as implied by CPEM ). In-

stead, Tversky and Kahneman (1992), Camerer and Ho (1994), Wu and Gonzalez (1996), Gonzalez

and Wu (1999), Abdellaoui (2000) and Bleichrodt and Pinto (2000) find evidence for an inverse S

weighting function, which is neither convex nor concave. Despite Starmer’s (2000) overall finding

of support for the predictions of RDU, those studies that specifically test whether subjects obey the

axioms of RDU, such as Wu (1994) and Wakker, Erev and Weber (1994), find very limited support

for preferences satisfying the conditions of RDU. Thus, on the whole, the evidence seems to be

against preferences, if they are even in the class RDU, having a strictly convex weighting function,

and so against CPEM .

However, linear gain-loss utility is just one possible specification within GCPE. Thus, we should

also look to experiments that test more general properties of GCPE. For example, we can examine

evidence for mixture aversion in choice, which we show is a property satisfied by all preferences in

GCPE. Although a variety of studies have found systematic violations of betweenness, including

Andreoni and Sprenger (2011), Coombs and Huang (1976), Chew and Waller (1986), Camerer

(1989), Sopher and Gigliotti (1993), Prelec (1990) and Camerer and Ho (1994), the violations

have been mixed between mixture aversion and mixture loving (although more often individuals

are mixture averse). In addition, many studies, including Andreoni and Sprenger (2012), Coombs

and Huang (1976), Camerer (1992), Starmer (1992) and Gigliotti and Sopher (1993) have found

that violations of betweenness are dramatically reduced when considering lotteries in the interior

of the unit simplex. Thus, in contrast to the predictions of GCPE, behavior does not seem to be

universally mixture averse.

Up until now we have described how our results allow us to use existing experiments originally

designed to test other models of choice under risk to also test CPE. Our equivalence results also

allow us to apply insights from experiments designed to test CPE to other non-expected utility

models.

We use as an example a well known experiment on labor supply by Abeler, Falk, Goette and

Huffman (2011), who provide evidence that they interpret in support of CPE (similar exercises could

be done on other papers such as Gill and Prowse, 2012). In Abeler, Falk, Goette and Huffman

(2011) subjects exert effort in a counting task (output of which is measured in pages counted).

After counting they have a 1
2 chance of being provided with an ‘outside’ payment τ that does not

30



depend on their actions. With 1
2 chance they receive a payment that depends in a linear fashion

on the number of pages that were counted (i.e. they are paid a piece rate w per page). There are

main two treatments, which differ in the the size of the outside payment.33

Abeler, Falk, Goette and Huffman (2011) find that as the outside option increases from low

to high the number of pages subjects count increases. This is inconsistent with preferences in EU
but is rationalizable by preferences in CPE. However, our results indicate that there also exists

convex rank-dependent utility functionals that can rationalize the observed behavior (similarly

there exist quadratic functionals that rationalize the behavior). In particular, any rank dependent

model where w(.5) < .5 can rationalize the behavior in Abeler, Falk, Goette and Huffman (2011).

Moreover, looking across subjects’ behavior as the probability of receiving the outside payment

varies can allow us to distinguish between different probability weighting functions. For example,

under CPE, regardless of the probability assigned to receiving the outside payment, subjects’ effort

must be higher as the outside payment goes from low to high. In contrast, for more general rank-

dependent preferences, if the probability assigned to the outside option is p, then subjects’ effort

should increase between the low to high treatment if and only if 1− w(p) ≥ w(p).

We can also look at what happens to effort as the amount of the outside payment varies. For

all rank-dependent preferences effort will only increase if the low (high) treatment gives an outside

payment less (more) than the amount that depends on their work. Otherwise effort should not

change. In contrast, this is not necessarily true for quadratic preferences. There exist quadratic

preferences that can both rationalize the data in Abeler, Falk, Goette and Huffman (2011) and

generate behavior where effort is a smooth function of the size of the outside payment. Thus,

examining how effort varies both across different p’s and different outside payment amounts can

help identify more precisely what class of model is driving behavior in Abeler, Falk, Goette and

Huffman (2011).34

7.2 Model Misspecification

Because loss aversion generates the same behavior as a class of pessimistic rank-dependent prefer-

ences it seems natural to ask how this relationship influences researchers ability to estimate prob-

ability weighting functions. For example, many papers estimate a probability weighting function

33There were also three additional treaments, but as these were designed to ensure that the observed behavior
across the two main treatments was being driven by non-EU preferences, they are not relevant for our discussion.

34Abeler, Falk, Goette and Huffman (2011) also find that individuals who are more loss-averse, in the sense they
exhibit a larger risk premia for small-stakes lotteries, also tend to exert effort that makes their earnings that depend
on effort closer to their outside payment. They show that this is also in line with the predictions of CPE, since the
value of λ controls both behaviors. Our results imply this observed correlation is also consistent with individuals
whose preferences are in RDU. In this case, individuals who are more pessimistic will exhibit both larger risk premia
for small-stakes lotteries and also try to better equalize their earnings.
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either in the context of cumulative prospect theory or rank-dependent utility.35

This raises the question of whether the typically estimated inverse-S shaped probability func-

tion for rank-dependent preferences could be generated by model mis-specification. For example,

because CPE is equivalent to a convex weighting function, it could not generate behavior equivalent

to an inverse-S shaped weighting function. But perhaps CPE in conjunction with inverse-S shaped

probability probability weighting could generate behavior equivalent to that generated by inverse-S

shaped RDU preferences. In fact, given that the data is estimated using small stakes lotteries the

answer is no. This implies that the existing evidence on inverse-S shaped probability weighting

functions is robust to the particular form of model misspecification that we consider.

This can be illustrated in a simple example that corresponds to standard experimental elicita-

tion of risk preferences. Suppose researchers are eliciting certainty equivalents over simple binary

lotteries over a fixed low and high outcomes (we will normalize the utility of the outcomes to 0 and

1 respectively). Given that lotteries are typically small stakes, we will assume that u is linear (and

in fact it is generally close to linear in the estimates — see Bruhin, Fehr Duda and Epper, 2010 for

a recent study). Given a weighting function w, and individuals with rank-dependent preferences

has a certainty equivalent for a lottery that gives the high outcome with probability p of w(p). An

inverse-S shaped weighting function will generate a certainty equivalent function that is initially

concave and then later convex (and in fact there is a direct mapping between the weighting function

and the certainty equivalent function) — in other words if the second derivative of the certainty

equivalent function is initially negative and then positive.

In comparison, suppose that an individual experiences CPE references-dependence and also

engages in probability weighting. We assume that the individual has a functional form as in CPE
but replaces p with w(p). The certainty equivalent (i.e. utility) function is then w(p) + (1 −
λ)w(p)(1−w(p)). We will assume that 1 ≤ λ ≤ 2 so that individuals are both loss averse and have

monotone certainty equivalent functions. Understanding the curvature of the certainty equivalent

function necessitates examining its second derivative:

(2− λ)w′′(p) + 2(λ− 1)w′′(p)w(p) + 2(λ− 1)w′(p)w′(p)).

We can now ask if a strictly convex, strictly concave, or S shaped probability weighting funtion,

in conjunction with CPE, can generate a certainty equivalent function that is initially concave and

then convex.

If w′′ > 0 then the certainty equivalent function is convex everywhere. If instead w′′ < 0

the first term is negative, the second term is negative and the third term is positive. If the

35In the case of cumulative prospect theory, most papers assume lotteries are composed solely of gains or losses
relative to the status-quo, as in Bruhin, Fehr Duda and Epper (2010). This implies that the estimation procedure
is equivalent to estimating two separate rank-dependent functionals, one for the domain of gains and one for the
domain of losses. Importantly though, the reference point is assumed to the be status-quo, rather than expectations.

32



certainty equivalent function is initially concave and then convex (so that the second derivative of

the certainty equivalent function is initially negative and then positive)) then it must be the case

that w′(p) is small for small p’s and then is large for large p’s. But this implies w′′(p) > 0 at some

point, a contradiction. Similarly, if w is initially convex, then the certainty equivalent function

must initially be convex. Thus an individual who both experiences CPE references-dependence and

probability weights but does not have a weighting function that is inverse-S shaped cannot not

generate behavior that is qualitatively similar to the behavior generated by preferences in RDU
with an inverse-S shaped weighting function.

We might also worry about model misspecification affecting attempts to estimate the degree of

loss aversion. There have been a variety of attempts to estimate the degree of loss aversion, but

many of the estimates use different underlying models. This raises the question of how portable

these estimates are between model for example, can estimates obtained from a BLS model generate

similar behavior when put into a CPE model. The answer, of course, depends on the environment

used to estimate the parameters.

We will focus on the three models of reference dependence discussed earlier — G,BLS and CPE
— as well as the oft-used formulation of prospect theory (without probability weighting) where the

reference point is the status quo (i.e. current wealth level). If lotteries are over only two outcomes

BLS and CPE generate the same certainty equivalent for the same coefficient of loss aversion.

Moreover, if there are only two outcomes and they are symmetrically defined around the status

quo (i.e. if the status quo is w and the lotteries of the form .5 chance of w+ ε, .5 chance of w− ε),
status quo reference dependent models give the same certainty equivalents as CPE for equivalent

coefficients of loss aversion.

However, more generally, the estimates will not be portable across models. If lotteries are

not symmetrically defined around the status quo then status quo reference dependence generates

different behavior than BLS and CPE, even for lotteries defined over two outcomes. Moreover,

as soon as lotteries have positive support over more than 3 outcomes then the coefficient of loss

aversion has a different relationship to behavior depending on whether the model is BLS or CPE.

Similarly, G has a completely different relationship between β and certainty equivalents compared to

λCPE.36 Thus, other than in very particular domains researchers need to be careful about applying

estimates of loss aversion from a single model to other models.

7.3 Distinguishing between Models

The relationships developed in Section 3 can also help guide future experimental research that could

distinguish between models of reference dependence. As discussed previously, different models of

36This last comparison should not be surprising since high degrees of loss aversion in CPE are associated with
non-monotone preferences, but even an infinite degree of disappointment aversion in G (i.e. β =∞) is still associated
with preferences that respect first-order stochastic dominance.
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reference dependence have distinct implications for attitude towards mixing and randomization.

For example, we show that CPE preferences are mixture averse. In contrast, Dillenberger (2010)

demonstrates that NCI preferences are mixture loving. Moreover, it is well known that G and B
preferences satisfy Betweenness (the combination of mixture loving and mixture averse). Further-

more, although BLS are not as well studied, Masatlioglu and Raymond (2014) discuss how they

must exhibit both mixture loving and mixture aversion (depending on the domain). Thus, tests of

attitudes towards the mixing of indifferent lotteries can serve to distinguish between these different

notions of reference dependence.

Moreover, testing the Allais paradox with more than three outcomes can serve to distinguish

models of reference dependence from one another. An implication of Observation 3 is that when

there are more than 3 outcomes there will always be examples where CPEM preferences induce be-

havior that violate Negative Certainty Independence, unlike NCI preferences (which, recall, include

G). This provides a potential avenue for testing NCI preferences against CPEM .

8 Conclusion

This paper contributes to understanding behavior under loss aversion and endogenous reference

point formation. In particular, we feel that understanding where CPE fits within the taxonomy

of non-EU theory can be extremely helpful for both theoretical and empirical researchers. It

allows researchers to both make use of a larger toolkit of methods and to better understand how to

distinguish models of reference dependence from one another. As our results make clear, the driving

mechanism behind reference dependence in risky choice requires looking not just at first-order risk

aversion, but other factors, such as attitudes towards randomization.

Our approach helps formalize why reference point formation is the desiderata of reference de-

pendence, rather than the shape of the gain-loss utility function. As we observe in this paper,

changing the reference point formation process from that of CPE to G to BLS generates very dif-

ferent behavior. In contrast, changing the gain-loss utility functional (e.g. changing g from linear

to concave) while leaving the reference point formation process untouched preserves an important

feature of the models: in particular, the weakening of the Independence axiom consistent with the

preferences. For example, GCPE preferences satisfy the Projective Independence axiom of Chew,

Epstein and Segal (1994) regardless of the gain-loss functional. In contrast, if the reference point

is the certainty equivalent, as in G or B, then preferences satisfy Betweenness.

As a final thought, it is important to discuss how our results fit into the larger set of solution

concepts considered by Kőszegi and Rabin (2007). In this paper we have focused on Kőszegi and

Rabin’s choice-acclimating personal equilibria solution concept. As mentioned previously, Kőszegi

and Rabin (2007) also consider other solution concepts, including preferred personal equilibrium
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(PPE). A natural question to ask is how our results shed light on PPE. Unlike CPE, PPE can

generate intransitive choice patterns. This is because PPE is a two-stage choice procedure. Given

a choice set S, in the first stage an individual determines whether any given lottery f ∈ S is better

than all other lotteries g ∈ S given f as a reference point. Intuitively, fixing a reference point f

the first stage indifference curves must be parallel and linear, and their slope is determined by f .

Thus, in the first stage, an individual is checking whether f lies on the highest linear indifference

curve, where the slope of the indifference curves depends on f . Those lotteries that survive the

first stage are evaluated according to the second stage criterion, which is CPE. Those that are

also optimal in the second stage are the PPE of S. In recent work Freeman (2012) characterized a

general form of PPE using choice data. We can use our analysis in this paper to shed additional

light on the specific form of PPE used by Kőszegi and Rabin (2007). Differences between CPE and

PPE, including intransitivity, occur when the first stage and second stage criteria differ, or when

there are ‘gaps’ between the indifference curves generated by the first and second stage criteria.

Using the results in this paper, it is evident that this reduces to comparing the ranking generated

by linear indifference curves to that generated by elliptical indifference curves. In ongoing work

we are exploring this relationship in order to better understand when the results from this paper

extend to PPE and to characterize when transitivity is violated.
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