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1 Introduction 

The purpose of this paper is to present a general frame
work for the study of control problems using the behav
ioral formalism and to specialize such a setting to the 
i1 optimal control problem. Especially in the control 
community, dynamical systems are dominantly viewed 
as operators acting on inputs and producing output 
signals. It has been argued in [9, 10] that for many ap
plications in modeling, control and simulation, the tra
ditional input-output framework may not be a natural 
starting point. Also, the causality structure which is 
often assumed in feedback configurations imposes con
straints on the design of control systems which may 
not be necessary or which may not correspond to a 
physical structure. It is a distinguishing feature of the 
behavioral theory that systems are described in terms 
of equations rather than input-output operators. Be
havioral equations define relationships among system 
variables in which input and output signals are not 
necessarily distinguished. System variables are there
fore treated in a symmetric way which may have ma
jor conceptual advantages for theoretical and practical 
considerations in control. 

Control of dynamical systems concerns the manipu
lation of a selected set of variables so as to achieve 
some kind of desirable behavior. Here, by 'selected 
variables' we will mean a distinguished set of system 
variables which can be interconnected with a control 
system. Desirable behavior will be expressed in terms 
of qualitative or quantitative properties of the system 
which is obtained by interconnecting plant and con
troller. For such an interconnection, we will make a 
crucial distinction between interconnection and exter
nal variables. Interconnection variables describe the in
teraction between plant and controller. These variables 
have been selected a priori and can be used for con-
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trol purposes. External variables are the variables by 
means of which the controlled plant interacts with its 
environment. Typically, actuator inputs and measured 
process outputs are interconnection variables; external 
variables include reference signals, disturbances and to
be-controlled system variables. A plant is viewed as 
a dynamical system that imposes constraints on both 
external and interconnection variables. We will view a 
controller as a set of laws which imposes constraints on 
the interconnection variables only. 

This paper is motivated by earlier work on control 
in a behavioral context [5,6,11,14], and by papers 
on 1{2 and 1ioo optimal control in this formalism 
[8,12,13]. The papers [8,12, 13J concentrate on the 
full-information case, while in this paper we study 
the partial-information case since we explicitly specify 
the variables on which the controller can impose con
straints. The i l optimal control problem has not been 
considered in the behavioral formalism before. For the 
main ideas of £1 optimal control in the more common 
input-output framework we refer to [2]. 

2 System interconnections 

The analysis of system interconnections is the core of 
many problems in modeling, simulation and control. In 
this section we concentrate on the interconnection of a 
plant with a controller. We will consider dynamical 
systems E = (T, W, l3) with discrete time set T = Z+ 
or T = Z, finite dimensional real valued signal spaces 
W m;q , q > 0 and behaviors 8 which are linear shift
invariant and complete subsets of W T . This class of 
linear systems will be denoted by e.q • 

It has been shown in [9,10] that e.q admits a 
parametrization by means of real polynomial matrices 
with q columns. Precisely, for every system E E e.q 

there exists a polynomial R E Jltxq[z], i.e. a polyno
mial of the form R(z) = L:~=o ~z' with Ri real matri
ces with q columns, such that the behavior l3 of E can 



be written as 

Here, R( u} is to be interpreted as a polynomial oper~ 
ator in the left-shift u (Le. [uw](t) = wet + 1» acting 
on the signal space (lRq)T. 

Let L:p == (T, W, Bp) be a dynamical system and sup~ 
pose that its signal space W = IRq is partitioned as 

W=W.xWi 

where W. = IRq· is the external signal space and 
Wi = IRql is a non-empty set called the interconnec~ 
tion space. Here, q = q. + qi and qi > O. We refer to Ep 
as the plant. A controller for Ep is a dynamical sys~ 
tern L:. = (T, WI, B.) which, when interconnected with 
Ep imposes constraints on the interconnection variables 
only. We formalize this as follows. 

Definition 2.1 The interconnection of the systems 
Ep = (T, We X 'W;, Bp) and Ee = (T, 'W;, Be) is the system 

EI' nEe := (T, W. x Wi. Bpn Be) 

where 

Bp n Be:= {(W., Wi) ! (We, Wi) E BI' and Wi E Be}. 
(2.1) 

IfW" is void then E"nEc is called a full interconnection. 

Note that in a full interconnection Bp n Be = 81' n Be. 
Further, it is easily seen that the interconnection Ep n 
E. E c;q if Ep E 0 and Eo E Oi. In what follows, we 
will view Eo as a dynamical system that is (or needs to 
be) designed to be interconnected with the plant Ep. 
The interconnection Eel' := Ep n Ee is refered to as the 
controlled plant. 

Not all system interconnections will qualify for the pur
pose of control. A well-posed interconnection is defined 
as follows. 

Definition 2.2 Let Ep = (T, W. x W;,81') and Eo = 
(T, Wi> Be) be two dynamical systems. Their intercon
nection Ep n E. is said to be well-posed if there exists 
to E T such that 

((W., w:), (w.,w:') E BpnB., w:(t) = w:'(t) fort ~ to} 
{ ' If} ==> Wi = Wj • 

This means that once the external trajectories w. in an 
interconnected system are specified, the set of all in
terconnection variables Wi for which (W.,Wi) E Bp n Be 
define an autonomous behavior. In other words, a well. 
posed interconnection does not allow inputs in the in
terconnection variables for the interconnected system. 

Note that the interconnection variables Wi do not need 
to be partitioned in inputs (actuators) and outputs 
(measurements). This is one of the reasons that we 
avoid the usage of more classical terminology like 'feed
back' and 'closed~loop' as the causality structure of the 
interconnection variables is irrelevant in this setting. 

Let Ep E cq be a dynamical system and suppose that 
its behavior is represented in polynomial form by 

where R. E !R'xq. [z] and Ri E IR'Xqi [z]. If E. E £/Ii is a 
controller, then its behavior can be represented as 

where Rc E lR·xqc [z] and the resulting interconnected 
system admits an autoregressive representation of the 
form 

(2.2) 

Well-posedness of such an interconnection is easily 
checked. 

Proposition 2.3 The interconnection of Ep and E. is 
well-posed if and only if the polynomial matrix 

is injective as viewed as a matrix over the field of ra
tional functions. 

In a well-posed interconnection the controller has to 
add a minimal number of laws to guarantee that the 
interconnection variables are uniquely determined once 
the external variables are fixed. But we do not want to 
add too many control laws either. In a classical input
output framework a controller should guarantee that 
the interconnecting variables are uniquely determined 
once the external variables are fixed but it should not 
impose any constraints on the external inputs. To guar
antee that also in the present setting we do not impose 
undue constraints on the external variables we intro
duce the concept of a minimal controller. For this, the 
input dimension of a dynamical system is the relevant 
integer invariant to consider. 

Definition 2.4 The complexity of a dynamical system 
E E C/I is the pair of integers (m(£),n(L:» := (m,n) 
which satisfy 

dim(B![o,t-11) = mt + n (2.3) 

for all t;;:: n. 



The numbers m(E) and neE) are well defined this way 
and correspond to the number of inputs and the min
imal number of states in an input-state-output repre
sentation of E. 

Definition 2.5 The system Ec E Cqj is said to be a 
minimal controller for a plant Ep E 0 if the intercon
nection Ep n Ec is well-posed and if for any other con
troller E~ which makes the interconnection well-posed 
we have 

Intuitively m(Ep n E.) is the number of free variables 
or inputs of the controlled systems and hence we re
quire that we do not reduce the number of free vari
ables any more than necessary to make the controlled 
system well-posed. A minimal controller therefore adds 
a minimal number of constraints to obtain a well-posed 
interconnection. Also minimality of an interconnection 
is easily checked. 

Proposition 2.6 Assume that the interconnection of 
E" E 0 and Eo E OJ is well-posed. Then the intercon
nection is minimal if and only if 

qj = normrankRj + normrankRc • 

3 Control objectives 

Let Ep E Cqe+q;, E. E Cqj and consider the controlled 
plant E.p := (T, IRq· +qi, B.p) = Ep Il Eo. Control ob
jectives are usually specified as functionals defined on 
specific signals of the controlled plant behavior. in
deed, if initial conditions are known, if disturbances 
are known to be bounded in magnitude or if reference 
signals are specified, then only subsets of the controlled 
plant behavior are relevant for the specification of sys
tem performance. These restrictions will be formalized 
by considering trajectories W E Bop which satisfy 

(3.1) 

where R is a subset of (IRq)T. Thus, the intersection 
Bcp n 'R is considered as the relevant set to verify con
trol objectives. A control objective is another subset 
S of (IRq)T which is assumed to be specified either in 
a qualitative or in a quantitative way. The controlled 
system Ecp achieves the control objective if its behavior 
Bcp satisfies the inclusion 

(3.2) 

In that case, the controller E. is said to achieve the con
trol objective S for the plant Ep. We will outline how 
many different control objectives can be formulated in 
this framework. 

3.1 Stability 
External stability can be formulated quite easily. In 
general external stability depends on an input output 
structure imposed on the external variables. Suppose 
therefore that We is partitioned as 

We = (~) (3.3) 

where d denotes an input and z an output compo
nent of We' The classical definition of bounded-input, 
bounded-output stability then requires that d E £00 im
plies z E £00 in the controlled plant. This is imposed 
quite easily in our framework by choosing: 

R := { W = (d, z, w;) IdE leo } 

S := { W = (d, z, Wi) I z E leo } 

Similarly, internal stability can be imposed by consid
ering well-posed interconnections and requiring (3.2) 
with 

'R := { W = (d, z, w;) I d = 0 } 

S := { W = (d, z, Wi) I lim z(t) = 0, and lim w;(t) }. 
t-+oo t-+CX) 

3.2 Linear Quadratic Control 
The usual formulations of the linear quadratic control 
problem invariably start with state space descriptions 
of the system. Generally, an initial state is fixed and 
a quadratic functional defined on the state and input 
variables needs to be minimized subject to the state 
evolution equations. Here we depart from such a for
mulation. The idea of considering fixed initial states 
in LQ-type of problems can be imposed in our frame
work by fixing the past of the controlled plant. In other 
words we choose T = Z and assume that some func
tion w : Z_ - IRq is given. The linear quadratic control 
problem then amounts to finding a minimal controller 
E. for Ep such that (3.2) is satisfied with 

'R := { w I wet) = wet) for t ~ 0 } 
00 

s:= {w I Lw'(t)Qw(t) ~ 1} 
t=O 

where Q E IRqxq is some fixed positive semi-definite 
matrix. 

This is obviously not really optimal control since a 
controller satisfying the above performance criterion 
does not minimimize a quadratic cost function but only 
guarantees that the cost function is smaller than some 
a priori fixed number. However, the essence of linear 
quadratic control can clearly be recovered via the above 
framework. 

3.3 H2 optimal control 
In H2 optimal control the H2 norm of a closed-loop 
transfer function needs to be minimized over the class 
of internally stabilizing controllers. 



We define the H2 control problem in our framework by 
considering the control objective (3.2) with 

-1 

n := {w I L W'(t)Q1W(t) ~ 1 } 
t=-co 

00 

S := {w I L W'(t)Q2W(t) ~ 1 } 
t=o 

for suitably chosen positive semi-definite matrices Q1 
and Q2' The control objective therefore amounts to 
bounding a quadratic functional on those future tra
jectories which are compatible with pasts that satisfy 
a quadratic norm bo~nd. 

In a classical input-output setting this problem basi
cally corresponds to a generalized H2 control problem 
as studied in e.g. [7]. For non-fixed initial conditions, 
an H2 problem can be formulated by introducing some 
measure on the size of the initial condition. With u 
denoting a control input signal and x the state of a lin
ear, time-invariant system in input-state-output form, 
one can impose the following measure on initial states 

-1 

m1(xO) = min{ L u'(t)u(t) I x(O) = xo}. 
u 

t=-co 

For some given initial condition Xo one could consider 
the following optimization criterion 

00 

m2(xO) = m~n{ L x'(t)Qx(t) I x(O) = xo}. 
t=o 

where Q is a positive semi-definite matrix. The con
trol objective amounts to finding a controller which 
achieves that for all Xo, m1(xO) ~ 1 implies m2(xO) ~ l. 
For suitable choices of Q1 and Q2 this problem is equiv
alent to (3.2) with nand S as defined above. 

3.4 Hoo optimal control 
In Hco control we impose conditions of the form 

on the external variables w. which are assumed to be 
partitioned as in (3.3). This condition is obviously 
equivalent to 

~ (d(t»)' (-I 0) (d(t») ~ 0 
~ z(t) 0 I z(t) ~ . 
t=o 

In other words, we can formulate the Hoo control prob
lem in our framework by choosing nand S as: 

00 

s:= {w I Lw'(t)Qw(t) ~ O} 
t=o 

for some suitable chosen matrix Q which will in general 
be indefinite. 

4 The e1 optimal control problem 

L1 optimal control is a more recent development (for 
extensive references see e.g. [2]). In its usual opera
tor theoretic formulation, the e1 optimal control prob
lem amounts to minimizing the eoo induced norm of a 
closed-loop operator mapping disturbances to a to-be
controlled output variable. 

We will address this problem in a behavioral frame
work. Recall that the classical e1 control problem 
amounts to finding a (stabilizing) controller for a plant 
so as to minimize 

sup liz II 00 

dElco IIdll oo 

or so as to achieve that 

II z 1100 
sup -lldll ~ 1. 

delco . 00 

Here, d and z denote a decomposition of the external 
variables in an input and an output component as in 
(3.3). The latter criterion will be formulated in our 
setting by imposing as an a priori condition that some 
components of the external variables, say d, have eoo 

norm less than 1. This should imply that other com
ponents of the external variables, say z, have eoo norm 
less than 1. 

In addition, we would like to study the synthesis prob
lem of constructing a controller which achieves this aim. 
For simplicity we consider in this paper a finite horizon 
version of this general problem. 

Suppose that a polynomial R E IRpxq [z] of degree L is 
given and partitioned as R = [R. Ri]' Let N > Land 
let T = [0, N] denote a finite time set. Then R defines 
a finite-time dynamical system ~p = (T, IRq, Bp) with 
behavior 

l3p := {w I [R(u)w](t) = 0, t = O, ... ,N - L}. 

Then Bp is a subspace of the linear space IRqx(N+l). If 
we associate with w : [0, N] --+ IRq· +qi the vector 

(w:(O) ... w~(N) w:(O) 

then the plant behavior can equivalently be described 
as 

Bp = {w I Cw = O} = { (w.,w;) I C1w. + C2 w; = O} 
(4.1) 

where C is a real matrix acting on IRq(N-L+I} and is 
partitioned as C = [Cl C2 ] conformally with the par
titioning of R. 

In such a setting, controllers are finite time dynamical 
systems ~e = (T, IRq;, Be) which can be represented by 
a real matrix C3 acting on IRqi(N-L+1), i.e, 

Be = { Wi I C3W i = 0 } (4.2) 



The interconnected system Ep n E. is well defined in 
this way and its behavior Bop is represented as 

The £1 control objective is specified by taking both S 
and n polyhedral sets in the finite dimensional space 
aq(N-L+1} (which are not necessarily bounded). We 
will represent Sand n by two real matrices As and 
An., both having q.,(N - L + 1) columns, i.e. 

n::: {w I An.w. ~ 1 } 

S ::: { W I Asw. ~ 1 } 

where 1 denotes a vector of which each component is 
equal to 1 and of appropriate dimension. All inequali· 
ties should be interpreted element by element. 

The £1 control objective is now formulated as in (3.2). 
The condition (3.2) can be checked via a simple linear 
programming problem by using the following lemma 
(see [3,15J): 

Lemma 4.1 (Farkas lemma) Let a matrix A, co· 
lumn vectors z and a, and some real number c be given. 
Then a' x ~ c for all x such that Ax ~ z, if and only if 

• there exists a vector t ~ 0 such that A't ::: a and 
t'z ~ C, or 

• there exists a vector t ~ 0 such that A't ::: 0 and 
t'z < O. 

Since our control objective translates into the implica
tion 

i] [::] ~ [~] ==> 
-Ca 0 

[As 0] [::] ~ 1, 

application of Farkas lemma yields the following result 

Corollary 4.2 Let Ep and Ec be finite time dynamical 
systems represented by (4.1) and (4.2), respectively. 
Let Bep denote the behavior of the interconnection Ep n 
E •. Then the control objective 

Bep n n ~ S 

is satisfied if and only if there exist matrices T1, T2 and 
T3 such that: 

TIAn. + T2 C1 ::: As 

T2C2 + T3Ca = 0 

TIl ~ 1 

Tl ~ 0 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

. To check for the existence of T1, T2 and Ta is obviously a 
simple linear programming problem. This result there. 
fore provides a linear programming type of test to check 
whether the interconnection of plant and control satisfy 
the control objective. 

On the other hand, for the construction of a controller 
E e , we have to make sure that there exists a suitable 
Ca which guarantees the existence of appropriate Th T2 
and T3 satisfying the conditions (4.3)-(4.6). We there. 
fore need to search for Tl and T2 satisfying (4.3), (4.5) 
and (4.6) such that (4.4) is solvable for suitable Ta and 
Cg _ Noting that, except for dimensions, C3 and T3 are 
completely free, we obtain the following theorem: 

Theorem 4.3 There exists a controller Eo which 
yields a minimal, well·posed interconnection such that 
(3.2) is satisfied for the interconnected system if and 
only if there exists matrices Tl and T2 satisfying (4.3), 
(4.5) and (4.6) such that 

normrank(T2 C2 ) ~ q. - normrankC2 

Proof. It is easy to check that to obtain a well-posed 
and minimal interconnection the number of rows of C3 

should be equal to qi - normrank C2 • It is then easy 
to check that (4.4) is solvable for suitable C2 and Ca if 
and only if 

normrank(T2C2) ~ qi - normrankC2 • 

o 

The condition in the above lemma is not easy to check 
because of the rank condition. However, it is interest· 
ing to note that in a special case we do not need this 
rank condition: 

Corollary 4.4 Assume that 

(4.7) 

In that case, there exists a controller which yields a 
minimal, well-posed interconnection such that (3.2) is 
satisfied if and only if there exists matrices Tl and T2 
satisfying (4.3), (4.5) and (4.6). 

Proof. If (4.7) is satisfied then 

normrank(T2C2 ) ~ normrankC2 ::;; qi - normrankC2 • 

Hence the rank condition is always satisfied. The result 
is then an immediate consequence of theorem 4.3 0 

The condition in the above corollary basically requires 
that the number of control inputs is larger than the 
number of measurements in any input-output decom
pOSition of the interconnection variables Wi' Note that 
after we found Tl and T2 , the construction of C3 is a 
simple matrix factorization problem. 



Remark 4.5 Throughout this paper, the interconnec
tion variables Wi have not been partitioned in input 
and output components. After a minimal controller 
has been designed, such a decomposition can be made 
a posteriori. This would yield the usual causality struc
tUre of closed-loop configurations in which certain in
terconnection variables can be identified as inputs (out
puts) for the controller and outputs (inputs) for the 
plant. 

Remark 4.6 The results of this section are derived 
by applying Farkas lemma for polyhedral sets in finite 
dimensional spaces. This yields a characterization for 
the £1 control objective for finite time systems that 
has been translated in a controller synthesis procedure. 
We remark that a version of Farkas lemma for infinite 
dimensional vector spaces exists. See [1,4]. A study 
of the infinite horizon il control problem is a topic of 
current research. 

5 Conclusion 

In this paper we have formulated a structure for con
trol system design in a behavioral setting. Currently 
we are extending this work for the il optimal control 
problem. In particular, we are looking for techniques 
for the synthesis of minimal ii-optimal controllers if 
the rank condition is needed. Also extensions to the 
infinite horizon case is a topic of future research. 
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