
A Belief-Driven Method for Discovering Unexpected Patterns

Balaji Padmanabhan
Department of Information Systems
Leonard N. Stern School of Business

New York University
bpadmana@stern.nyu.edu

Alexander Tuzhilin1

Computer Science Department
Columbia University

tuzhilin@cs.columbia.edu

1 On sabbatical leave from NYU (atuzhili@stern.nyu.edu).
Copyright 1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Abstract
Several pattern discovery methods proposed in the data
mining literature have the drawbacks that they discover
too many obvious or irrelevant patterns and that they do
not leverage to a full extent valuable prior domain
knowledge that decision makers have. In this paper we
propose a new method of discovery that addresses these
drawbacks. In particular we propose a new method of
discovering unexpected patterns that takes into
consideration prior background knowledge of decision
makers. This prior knowledge constitutes a set of
expectations or beliefs about the problem domain. Our
proposed method of discovering unexpected patterns uses
these beliefs to seed the search for patterns in data that
contradict the beliefs. To evaluate the practicality of our
approach, we applied our algorithm to consumer
purchase data from a major market research company
and to web logfile data tracked at an academic Web site
and present our findings in the paper.

1. Introduction
The field of knowledge discovery in databases (data
mining) has been defined in (Fayyad, Piatetsky-Shapiro
and Smyth 1996) as the non-trivial process of identifying
valid, novel, potentially useful, and ultimately
understandable patterns from data. However, most of the
work in the KDD field focuses on the validity aspect, and
the other two aspects, novelty and usefulness, were studied
to a lesser degree. This is unfortunate because it has been
observed both by researchers (Frawley, Piatetsky-Shapiro
and Matheus 1991, Klemettinen et al. 1994, Brin et al.
1997, Silberschatz and Tuzhilin 1995, Silberschatz and
Tuzhilin 1996a, Liu and Hsu 1996) and practitioners
(Stedman 1997, Forbes 1997) that many existing tools
generate a large number of valid but obvious or irrelevant
patterns. To address this issue, some researchers have
studied the discovery of novel (Silberschatz and Tuzhilin
1995, Silberschatz and Tuzhilin 1996a, Liu and Hsu 1996,
Liu, Hsu and Chen 1997, Padmanabhan and Tuzhilin
1997a) and useful (Piatetsky-Shapiro and Matheus 1994,
Silberschatz and Tuzhilin 1995, Silberschatz and Tuzhilin
1996a, Adomavicius and Tuzhilin 1997) patterns.

In this paper, we continue the former stream of

research and focus on the discovery of unexpected
patterns. Unexpectedness of a rule relative to a belief
system has been considered before in (Silberschatz and
Tuzhilin 1995, Silberschatz and Tuzhilin 1996a, Liu and
Hsu 1996, Liu, Hsu and Chen 1997, Padmanabhan and
Tuzhilin 1997a). In (Silberschatz and Tuzhilin 1995,
Silberschatz and Tuzhilin 1996a) “unexpectedness” of a
rule is defined relative to a system of user-defined beliefs.
A rule is considered to be “interesting” if it affects the
degrees of beliefs. Therefore, unexpectedness is defined in
probabilistic terms in (Silberschatz and Tuzhilin 1995,
Silberschatz and Tuzhilin 1996a). Liu and Hsu take a
different approach to defining unexpectedness in (Liu and
Hsu 1996). In particular, (Liu and Hsu 1996) captures a
measure of rule “distance” and is based on a syntactic
comparison between a rule and a belief. In (Liu and Hsu
1996), a rule and a belief are “different” if either the
consequents of the rule and the belief are “similar” but the
antecedents are “far apart” or vice versa, where
“similarity” and “difference” are defined syntactically
based on the structure of the rules. In addition, (Liu, Hsu
and Chen 1997) proposes a method in which users can
specify their beliefs by using "generalized impressions"
that are easier for the user to specify than specific beliefs.
However the discovery method again is based on syntactic
comparisons of rules and beliefs. This does not capture the
concept of “unexpectedness” in terms of logical
contradiction of rules and beliefs as argued in
(Padmanabhan and Tuzhilin 1997a) to be better.

In (Padmanabhan and Tuzhilin 1997a) we proposed a
new definition of unexpectedness in terms of a logical
contradiction of a rule and a belief. In this paper, we take
this approach and formally present an algorithm for
discovering unexpected patterns. We also test this
algorithm on data provided to us by a major market
research company and on Web logfile data gathered at an
academic website and present our findings. We also
demonstrate that our method provides a simple, yet
effective way to discovering interesting patterns in the
data.

In this paper, we focus only on the discovery of
unexpected patterns given an initial set of beliefs. We do
not address the issue of how to build a "good" set of
beliefs. We assume that it can be generated using methods

From: KDD-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

described in (Silberschatz and Tuzhilin 1996b), such as
elicitation of beliefs from the domain expert, learning
them from data, and refinement of existing beliefs using
newly discovered patterns. A similar issue of how to
specify an initial set of beliefs has also been addressed in
(Liu, Hsu and Chen 1997).

2. Unexpectedness of a Rule
In order to define the concept of unexpectedness, we first
present some preliminaries. We consider rules and beliefs
of the form X → A, where X and A are conjunctions of
literals (i.e., either atomic formulas of first-order logic or
negations of atomic formulas). We keep this definition
general and do not impose restrictions of the structures of
atomic formulas that can appear in literals of X and A. We
also associate with the rule some measure of its statistical
“strength”, such as “confidence” and “support” (Agrawal
et al. 1995). We say that a rule holds on a dataset if the
“strength” of the rule is greater than a user-defined
threshold value.

We also make an assumption of monotonicity of
beliefs. In particular, if we have a belief Y→B that we
expect to hold on a dataset D, then the belief will also be
expected to hold on any “statistically large”2 subset of D.
If we have a non-monotonic belief (that we expect not to
hold for some subset of the data), we incorporate our
knowledge of why we do not expect the belief to hold on
the subset into the belief, thereby making the belief more
specific (as shown in (Padmanabhan and Tuzhilin 1997b)).
We can do this iteratively until we have a set of monotonic
beliefs.3 Given these preliminary concepts, we define
unexpectedness of a rule.

Definition . The rule A → B is unexpected with respect to
the belief X → Y on the dataset D if the following
conditions hold:

(a) B AND Y |= FALSE. This condition states that B
and Y logically contradict each other.
(b) A AND X holds on a statistically large2 subset of
tuples in D. We use the term “intersection of a rule
with respect to a belief” to refer to this subset. This
intersection defines the subset of tuples in D in which
the belief and the rule are both “applicable” in the
sense that the antecedents of the belief and the rule are
both true on all the tuples in this subset.
(c) The rule A, X → B holds. Since condition (a)
constrains B and Y to logically contradict each other, it
follows that the rule A, X → ¬Y holds. �

We believe that this definition captures the spirit of

2 In this paper, we use a user-specified support threshold value to
determine if the subset is large enough.
3 Converting non-monotonic beliefs to monotonic beliefs can be
automated by letting the user specify non-monotonic beliefs with
exceptions. Then the system automatically converts these to a set
of monotonic beliefs.

“unexpectedness” for the following reasons:
(1) The heads of the rule and the belief are such that they
logically contradict each other. Therefore in any tuple
where the belief and the rule are both “applicable,” if the
rule holds on this tuple, the belief cannot hold and vice-
versa.
(2) Since both a rule and a belief hold statistically, it is
inappropriate to label a rule “unexpected” if the
intersection of the contradicting rule and the belief is very
small. Hence we impose the condition that the intersection
of the belief and the rule should be statistically large.
Within this statistically large intersection, we would
expect our belief to hold because of the monotonicity
assumption. However if the rule holds in this intersection,
the belief cannot hold because the heads of the rule and
belief logically contradict each other. Hence the
expectation that the belief should hold on this statistically
large subset is contradicted. We next present an algorithm,
which is an extension of standard association rule
generating algorithms (Agrawal et al. 1995) for finding
unexpected rules.

3. Discovery of Unexpected Rules
In this section we present an algorithm for discovering
unexpected rules. The rules and beliefs that we consider in
the rest of this paper are of the form body → head, where
body is a conjunction of atomic conditions of the form
attribute op value and head is a single atomic condition of
the form attribute op value, where op ∈ {≥, ≤, =}. This
definition extends the structure of association rules
(Agrawal et al. 1995) by considering discrete domains and
conditions involving comparison operators ≥ and ≤. We
consider these extensions since in many applications, such
as the Web logfile application, rules and beliefs involve
these additional operators. We further follow the approach
taken in (Agrawal et al. 1995) and discover unexpected
rules that satisfy user-specified minimum support and
confidence4 requirements.

We note that some discrete attributes in the domain
may be unordered (e.g. "Country"). When an unordered
attribute is part of a condition, we restrict the operator in
that condition to be "=" (we disallow conditions such as
"country ≥ Brazil", since country is an unordered
attribute).

3.1 Overview of the Discovery Strategy
Consider a belief X → Y and a rule A → B, where both X
and A are conjunctions of atomic conditions and both Y
and B are single atomic conditions. It follows from the
definition of unexpectedness in Section 2 that if a rule A
→ B is “unexpected” with respect to the belief X → Y,
then the rule X, A → B also holds. We propose the

4 Rule body → head holds in a dataset with confidence c if c% of
the transactions containing body also contain head; the rule has
support s if s% of transactions contain body and head.

discovery algorithm ZoomUR (“Zoom to Unexpected
Rules”) that consists of two parts: ZoominUR and
ZoomoutUR. Given a belief X → Y, algorithm ZoomUR
first discovers (in ZoominUR) all rules (satisfying
threshold support and confidence requirements) of the
form X, A → B, such that B contradicts the head of the
belief. We then consider (in ZoomoutUR) other more
general and potentially unexpected rules of the form X’, A
→ B, where X’ ⊂ X.

The rules that ZoominUR discovers are “refinements”
to the beliefs such that the beliefs are contradicted. The
rules that ZoomoutUR discovers are not refinements, but
more general rules that satisfy the conditions of
unexpectedness. For example, if a belief is that
“professional→ weekend” (professionals tend to shop
more on weekends than on weekdays), ZoominUR may
discover a refinement such as “professional, december →
weekday” (in December, professionals shop more on
weekdays than on weekends). ZoomoutUR may then
discover a more general rule “december→weekday”,
which is totally different from the belief “professional→
weekend”.

3.2 Algorithm ZoominUR
Algorithm ZoominUR is based on algorithm Apriori's
ideas (Agrawal et al. 1995) of generating association rules
from itemsets in an incremental manner. In this paper we
use the term "itemset" to refer to a conjunction of atomic
conditions, each of the form attribute op value where op ∈
{ ≥, ≤, =}. An itemset is said to be large if the percentage
of transactions that satisfy the conjunction of conditions
exceeds the user-specified minimum support level. There
are two main extensions to Apriori that we make in
ZoominUR: (1) ZoominUR starts with a set of initial
beliefs to seed the search for unexpected rules. This is
similar in spirit to the work of (Srikant, Vu and Agrawal
1997) where itemset constraints are used to focus the
search. (2) We incorporate comparisons since in many
applications some rules involve these operators. Before
presenting ZoominUR, we first explain some
preliminaries.

Consider the belief X → Y, where X and Y are as
defined in Section 3.1. We use the term "CONTR(Y)" to
refer to the set of atomic conditions of the form attribute
op value that contradict Y, where op ∈ {≥, ≤, =}. Assume
that the head of the belief is a op val, where a is an
attribute in the domain. Further assume that v1, v2,...,vk are
the set of unique discrete values (sorted in ascending order
if a is ordered) that the attribute a takes on in D.
CONTR(Y) is generated as follows:

(1) If the head of the belief is of the form "a ≥ val":
a) Any condition of the form "a ≤ vp"∈ CONTR(Y) if

vp ∈ {v1,v2,...vk} and vp < val; (e.g. the head
"month ≥ 10" is contradicted by "month ≤ x",
where x is from {1,2,...,9})

b) Any condition of the form "a = vp"∈ CONTR(Y)
if vp ∈ {v1,v2,...vk} and vp < val;

(2) If the head of the belief is of the form "a ≤ val":
a) Any condition of the form "a ≥ vp"∈ CONTR(Y) if

vp ∈ {v1,v2,...vk} and vp > val;
b) Any condition of the form "a = vp"∈ CONTR(Y)

if vp ∈ {v1,v2,...vk} and vp > val;

(3) If the head of the belief is of the form "a = val":
a) If a is an ordered attribute, "a ≥ vp"∈ CONTR(Y)

if vp ∈ {v1,v2,...vk} and vp > val;
b) If a is an ordered attribute, "a ≤ vp"∈ CONTR(Y)

if vp ∈ {v1,v2,...vk} and vp < val;
c) Any condition of the form "a = vp"∈ CONTR(Y)

if vp ∈ {v1,v2,...vk} and vp ≠ val;

Since the rules discovered need to have minimum
support, we follow the method of (Agrawal et al. 1995)
and generate large itemsets in the first part of the
algorithm. The k-th iteration of Apriori (Agrawal et al.
1995) (1) generates a set, Ck, of "candidate itemsets",
whose support needs to be determined; (2) then evaluates
the support of each candidate itemset from the dataset D
and determines the itemsets in Ck that are large. The set of
large itemsets in this iteration is Lk. (Agrawal et al. 1995)
observes that all subsets of a large itemset are large, which
is why the process of computing Ck from the set Lk-1 can
be done efficiently. The first iteration in Apriori starts with
candidate itemsets of cardinality 1. The second part of the
algorithm generates rules from the support values of the
large itemsets. For example., let I1= {X,Y} and I2={X}.
From the supports of these itemsets, the confidence of the
rule if X then Y can be computed as support(XY) /
support(X). Given these preliminaries, we describe the
algorithm next.

ZoominUR algorithm is presented in Fig. 3.1. The
inputs to ZoominUR are a set of beliefs, B, and the dataset
D. For each belief X → Y, ZoominUR finds all unexpected
rules of the form X, A → C, such that C ∈ CONTR(Y) and
the rules satisfy minimum support and confidence
requirements.

For each belief X → Y, ZoominUR first generates
incrementally all large itemsets that may potentially
generate unexpected rules. Each iteration of ZoominUR
generates itemsets in the following manner. In the k-th
iteration we generate itemsets of the form {X,P,C} such
that C ∈ CONTR(Y). Observe that to determine the
confidence of the rule X, P → C, the supports of both the
itemsets {X,P,C} and {X,P} will have to be determined.
Hence in the k-th iteration of generating large itemsets,
two sets of candidate itemsets are considered for support
determination:
(1) The set Ck of candidate itemsets . Each itemset in Ck

(e.g. {X,P,C}) contains (i) the body {X} of the belief, (ii) a
condition that contradicts the head of belief, (i.e. any
condition C ∈ CONTR(Y)) and (iii) k other atomic
conditions (i.e. P is a conjunction of k atomic conditions).
(2) A set Ck' of additional candidates. Each itemset in Ck'
(e.g. {X,P}) is generated from an itemset in Ck by
dropping a contradictory condition, C.

Inputs: Beliefs Bel_Set , Dataset D, Thresholds min_support and min_conf
Outputs: Unexpected rules that are refinements to the beliefs and for each belief, B, itemsets
Items_In_UnexpRule B

1 forall beliefs B ∈ Bel_Set {
2 C0 = { {x,body(B)} | x ∈ CONTR(head(B)) }; C 0’ = {{body(B)}}; k=0
3 while (C k != ∅) do {
4 forall candidates c ∈ C k ∪ C k’ , compute support(c)
5 Lk = {x | x ∈ C k ∪ C k’ , support(x) ≥ min_support }
6 k++
7 Ck = generate_new_candidates(L k-1 , B)
8 Ck’ = generate_bodies(C k , B)
9 }
10 Let X = {x | x ∈ ∪Li , x ⊇ a, a ∈ CONTR(head(B)) }
11 Items_In_UnexpRule B = ∅
12 forall (x ∈ X) {
13 forall (a ∈ x ∩ CONTR(head(B))) {
14 rule_conf = support(x)/support(x-a)
15 if (rule “x - a → a” is not trivial) and (rule_conf > min_conf) {
16 Items_In_UnexpRule B = Items_In_UnexpRule B ∪ {x}
17 Output Rule “ x - a → a “
18 }
19 }
20 }
21 }

Figure 3.1 Algorithm ZoominUR

We explain the steps of ZoominUR in Fig. 3.1 now. First,
given belief, B, the set of atomic conditions that contradict
the head of the belief, CONTR(head(B)), is computed (as
described above). Then, the first candidate itemsets
generated in C0 (step 2) will each contain the body of the
belief and a condition from CONTR(head(B)). To illustrate
this, consider an example involving only binary attributes.
For the belief x=0→y=0, the set CONTR({y=0}) consists
of a single condition {y=1}. The initial candidate sets,
therefore, are C0 = {{x=0,y=1}}, C0' = {{x=0}}.

Steps (3) through (9) in Fig. 3.1 are iterative: Steps (4)
and (5) determine the supports in dataset D for all the
candidate itemsets currently being considered and selects
the large itemsets in this set.

In step (7), function generate_new_candidates(Lk-1, B)
generates the set Ck of new candidate itemsets to be
considered in the next pass from the previously determined
set of large itemsets, Lk-1, with respect to the belief B (“x
→ y”) in the following manner:

(1) Initial condition (k=1): In the example (binary
attributes) considered above, assume that L0 = {{x=0,
y=1},{x=0}}, i.e. both initial candidates had adequate
support. Further assume that “p” is the only other attribute
(also binary) in the domain. The next set of candidates to
be considered would be C1 = { {x=0,y=1,p=0},
{x=0,y=1,p=1} }, and C1’ = { {x=0, p=0}, {x=0, p=1}}.

In general we generate C1 from L0 by adding
conditions of the form “attribute op value” to each of the
itemsets in L0. This process adds a finite number of
conditions efficiently because of the following reasons.
First, the attributes are assumed to have a finite number of
unique discrete values in the dataset D. Only conditions
involving these discrete values are considered. Second, a

syntactic check can ensure that zero-support itemsets are
never generated. For example, {month ≥ 10} is not added
to itemsets of the form {{month ≤ 3}, X}, while it is added
to {{month ≤ 12}, X}.

(2) Incremental generation of Ck from Lk-1 when k >
1: This function is very similar to the apriori-gen function
described in (Agrawal et al. 1995). For example, assume
that for a belief, B, "x → y", c is a condition that
contradicts y and that L1 = { {x, c, p}, {x, c, q}, {x, p}, {x,
q} } . Similar to the apriori-gen function, the next set of
candidate itemsets that contain x and c is C2 ={{x, c, p,
q}} since this is the only itemset such that all its subsets of
one less cardinality that contain both x and c are in L1.

In general, an itemset X is in Ck if and only if for the
belief B, X contains body(B) and a condition A such that A
∈ CONTR(head(B)) and all subsets of X with one less
cardinality, containing A and body(B), are in Lk-1.

In step (8), as described previously, we would also
need the support of additional candidate itemsets in Ck' to
determine the confidence of unexpected rules that will be
generated. The function generate_bodies(Ck,B) generates
Ck' by considering each itemset in Ck and dropping a
condition that contradicts the head of the belief and adding
the resulting itemset in Ck'.

Once all large itemsets have been generated, steps (10)
to (20) of ZoominUR generate unexpected rules of the
form x, p→ a, where a∈ CONTR(head(B)), from the
supports of the large itemsets. However since we deal with
rules involving comparison operators we need to avoid
generating “trivial” unexpected rules. A rule X → Y is
trivial if X |= Y. For example, the rule a ≥ 5, b = 3 → a ≥ 2
is trivial. Step (15) of ZoominUR performs a syntactic
check to avoid generating such rules.

Inputs: Beliefs Bel_Set , Dataset D, min_support , min_conf, For each belief, B, itemsets
Items_In_UnexpRule B

Output : Unexpected rules that are not refinements to the beliefs

1 forall beliefs B {
2 new_candidates = ∅
3 forall (x ∈ Items_In_UnexpRule B) {
4 Let K = {(k, k')|k ⊂ x, k ⊇ x-body(B), k' = k - a, a ∈ CONTR(head(B))}
5 new_candidates = new_candidates ∪ K
6 }
7 find_support(new_candidates)
8 foreach (k,k’) ∈ new_candidates
9 consider rule: k’ → k-k’ with confidence = support(k)/support(k’)
10 if (confidence > min_conf) Output Rule “ k’ → k-k’ “
11 }
12 }

Figure 3.2. Algorithm ZoomoutUR

3.3 Algorithm ZoomoutUR
ZoomoutUR considers each unexpected rule generated by
ZoominUR and tries to determine all the other more
general rules that are unexpected.

Given a belief X → Y and an unexpected rule X, A → B
computed by ZoominUR, ZoomoutUR tries to find more
general association rules of the form X’, A → B , where X’
⊂ X, and check if they satisfy minimum confidence
requirements. Such rules satisfy the following properties.
First, they are unexpected since they satisfy all the three
conditions of unexpectedness. Second, these rules are
more general in the sense that they have at least as much
support as the rule X, A → B. Third, the itemsets {X’, A}
and {X’,A, B} are guaranteed to satisfy the minimum
support requirement (though we still have to determine
their exact support) since the itemsets {X,A} and {X,A,B}
are already known to satisfy the minimum support
requirement.

We present an outline of the ZoomoutUR algorithm in
Fig. 3.2 (because of space limitation, we cannot describe it
in detail and refer the reader to the technical report
(Padmanabhan and Tuzhilin 1997b)). For each belief B
from the algorithm ZoominUR, we have the set of all large
itemsets Items_In_UnexpRuleB (step (15) in Fig. 3.1) that
contain both body(B) and some condition a, such that a ∈
CONTR(head(B)). The general idea is to take each such
large itemset, I, and find the supports for all the subsets of
I obtained by dropping from I one or more attributes that
belonging to body(B).

We would like to note that ZoomUR is complete as the
following theorem demonstrates:

Theorem. ZoomUR discovers all non-trivial unexpected
rules with respect to a belief X → Y.

4. Applications
In this section we present results from applying our

methods to two real datasets: consumer purchase data from
a market research firm and web logfile data gathered at a
major university site.

4.1 Marketing Application
We tested our algorithm on consumer purchase data from
a major market research firm. We pre-processed this data
by combining different data sets into one table describing
the purchases of carbonated beverages and containing 36
discrete attributes. These attributes pertain to the
characteristics of the purchasing transaction and the store
and demographic data about the shopper and his or her
family5. Some demographic attributes include age and sex
of the shopper, occupation, income and the presence of
children in the family and size of the household. Some
transaction-specific attributes include type of item
purchased, coupon usage (whether the shopper used
coupons to get a lower price), availability of coupons and
presence of advertisements for the product purchased. The
resulting dataset had 87437 records, each consisting of 36
discrete fields, the levels of which range from 2 to 12
distinct values.

We compiled 15 beliefs about the data in this domain
that fall into three groups: (1) Usage of coupons, e.g.
“young shoppers with high income tend not to use
coupons”. (2) Purchase of diet vs. regular drinks, e.g.
“shoppers in households with children tend to purchase
regular beverages more than diet”. (3) Day of shopping,
e.g. “professionals tend to shop more on weekends than on
weekdays”. Some of these beliefs were from experts and
others were learned from data and subsequently selected
by the expert as “beliefs”. In this marketing example, all
beliefs were expressed as association rules, and ZoomUR,
therefore, generated only associations.

5 We note that this is unnormalized data containing in one file
both transaction and demographic data.

We generated on average 40 rules per belief (a total of
about 600 rules), many of which were interesting. Being
able to discover some rules really interesting to experts
with more ease than having to look through thousands of
rules (Brin et al. 1997) illustrates the advantage of our
approach. Some representative examples of beliefs and
discovered rules are:

Belief: Shoppers with children tend to buy regular rather
than diet beverages (presumably because children prefer
regular to diet beverages). While, this holds in general in
the data, ZoominUR discovered an unexpected rule:
• When there is a large store advertisement, shoppers

with children buy diet beverages.

This is a really interesting rule to an expert, because it
indicates that under a certain condition (the presence of a
large advertisement in the store), a population that usually
bought products of one kind, buy exactly the opposite
product. If these advertisements represent a sale in diet
beverages, this rule provides evidence of the success of the
advertising campaign.

Belief: Professionals tend to shop more on weekends than
on weekdays (presumably because they are busier during
the week). It turns out that this belief by itself is "true"
(holds with high confidence in the data). However,
ZoominUR discovered some interesting rules such as:
• In December, professionals tend to shop more on

weekdays than on weekends.
• Professionals in large households tend to shop more

on weekdays than on weekends.

Post-discovery, these rules seem to make sense, perhaps
because the holiday season in December makes
professionals shop more often on weekdays and because
large households may have shopping demands far more
often than smaller households, which could make
professionals shop more often. For this belief,
ZoomoutUR also discovered that:

• In December, shoppers in general shop more on
weekdays than on weekends.

This gives some evidence that it may not necessarily be a
"professionals in december" effect, but shoppers in general
in December shop more on weekdays. Also observe that
this rule is not just a refinement of the belief, but a much
different rule (although still unexpected according to the
definition).

Belief: Retired shoppers tend to use coupons for their
purchases (because they can shop with more freedom and
when coupons are available). For this belief, there was a
direct contradiction.

Since ZoomUR in this case generates association rules,
we also ran Apriori algorithm on this dataset (in the process
we extended Apriori to handle discrete attributes) and generated
over 40,000 rules, many of which were irrelevant or
obvious. However, this is not surprising since the objective
of Apriori is to generate all strong association rules. Our
experiments demonstrate that the generation of these

irrelevant or obvious rules can be avoided to a large extent
by using prior domain knowledge (expressed as beliefs) to
seed the search process.

4.2 Mining Web Logfile Data
We also tested our method on Web logfile data tracked at
a major university site. The data was collected over a
period of 8 months from May through December 1997 and
consisted of over 280,000 hits. Some of the interesting
rules in this application involve comparison operators. For
example, temporal patterns holding during certain time
intervals need to be expressed with conditions of the form
"20 ≤ week ≤ 26" (Sep. 10 through Oct. 29 in our
example). We generated 11 beliefs about the access
patterns to pages at the site. An example of a belief is:

Belief: For all files, for all weeks, the number of hits to a
file each week is approximately equal to the file's average
weekly hits.

Note that this belief involves aggregation of the Web
logfile data. To deal with this, we created a user-defined
view on the Web logfile and introduced the following
attributes: file, week_number, file_access_cnt,
avg_access_cnt_file, stable_week. The file_access_cnt is
the number of accesses to file in the week week_number.
The avg_access_cnt_file is the average weekly access for
file in the dataset. The stable_week attribute is 1 if
file_access_cnt lies within two standard deviations around
avg_access_cnt_file and is 2(3) if file_access_cnt is higher
(lower) . The above belief can then be expressed as True
→ stable_week=1. Though this belief was true in general
(holds with 94% confidence on the view generated),
ZoominUR discovered the following unexpected rules:

• For a certain "Call for Papers" file, in the weeks from
September 10 through October 29, the weekly access
count is much higher than the average. i.e.

file = cfp_file, week_number ≥ 20, week_number ≤ 26 →
stable_week=2.

What was interesting about this rule was that it turned out
to be a Call-for-papers for the previous year and the editor
of the Journal could not understand this unusually high
activity! As a consequence, the file was removed from the
server.

• For a certain job opening file, the weeks closest to the
deadline had unusually high activity.

file = job_file, week_number ≥ 25, week_number ≤ 30 →
stable_week=2.

This pattern is not only unexpected (relative to our belief)
but is also actionable because the administrators can
expect a large number of applications and should prepare
themselves for this. Also, this pattern can prompt the
administrators to examine IP domains that do not appear in
the Web log accesses and target them in some manner.

We would like to make the following observations
based on our experiments with the Web application. First,

as the examples show, we need to incorporate comparison
operators since many of the interesting patterns are
expressed in these terms. Second, the raw web access log
data has very few fields, such as IP_Address,
File_Accessed, and Time_of_Access. Without beliefs it
would be extremely difficult to discover relevant patterns
from this "raw" data. Beliefs provide valuable domain
knowledge that results in the creation of several user-
defined views and also drive the discovery process.

5. Conclusions
In this paper, we presented an algorithm for the discovery
of unexpected patterns based on our definition of
unexpectedness. This algorithm uses a set of user-defined
beliefs to seed the search for the patterns that are
unexpected relative to these beliefs. We tested our
algorithm on two "real-world" data sets and discovered
many interesting patterns in both data sets.

These experiments demonstrated two things. First,
user-defined beliefs can drastically reduce the number of
irrelevant and obvious patterns found during the discovery
process and help focus on the discovery of unexpected
patterns. Second, user-defined beliefs are crucial for the
discovery process in some applications, such as Weblog
applications. In these applications, important patterns are
often expressed in terms of the user-defined vocabulary
(Dhar and Tuzhilin 1993) and beliefs provide the means
for identifying this vocabulary and driving the discovery
processes.

As explained in the introduction, we do not describe
how to generate an initial system of beliefs. To generate
such beliefs, we use the methods described in
(Silberschatz and Tuzhilin 1996b). However there is a
whole set of issues dealing with the problems of
generating, managing and revising beliefs that go beyond
the initial approaches described in (Silberschatz and
Tuzhilin 1996b) and we are currently working on these
issues. We are also working on incorporating predicates
and aggregations into the beliefs and on using them in the
discovery processes.

References
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H. and
Verkamo,A.I., 1995. Fast Discovery of Association Rules.
In Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., and
Uthurusamy, R. eds., Advances in Knowledge Discovery
and Data Mining. AAAI Press.
Adomavicius, G., and Tuzhilin, A., 1997. Discovery of
Actionable Patterns in Databases: The Action Hierarchy
Approach. In Proc. of the Third Intl. Conference on
Knowledge Discovery and Data Mining (KDD 97).
Brin, S., Motwani, R., Ullman, J.D., and Tsur, S., 1997.
Dynamic Itemset Counting and Implication Rules for
Market Basket Data. Procs. ACM SIGMOD Int. Conf. on
Mgmt. of Data, pp.255-264.
Dhar, V., and Tuzhilin, A., 1993. Abstract-Driven Pattern

Discovery in Databases. IEEE Transactions on Knowledge
and Data Engineering, v.5, no.6 December 1993.
Forbes Magazine, Sep. 8, 1997. Believe in yourself,
believe in the merchandise, pp.118-124.
Frawley, W.J., Piatetsky-Shapiro, G. and Matheus, C.J.,
1991. Knowledge Discovery in Databases: An Overview.
In Piatetsky-Shapiro, G. and Frawley, W.J. eds.,
Knowledge Discovery. in Databases. AAAI/MIT Press,
1991.
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., 1996.
From Data Mining to Knowledge Discovery: An
Overview. In Fayyad, U.M.,Piatetsky-Shapiro, G., Smyth,
P., and Uthurusamy, R. eds., Advances in Knowledge
Discovery and Data Mining. AAAI/MIT Press.
Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen,
H. and Verkamo, A.I., 1994. Finding Interesting Rules
from Large Sets of Discovered Association Rules. In Proc.
of the Third International Conference on Information and
Knowledge Management, pp. 401-407.
Liu, B. and Hsu, W., 1996. Post-Analysis of Learned
Rules. In Proc. of the Thirteenth National Conf. on
Artificial Intelligence (AAAI ’96), pp. 828-834.
Liu, B., Hsu, W. and Chen, S, 1997. Using General
Impressions to Analyze Discovered Classification Rules.
In Proc. of the Third Intl. Conf. on Knowledge Discovery
and Data Mining (KDD 97), pp. 31-36.
Piatetsky-Shapiro, G. and Matheus, C.J., 1994. The
Interestingness of Deviations. In Proceedings of AAAI-94
Workshop on Know. Discovery in Databases, pp. 25-36.
Padmanabhan, B. and Tuzhilin, A., 1997a. On the
Discovery of Unexpected Rules in Data Mining
Applications. In Procs. of the Workshop on Information
Technology and Systems (WITS '97), pp. 81-90.
Padmanabhan, B. and Tuzhilin, A., 1997b.
Unexpectedness as a Measure of Interestingness in
Knowledge Discovery. Working Paper #IS-97-6, Dept. of
Information Systems, Stern School of Business, NYU.
Stedman, C., 1997. Data Mining for Fool's Gold.
Computerworld, Vol. 31,No. 48, Dec. 1997.
Silberschatz, A. and Tuzhilin, A., 1995. On Subjective
Measures of Interestingness in Knowledge Discovery. In
Proc. of the First International Conference on Knowledge
Discovery and Data Mining, pp. 275-281.
Silberschatz, A. and Tuzhilin, A., 1996a. What Makes
Patterns Interesting in Knowledge Discovery Systems.
IEEE Trans. on Know. and Data Engineering v.8, no.6,
pp. 970-974.
Silberschatz, A. and Tuzhilin, A., 1996b. A Belief-Driven
Discovery Framework Based on Data Monitoring and
Triggering. Working Paper #IS-96-26, Dept. of
Information Systems, Stern School of Business, NYU.
Srikant, R., Vu, Q. and Agrawal, R. Mining Association
Rules with Item Constraints. In Proc. of the Third
International Conference on Knowledge Discovery and
Data Mining (KDD 97), pp. 67-73.

