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Abstract. In this paper, we propose a new aerial video dataset and
benchmark for low altitude UAV target tracking, as well as, a photo-
realistic UAV simulator that can be coupled with tracking methods. Our
benchmark provides the first evaluation of many state-of-the-art and
popular trackers on 123 new and fully annotated HD video sequences
captured from a low-altitude aerial perspective. Among the compared
trackers, we determine which ones are the most suitable for UAV track-
ing both in terms of tracking accuracy and run-time. The simulator can
be used to evaluate tracking algorithms in real-time scenarios before they
are deployed on a UAV “in the field”, as well as, generate synthetic but
photo-realistic tracking datasets with automatic ground truth annota-
tions to easily extend existing real-world datasets. Both the benchmark
and simulator are made publicly available to the vision community on
our website to further research in the area of object tracking from UAVs.
(https://ivul.kaust.edu.sa/Pages/pub-benchmark-simulator-uav.aspx.).
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1 Introduction

Visual tracking remains a challenging problem despite several decades of progress
on this important topic. A broadly adopted evaluation paradigm for visual
tracking algorithms is to test them on established video benchmarks such as
OTB50 [42], OTB100 [41], VOT2014, VOT2015, TC128 (Temple Color) [26],
and ALOV300++ [39]. Since the performance of a tracker is measured against
these benchmarks, it is critical that a holistic set of real-world scenarios and a
distribution of tracking nuisances (e.g. fast motion, illumination changes, scale
changes, occlusion, etc.) are properly represented in the annotated dataset. The
benchmark also plays a critical role in identifying future research directions in
the field and how to design more robust algorithms. What is currently lacking
in these well established benchmarks is a comprehensive set of annotated aerial
datasets that pose many challenges introduced by unmanned airborne flight.

Empowering unmanned aerial vehicles (UAVs) with automated computer
vision capabilities (e.g. tracking, object/activity recognition, etc.) is becoming
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Fig. 1. Top: Attribute distribution across UAV123 dataset and a comparison of key
attributes with OTB100. Bottom: Synthetic dataset generation and online tracker eval-
uation using the proposed simulator. For a legend of abbreviations, refer to Table 2.

a very important research direction in the field and is rapidly accelerating with
the increasing availability of low-cost, commercially available UAVs. In fact,
aerial tracking has enabled many new applications in computer vision (beyond
those related to surveillance) including search and rescue, wild-life monitoring,
crowd monitoring/management, navigation/localization, obstacle/object avoid-
ance, and videography of extreme sports. Aerial tracking can be applied to a
diverse set of objects (e.g. humans, animals, cars, boats, etc.), many of which
cannot be physically or persistently tracked from the ground. In particular, real-
world aerial tracking scenarios pose new challenges to the tracking problem (see
Fig. 1), exposing areas for further research. This paper provides an evaluation
of trackers on more than 100 new fully annotated HD videos captured from a
professional grade UAV. This benchmark both complements current benchmarks
establishing the aerial component of tracking and provides a more comprehensive
sampling of tracking nuisances that are ubiquitous in low-altitude UAV videos.
To the best of our knowledge, this is the first benchmark to address and analyze
the performance of state-of-the-art trackers on a comprehensive set of annotated
aerial sequences that exhibit specific tracking nuisances. We anticipate that this
dataset and its tracker evaluation will provide a baseline that can be used long
into the future as UAV technology advances and target trackers improve.

Visual tracking on UAVs is a very promising application, since the camera
can follow the target based on visual feedback and actively change its orientation
and position to optimize for tracking performance. This marks the defining dif-
ference compared to static tracking systems, which passively analyze a dynamic
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scene. Since current benchmarks are pre-recorded scenes, they cannot provide
a quantifiable measure on how slower trackers would affect the performance of
the UAV in shadowing the target. In this paper, we propose the use of a photo-
realistic simulator to render real-world environments and a variety of life-like
moving targets typically found in unmanned aerial recordings. The simulator
uses the Unreal Engine 4 to directly feed image frames to trackers and retrieve
tracking results to update UAV flight. Any tracker (e.g. written in Matlab or
C++) can be tested on the simulator across a diverse set of photo-realistic simu-
lated scenarios. Using this simulator enables the use of new quantitative methods
for evaluating tracker performance in the aforementioned aerial feedback loop.

Contributions. The contributions of our work are threefold. (1) We compile a
fully annotated high-resolution dataset of 123 aerial video sequences comprising
more than 110 K frames. It is as large or larger than most recent, generic object
tracking datasets. (2) We provide an extensive evaluation of many state-of-the-
art trackers using multiple metrics [42]. By labeling the videos in the benchmark
with various attributes, we can also evaluate each tracker in regards to specific
aerial tracking nuisances (e.g. scale/aspect ratio change, camera motion, etc.).
(3) We provide a novel approach to perform tracker evaluation by developing a
high-fidelity real-time visual tracking simulator. We present first results on the
performance of state-of-the-art trackers running within its environment. The
combination of the simulator with an extensive aerial benchmark provides a
more comprehensive evaluation toolbox for modern state-of-the-art trackers and
opens new avenues for experimentation and analysis.

Related Work

UAV Datasets. A review of related work indicates that there is still a limited
availability of annotated datasets specific to UAVs in which trackers can be rigor-
ously evaluated for precision and robustness in airborne scenarios. Existing anno-
tated video datasets include very few aerial sequences [42]. Surveillance datasets
such as PETS or CAVIAR focus on static surveillance and are outdated. VIVID
[6] is the only publicly available dedicated aerial dataset, but it is outdated and
has many limitations due to its small size (9 sequences), very similar and low-
resolution sequences (only vehicles as targets), sparse annotation (only every
10th frame), and focus on higher altitude, less dynamic fixed-wing UAVs. There
are several recent benchmarks that were created to address specific deficiencies
of older benchmarks and introduce new evaluation approaches [24,25,39], but
they do not introduce videos with many tracking nuisances addressed in this
paper and common to aerial scenarios.

Generic Object Tracking. In our proposed benchmark, we evaluate classical
trackers such as OAB [11] and IVT [38] as baselines and the best-performing
recent trackers according to [42]: Struck [13], CSK [17], ASLA [19], and TLD
[21]. In the selection process, we reject very slow trackers despite their perfor-
mance [3,4,44–47]. In addition, we include several of the latest trackers such as
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MEEM [43], MUSTER [18], DSST [8] (winner VOT2014) and SRDCF [7] (win-
ner VOT-TIR2015 and OpenCV challenge). Since current benchmarks provide
no more than 1 or 2 real-world scenarios of video capture from a mobile aerial
platform, it is unclear which of these new trackers would perform well in aerial
scenarios where certain tracking challenges are amplified, including abrupt cam-
era motion, significant changes in scale and aspect ratio, fast moving objects, as
well as, partial and full occlusion.

UAV Tailored Tracking. Despite the lack of benchmarks that adequately address
aerial tracking, the development of tracking algorithms for UAVs has become
very popular in recent years. The majority of object tracking methods employed
on UAVs rely on feature point detection/tracking [30,37] or color-centric object
tracking [22]. Only a few works in the literature [33] exploit more accurate track-
ers that commonly appear in generic tracking benchmarks such as MIL [1,9],
TLD [33], and STRUCK [27,28]. There are also more specialized trackers tai-
lored to address specific problems and unique camera systems such as in wide
aerial video [34,36], thermal and IR video [10,35], and RGB-D video [29].

UAV Simulation. In recent years, several UAV simulators have been created
to test hardware in the loop (HIL). However, the focus is on simulating the
physics of the UAV in order to train pilots or improve/tune features of a flight
controller (e.g. JMAVSim [40]). The visual rendering in these simulators is often
primitive and relies on off-the-shelf simulators (e.g. Realflight, Flightgear, or
XPlane). They do not support advanced shading and post-processing techniques,
are limited in terms of available assets and textures, and do not support MOCAP
or key-frame type animation to simulate natural movement of actors or vehicles.
Although simulation is popularly used in machine learning [2] and animation and
motion planning [12,20], the use of synthetically generated video or simulation
for tracker evaluation is a new field to explore. In computer vision, synthetic
video is primarily used for training recognition systems (e.g. pedestrians [14],
3D scenes [31], and 2D/3D objects [15,32]), where a high demand for annotated
data exists. The Unreal Engine 4 (UE4) has recently become fully open-source
and it seems very promising for simulated visual tracking due in part to its
high-quality rendering engine and realistic physics library.

2 Benchmark - Offline Evaluation

2.1 Dataset

Statistics. Video captured from low-altitude UAVs is inherently different from
video in popular tracking datasets like OTB50 [42], OTB100 [41], VOT2014,
VOT2015, TC128 [26], and ALOV300++ [39]. Therefore, we propose a new
dataset (called UAV123) with sequences from an aerial viewpoint, a subset of
which is meant for long-term aerial tracking (UAV20L). In Fig. 2, we emphasize
the differences between OTB100, TC128, and UAV123. The results highlight the
effect of camera viewpoint change arising from UAV motion. The variation in
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Fig. 2. Column 1 and 2: Proportional change of the target’s aspect ratio and bounding
box size (area in pixels) with respect to the first frame and across three datasets:
OTB100, TC128, and UAV123 (ours). Results are compiled over all sequences in each
dataset as a histogram with log scale on the x-axis. Column 3: Histogram of sequence
duration (in seconds) across the three datasets.

Table 1. Comparison of tracking datasets in the literature. Ranking: R(1), G(2), B(3)

Dataset UAV123 UAV20L VIVID OTB50 OTB100 TC128 VOT14 VOT15 ALOV300

Sequences 123 20 9 51 100 129 25 60 314

Min frames 109 1717 1301 71 71 71 171 48 19

Mean frames 915 2934 1808 578 590 429 416 365 483

Max frames 3085 5527 2571 3872 3872 3872 1217 1507 5975

Total frames 112578 58670 16274 29491 59040 55346 10389 21871 151657

bounding box size and aspect ratio with respect to the initial frame is signifi-
cantly larger in UAV123. Furthermore, being mounted on the UAV, the camera
is able to move with the target resulting in longer tracking sequences on average.

Our new UAV123 dataset contains a total of 123 video sequences and more
than 110 K frames making it the second largest object tracking dataset after
ALOV300++. The statistics of our dataset are compared to existing datasets
in Table 1. Note that OTB50 is a subset of both OTB100 and TC128, so the
total number of unique frames contained in all three datasets combined is only
around 90 K. The datasets VOT2014 and VOT2015 are both subsets of existing
datasets too. Hence, while there is a number of datasets available to the track-
ing community, the number of distinct sequences is smaller than expected and
sequences specific to tracking from a UAV vantage point are very sparse.
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Acquisition. The UAV123 dataset can be divided into 3 subsets. (i) Set1 con-
tains 103 sequences captured using an off-the-shelf professional-grade UAV (DJI
S1000) following different objects at altitudes varying between 5–25 m. Video
sequences were recorded at frame rates between 30 and 96 FPS and resolutions
between 720p and 4 K using a Panasonic GH4 with Olympus M. Zuiko 12 mm
f2.0 lens mounted on a fully stabilized and controllable gimbal system (DJI Zen-
muse Z15). All sequences are provided at 720p and 30 FPS and annotated with
upright bounding boxes at 30 FPS. The annotation was done manually at 10
FPS and then linearly interpolated to 30 FPS. (ii) Set2 contains 12 sequences
captured from a boardcam (with no image stabilization) mounted to a small
low-cost UAV following other UAVs. These sequences are of lower quality and
resolution and contain a reasonable amount of noise due to limited video trans-
mission bandwidth. The sequences are annotated in the same manner as in Set1.
(iii) Set3 contains 8 synthetic sequences captured by our proposed UAV simula-
tor. Targets move along predetermined trajectories in different worlds rendered
with the Unreal4 Game Engine from the perspective of a flying UAV. Annotation
is automatic at 30 fps and a full object mask/segmentation is also available.

Attributes. As illustrated in Fig. 3, UAV123 contains a wide variety of scenes (e.g.
urban landscape, roads, buildings, fields, beaches and a harbor/marina), targets
(e.g. cars, trucks, boats, persons, groups, and aerial vehicles), and activities (e.g.
walking, cycling, wakeboarding, driving, swimming, and flying). Naturally, these

Fig. 3. First frame of selected sequences from UAV123 dataset. The red bounding box
indicates the ground truth annotation. (Color figure online)
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Table 2. Attributes used to characterize each sequence from a tracking perspective.

Attr Description

ARC Aspect Ratio Change: the fraction of ground truth aspect ratio in the first
frame and at least one subsequent frame is outside the range [0.5, 2]

BC Background Clutter: the background near the target has similar appearance
as the target

CM Camera Motion: abrupt motion of the camera

FM Fast Motion: motion of the ground truth bounding box is larger than 20 pixels
between two consecutive frames

FOC Full Occlusion: the target is fully occluded

IV Illumination Variation: the illumination of the target changes significantly

LR Low Resolution: at least one ground truth bounding box has less than 400
pixels

OV Out-of-View: some portion of the target leaves the view

POC Partial Occlusion: the target is partially occluded

SOB Similar Object: there are objects of similar shape or same type near the target

SV Scale Variation: the ratio of initial and at least one subsequent bounding box
is outside the range [0.5, 2]

VC Viewpoint Change: viewpoint affects target appearance significantly

sequences contain common visual tracking challenges including long-term full
and partial occlusion, scale variation, illumination variation, viewpoint change,
background clutter, camera motion, etc. Table 2 shows an overview of all tracking
attributes present in UAV123. Figure 1 shows the distribution of these attributes
over the whole dataset and a comparison to the very popular OTB100 dataset
for a selection of key attributes.

Long-Term Tracking. Object tracking in an aerial surveillance setting usually
requires long-term tracking, since the camera can follow the target in contrast to
the static surveillance scenario. During the dataset design, some fully annotated
long sequences captured in one continuous shot were split into subsequences
to ensure that the difficulty of the dataset remains reasonable. For long-term
tracking, we merge these subsequences and then pick the 20 longest sequences
among them. Table 1 shows the statistics of the resulting dataset (UAV20L).

2.2 Evaluated Algorithms

We consider tracking algorithms for comparison on our benchmark according
to their performance in OTB50 [42] and give preference to popular and reason-
ably fast trackers. Code for these trackers is either available online or from the
authors. All selected trackers incorporate some form of model update and are
discriminative, except for IVT and ASLA which use generative models. For fair
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evaluation, we run all trackers with standard parameters on the same server-
grade workstation (Intel Xenon X5675 3.07 GHz, 48 GB RAM).

2.3 Evaluation Methodology

Following the evaluation strategy of OTB50 [42], all trackers are compared
using two measures: precision and success. Precision is measured as the distance
between the centers of a tracker bounding box (bb tr) and the corresponding
ground truth bounding box (bb gt). The precision plot shows the percentage of
tracker bounding boxes within a given threshold distance in pixels of the ground
truth. To rank the trackers, we use the conventional threshold of 20 pixels [42].
Success is measured as the intersection over union of pixels in box bb tr and
those in bb gt. The success plot shows the percentage of tracker bounding boxes
whose overlap score is larger than a given threshold. Moreover, we rank trackers
using the area under the curve (AUC) measure [42]. Besides one-pass evaluation
(OPE), we perform a spatial robustness evaluation (SRE) [42]. For SRE, the
initial bounding box is spatially shifted by 4 center shifts, 4 corner shifts and
scaled by 80, 90, 110 and 120 %, as done in [42].

3 Simulator - Online Evaluation

3.1 Setup and Limitations

The UE4 based simulator allows real-time tracker evaluation with the ability
to simulate the physics of aerial flight, produce realistic high-fidelity renderings
(similar to if not better than professional rendering software, e.g. 3DSMax and
Maya), and automatically generate precise ground truth annotation for offline
or real-time use cases (see Fig. 1). The UAV is modeled after the DJI S1000+,
which was used to capture the majority of the benchmark. An accurate 3D model
(same geometry/weight and thrust vectors) is subjected to game physics (UE4)
and real-world conditions (e.g. wind and gravity). The ground truth trajectory
and orientation of the target and UAV are recorded at every frame. The PID
controllers for stabilization and visual servoing (gimbal) mimic the Pixhawk FC.
For further details on the implementation, see the simulator documentation.

UE4 allows for a large variety of post-processing rendering steps to cre-
ate realistic and challenging scene images that simulate real-world UAV data.
Although not implemented for this work, motion blur, depth of field, over/under
exposure, HDR and many more features can be enabled. UE4 post-processing
rendering allows assignment of custom depth maps to any mesh in the engine.
The depth maps allows extraction of segmented annotation of the tracked tar-
get as seen through the camera viewpoint. We simulate the movement of both
a human character and a 4WD vehicle moving along set trajectories within a
detailed off-road race track with palm trees, cacti, mountains, historical build-
ings, lakes, and sand dunes (see Fig. 3). This is one example of many photo-
realistic UE4 worlds created by the developer community in which our UAV



A Benchmark and Simulator for UAV Tracking 453

Fig. 4. Top: Third person view of simulator environment. Bottom: Four UAVs are
controlled by different trackers indicated by the different colors.

simulator can be used. The UAV simulator enables the integration of any tracker
(MATLAB or C++) into the tracking-navigation loop; at every frame, the out-
put bounding box of the tracker is read and used to correct the position of the
UAV.

3.2 Novel Approaches for Evaluation

Our UE4 based simulator provides new possibilities for online performance mea-
surement (see Fig. 4). Advantages include a controlled environment for isolation
of specific tracking attributes, a higher degree of repeatability with rapid experi-
ments, and generation of large annotated datasets for testing and learning. Unlike
real-world scenarios where the UAV and target location are imprecisely known
(e.g. error of 5–10 m), it quantitatively compares position, orientation, and veloc-
ity of the UAV at each time-step to understand the impact of the tracker on flight
dynamics. For evaluation, we develop several new approaches to measure tracker
performance: (1) the impact of a dynamic frame rate (trackers are fed frames at
the rate of computation), (2) trajectory error between target and UAV motion,
(3) accumulative distance between ground truth and tracker, and (4) long-term
tracking within a controlled environment where attribute influence can be con-
trolled and clearly measured.

3.3 Evaluation Methodology

Four trackers are selected for evaluation, namely SRDCF, MEEM, SAMF, and
STRUCK. The ground truth bounding box generated from the custom depth
map of the target is called GT. We first optimize the UAV visual servoing using
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the GT tracker (see supplementary material on our visual servoing technique).
Despite absolute accuracy of the GT, the flight mechanics of the UAV limit its
ability to always keep the target centered, since it must compensate for gravity,
air resistance, and inertia. After evaluating the performance of the UAV with
the GT, each tracker is run multiple times within the simulator provided with
the same starting initialization bounding box. The target follows a pre-defined
path and speed profile. The UAV tracks and follows the target for 3.5 min (ca.
6000 frames at 30 FPS). The target speed varies but is limited to 6 m/s, the
UAV speed is limited to 12 m/s (similar to the real UAV). For evaluation, we
measure the distance between the trajectory of the target and the UAV.

4 Experiments

4.1 Benchmark Evaluation

Overall Performance. To determine the overall performance of the different
trackers on the new challenges in the UAV123 dataset, we use the evaluation
paradigm proposed in [42], as outlined in Sect. 2.3. In the one-pass evaluation
(OPE), each tracker processes over 110 K frames from all 123 sequences, each
with a variety of attributes as shown in Table 2.

The top performing tracker on the UAV123 dataset in terms of precision and
success is SRDCF [7]. This is primarily due to its high fidelity scale adapta-
tion that is evident across every success plot. Although MEEM [43] is the top
performing tracker in precision on OTB100, it cannot keep up in our dataset,
primarily due to the fact that it does not have scale adaptation. SAMF [23],
MUSTER [18], DSST [8], Struck [13], and ASLA [19] group into a second tier
of close performing trackers, while the remaining trackers IVT [38], TLD [21],
MOSSE [5], CSK [17], OAB [11], KCF [16] and DCF [16] achieve consistently
lower performance. In general, with the exception of MEEM, the top five per-
formers in terms of success exploit scale adaptation. However, since they are only
adapting to scale and not aspect ratio, there is still much room for improvement.
In general, the recently developed correlation based trackers perform very well
in the OPE and rank in the top five in terms of precision (SRDCF, SAMF,
MUSTER, DSST) and success (SRDCF, SAMF, MUSTER). Owing to their
manipulation of circulant structure in the Fourier domain, these trackers require
low computational cost, making them attractive for onboard UAV tracking.

In comparison with OTB100, all trackers perform much worse in OPE on the
more challenging UAV123 dataset and several trackers change rankings (notably
MEEM to SRDCF and MUSTER to SAMF). The difference in performance
between the top trackers in OTB100 is marginal suggesting that this benchmark
is getting closer to saturation. To obtain a global view of overall performance on
both datasets, we plot the success results of all trackers per video in Fig. 5 as a
color gradient map, where red corresponds to 0 and dark green to 1. The score
of the best performing tracker per video is shown in the last row and the average
across all videos per tracker is shown in the last column. In OTB100, most
videos have at least one tracker that performs well; however, there exist many
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Fig. 5. Top: OPE success per video on UAV123. Bottom: OPE success per video for
OTB100. (Color figure online)

sequences in UAV123 where none of the trackers are successful. For example,
all these trackers perform poorly on low resolution videos of one UAV tracking
another, an important aerial tracking scenario.

Speed Performance. In Fig. 6, most of the top performing trackers have a frame
rate lower than 10 FPS and as low as 0.9 FPS (MUSTER). Note that each
tracker predicts a bounding box for each frame regardless of their actual speed.
Of course, this is very different when tracking is required in real-time (e.g.
when tracker output is needed for persistent UAV navigation). If frames are
not processed fast enough, intermediate frames are dropped resulting in larger
target displacement between frames, thus, making tracking more difficult. There-
fore, if the tracker has a low frame rate, its tracking performance in real-time
applications is expected to degrade. In order to investigate the impact of speed
on performance, we compare all trackers on the same UAV123 dataset but now
temporally downsampled to 10 FPS (refer to Fig. 6). The degradation in perfor-
mance ranges from 21 %–36 % for ASLA, DSST, and SAMF, and 11 %–15 % for
SRDCF, STRUCK, and MUSTER. MEEM becomes the top-performing tracker
in this case, although its performance degradation (7 %) is still noticeable.

Long-Term Tracking. In order to evaluate a tracker’s performance in long-term
tracking scenarios, we evaluate their performance on UAV20L (see Sect. 2.1).
Tracking results in Fig. 6 show that all trackers perform much worse on UAV20L
than on UAV123, indicating that long-term tracking remains a difficult challenge
with much room for improvement. In long-term tracking cases, tracker drift is
more likely to cause complete loss of the object, especially in occlusion scenarios,
where the model update for the target is contaminated by the occluder. The top
performer on this dataset is MUSTER, due to its short-term/long-term memory
strategy that can correct past tracking mistakes.

Discussion. Throughout the evaluation, trackers perform consistently across
attributes; however, we find that trackers struggle more with attributes com-
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Fig. 6. From top to bottom: Precision and success plots for OPE on OTB100, UAV123,
UAV123@10fps and UAV20L.

mon to aerial tracking. The most difficult attributes seem to be scale variation
and aspect ratio changes but also to a lesser extent low resolution, background
clutter, fast motion, and full occlusion. Scale variation is the most dominant
attribute in the aerial tracking dataset, so trackers that incorporate scale adap-
tation are typically the top performers. There is still much room for improvement
especially for attributes common in our dataset, but not very common in current
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datasets. Moreover, for automated tracking to be integrated on a UAV, tracking
speeds must be higher, ultimately reaching real-time speeds of 30 FPS. We also
observe that trackers, which have a robust update method that can help correct
past mistakes (MEEM, MUSTER) or suppress background (SRDCF), perform
better than those that do not. The spatial robustness evaluation which mea-
sures robustness to noise in the initialization is consistent with the OPE plots
and trackers rank similarly with overall lower scores. For a detailed evaluation
and discussion of all trackers for each prevalent attribute and spatial robustness,
please refer to the supplementary material.

4.2 Simulator Evaluation (Quantitative and Qualitative Results)

Overall Performance. Several challenges such as significant change in scale,
aspect ratio and viewpoint, illumination variation, and fast motion occur
throughout the test course. Despite noticeable drift, all trackers maintain track-
ing at least throughout half of the course. At this point, the vehicle takes a sharp
turn and accelerates down a hill; the conservative default PID setting limits the
UAVs’ response and most of the trackers fail (see frame 3000 in Fig. 7). However,
when the PID controller is set to be more responsive, the tracking results vary
significantly. SRDCF already fails at the very beginning of the course, since it
is not able to handle the rapid acceleration of the object and overshoots due
to the latency introduced by the tracker. The other trackers welcome the more
responsive PID setting and follow the target with much more ease than before.
This shows that the PID controller and tracker complement each other.

Speed Performance. The tested trackers vary in computational time with
STRUCK and MEEM being the fastest. The bounding boxes of slower track-
ers (SCRDF and SAMF) have noticeable lag and do not remain consistently
centered on the target, especially during rapid acceleration. The UAV altitude,
wide vertical FOV, and PID setting can compensate for some latency, allow-
ing the UAV to sync its speed to the vehicle. As altitude increases between the
UAV and the target, the precision of the trackers improves. This is an important
observation. In real-world scenarios, increasing altitude can be a UAV strategy
to enhance tracking performance of slower trackers attempting to follow fast
targets.

Fig. 7. Trajectory of tracker controlled UAV over the period of the simulation and
multiple trackers bounding boxes layered over the tracked synthetic frame.
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Long-Term Tracking. At some point, all of the trackers start to drift and usu-
ally become locked onto highly salient features of the target. Despite inaccurate
bounding boxes, all trackers succeed to follow the target for more than one
minute. Only SRDCF completes the course, but it only tracks a portion of the
vehicle towards the end.

Discussion. Several insights can be obtained from the live tracking results within
the simulator. Despite latency, trackers remain locked on the target throughout
a large portion of the course. At higher altitudes latency has less impact on per-
formance, since the UAV has more time to respond to target movement. Tracker
performance is noticeably impacted by the flight dynamics and control system
of the UAV. The failure of several trackers can be overcome by a more agile
UAV. SRDCF’s robustness and the UAV’s ability to compensate for its latency
make it the only tracker to complete the entire course. A major achievement
however, is that all the tested state-of-the-art trackers autonomously move the
UAV across a complex course. Over longer periods, the predicted center and size
of the target drift primarily due to poor adaptation to scale and aspect ratio.
Appearance change and partial occlusion lead to loss of the target by all track-
ers. The benchmark helps identify which trackers are most suitable for aerial
tracking and the simulator provides insights for the best integration on a UAV.
It provides many avenues to rapidly test trackers and clearly delineate their
shortcomings and advantages in real-world scenarios.

5 Conclusions and Future Work

In this paper, we provide extensive empirical evidence of the shortcomings of
current datasets for aerial tracking and propose a new benchmark with fully
annotated sequences from the perspective of a UAV. The new dataset is simi-
lar in size to the largest available datasets for generic object tracking and the
benchmark evaluates 14 state-of-the-art trackers. Extensive experiments suggest
that sequences with certain tracking attributes (namely scale variation, aspect
ratio change, and low resolution), which tend to be under-represented in other
benchmarks and are quite common in aerial tracking scenarios, pose significant
challenges to current state-of-the-art trackers. This builds the stage for further
improvements in precision and speed.

Our proposed UAV simulator along with novel evaluation methods enables
tracker testing in real-world scenarios with live feedback before deployment.
We will make this simulator publicly available to support more progress in the
realm of UAV tracking, as well as, other computer vision tasks including aerial
Structure-from-Motion (SfM), aerial localization, dynamic scene monitoring, etc.
The simulator is not limited to UAVs alone but can be easily extended to simulate
autonomous vehicles and evaluate their performance with algorithms designed
for navigation and pedestrian detection.
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