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Abstract. This paper derives a unified framework for portfolio optimization,
derivative pricing, financial modeling and risk measurement. It is based on
the natural assumption that investors prefer more rather than less, in the
sense that given two portfolios with the same diffusion coefficient value, the
one with the higher drift is preferred. Each such investor is shown to hold
an efficient portfolio in the sense of Markowitz with units in the market
portfolio and the savings account. The market portfolio of investable wealth
is shown to equal a combination of the growth optimal portfolio (GOP) and
the savings account. In this setup the capital asset pricing model follows
without the use of expected utility functions, Markovianity or equilibrium
assumptions. The expected increase of the discounted value of the GOP is
shown to coincide with the expected increase of its discounted underlying
value. The discounted GOP has the dynamics of a time transformed squared
Bessel process of dimension four. The time transformation is given by the
discounted underlying value of the GOP. The squared volatility of the GOP
equals the discounted GOP drift, when expressed in units of the discounted
GOP. Risk neutral derivative pricing and actuarial pricing are generalized
by the fair pricing concept, which uses the GOP as numeraire and the real
world probability measure as pricing measure. An equivalent risk neutral
martingale measure does not exist under the derived minimal market model.
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1 Introduction

The aim of this paper is to derive under the benchmark approach several rela-
tionships that are fundamental for the understanding of financial markets. This
approach uses the growth optimal portfolio (GOP) as central building block.

In Markowitz (1959) a mean-variance theory with its well-known efficient frontier
was introduced, thus opening the avenue to modern portfolio theory. This led
to the capital asset pricing model (CAPM), see Sharpe (1964), Lintner (1965)
and Merton (1973), which is based on the market portfolio as reference unit and
represents an equilibrium model of exchange. For the continuous time setting
Merton (1973) developed the intertemporal CAPM from the portfolio selection
behavior of investors who maximize equilibrium expected utility. It is apparent
that the choice of utility functions with particular time horizons introduces a sub-
jective element and substantial computational challenges, which will be avoided
in this paper. A practical problem for applications of the CAPM arises from the
fact that the dynamics of the market portfolio with its stochastic volatility are
difficult to specify from market data and consequently not easily modeled. The
identification of the market portfolio and the dynamics of the GOP is of critical
importance and a focus of this paper.

Of particular significance to derivative pricing has been the arbitrage pricing
theory (APT) proposed in Ross (1976) and further developed in an extensive
literature that includes Harrison & Kreps (1979), Harrison & Pliska (1981), Del-
baen & Schachermayer (1994, 1998), Karatzas & Shreve (1998) and references
therein. Under the APT, several authors refer to the state price density, pricing
kernel, deflator or stochastic discount factor for the modeling of asset price dy-
namics, see, for instance, Constatinides (1992), Duffie (2001), Rogers (1997) or
Cochrane (2001). The state price density is known to be the inverse of the dis-
counted numeraire portfolio, introduced in Long (1990). The numeraire portfolio
equals in a standard risk neutral setting the growth optimal portfolio (GOP), see
Bajeux-Besnainou & Portait (1997), Becherer (2001), Platen (2004a) and Chris-
tensen & Larsen (2004). By using the numeraire portfolio as reference unit or
benchmark, it makes sense to define benchmarked contingent claim prices as ex-
pectations of benchmarked contingent claims under the real world probability
measure. The current paper emphasizes that this fair pricing concept, see Platen
(2002), does not require the existence of an equivalent risk neutral martingale
measure. It avoids any measure transformations, but is consistent with the APT
when changes of numeraire with corresponding equivalent martingale measure
changes can be performed, see Geman, El Karoui & Rochet (1995). To apply fair
pricing effectively, it is useful if the GOP can be observed and modeled. This
leads outside the standard pricing methodologies and is a challenge that will be
addressed in the current paper.

The GOP was discovered in Kelly (1956) and is defined as the portfolio that
maximizes expected logarithmic utility from terminal wealth. It has a my-
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opic strategy and appears in a stream of literature including, for instance, La-
tané (1959), Breiman (1961), Long (1990), Artzner (1997), Bajeux-Besnainou &
Portait (1997), Karatzas & Shreve (1998), Kramkov & Schachermayer (1999),
Becherer (2001), Platen (2002) and Goll & Kallsen (2003). Collectively, this lit-
erature demonstrates that the GOP plays a natural unifying role in derivative
pricing, risk management and portfolio optimization. The aim of this paper is
to establish a relationship between the GOP and the market portfolio, under the
natural assumptions that every investor prefers more rather than less and that
the savings account is in net zero supply. Some of the resulting consequences are
well known, but are derived here under weaker assumptions than usual, while
others, as the interpretation of the discounted GOP drift as rate of increase of
underlying value, are likely to stimulate further research.

The paper is structured as follows. Section 2 introduces a continuous benchmark
model. Section 3 discusses the market portfolio in relation to the GOP and
studies some applications. In Section 4 the expected value of the market portfolio
is characterized. Finally, in Section 5 the dynamics of the market portfolio are
modeled.

2 Continuous Benchmark Model

2.1 Primary Security Accounts

For the modeling of a financial market we rely on a filtered probability space
(Ω,AT ,A, P ) with finite time horizon T ∈ (0,∞). The filtration A = (At)t∈[0,T ]

is assumed to satisfy the usual conditions, see Karatzas & Shreve (1991). We
consider that A describes the structure of information entering the market, in
the sense that the sigma-algebra At expresses the information available in the
market at time t. For simplicity, we restrict ourselves to markets with continuous
security prices. The trading uncertainty is expressed by the independent standard
Wiener processes W k = {W k

t , t ∈ [0, T ]} for k ∈ {1, 2, . . . , d} and d ∈ {1, 2, . . .}.
The increments W k

t+ε−W k
t are assumed to be independent of At for all t ∈ [0, T ],

ε > 0 and k ∈ {1, 2, . . . , d}.
We consider a continuous financial market model that comprises d + 1 primary
security accounts. These include a savings account S(0) = {S(0)(t), t ∈ [0, T ]},
which is a locally riskless primary security account whose value at time t is given
by

S(0)(t) = exp

{∫ t

0

r(s) ds

}
(2.1)

for t ∈ [0, T ], where r = {r(t), t ∈ [0, T ]} denotes the adapted short rate process.
They also include d nonnegative, risky primary security account processes S(j) =
{S(j)(t), t ∈ [0, T ]}, j ∈ {1, 2, . . . , d}, each of which contains units of one type
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of security with all proceeds reinvested. Typically, these securities are stocks.
However, derivatives, including options, as well as foreign savings accounts and
bonds, may also form primary security accounts.

To specify the dynamics of primary securities in the given financial market we
assume, without loss of generality, that the jth primary security account value
S(j)(t), j ∈ {1, 2, . . . , d}, satisfies the stochastic differential equation (SDE)

dS(j)(t) = S(j)(t)

(
aj(t) dt +

d∑

k=1

bj,k(t) dW k
t

)
(2.2)

for t ∈ [0, T ] with S(j)(0) > 0. Here the process bj,k = {bj,k(t), t ∈ [0, T ]} can
be interpreted as the (j, k)th volatility of the jth security account with respect
to the kth Wiener process W k. Suppose that the (j, k)th volatility bj,k is a given
predictable process that satisfies the integrability condition

∫ T

0

d∑
j=1

d∑

k=1

(
bj,k(t)

)2
dt < ∞ (2.3)

almost surely, for all j, k ∈ {1, 2, . . . , d}. Furthermore, we assume that the jth
appreciation rate aj = {aj(t), t ∈ [0, T ]}, j ∈ {1, 2, . . . , d}, is a predictable process
such that ∫ T

0

d∑
j=0

|aj(s)| ds < ∞ (2.4)

almost surely.

It is reasonable to use the same number d of Wiener processes for the modeling of
trading uncertainty as there are risky primary security accounts. If the number
of securities is greater than the number of Wiener processes, then we have redun-
dant securities that can be removed from the set of primary security accounts.
Alternatively, if there are fewer risky securities than Wiener processes, then the
market is incomplete concerning trading uncertainty. The core analysis of this
paper is then still valid. However, some additional considerations arise which are
not the focus of the current paper. The following assumption avoids redundant
primary security accounts.

Assumption 2.1 Assume that the volatility matrix b(t) = [bj,k(t)]dj,k=1 is in-
vertible for Lebesgue-almost every t ∈ [0, T ] with inverse matrix b−1(t) =
[b−1 j,k(t)]dj,k=1.

This allows us to introduce the kth market price for risk θk(t) with respect to
the kth Wiener process W k, according to the relation

θk(t) =
d∑

j=1

b−1 j,k(t)
(
aj(t)− r(t)

)
(2.5)
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for t ∈ [0, T ] and k ∈ {1, 2, . . . , d}. Now, we can rewrite the SDE (2.2) for the
jth primary security account in the form

dS(j)(t) = S(j)(t)

(
r(t) dt +

d∑

k=1

bj,k(t)
(
θk(t) dt + dW k

t

)
)

(2.6)

for t ∈ [0, T ] and j ∈ {1, 2, . . . , d}.

2.2 Portfolios

We call a predictable stochastic process δ = {δ(t) = (δ(0)(t), δ(1)(t), . . . , δ(d)(t))>,
t ∈ [0, T ]} a strategy if for each j ∈ {0, 1, . . . , d} the Itô stochastic integral

∫ t

0

δ(j)(s) dS(j)(s) (2.7)

exists, see Karatzas & Shreve (1991). Here δ(j)(t), j ∈ {0, 1, . . . , d}, is the number
of units of the jth primary security account that are held at time t ∈ [0, T ] in
the corresponding portfolio. We denote by

S(δ)(t) =
d∑

j=0

δ(j)(t) S(j)(t) (2.8)

the time t value of the portfolio process S(δ) = {S(δ)(t), t ∈ [0, T ]}. A strategy δ
and the corresponding portfolio S(δ) are said to be self-financing if

dS(δ)(t) =
d∑

j=0

δ(j)(t) dS(j)(t) (2.9)

for t ∈ [0, T ]. This means that all changes in the portfolio value are due to gains
or losses from trade in primary security accounts. In what follows we consider
only self-financing strategies and portfolios and will therefore omit the phrase
“self-financing”.

Let S(δ) be a portfolio process whose value S(δ)(t) at time t ∈ [0, T ] is nonzero.

In this case it is convenient to introduce the jth fraction π
(j)
δ (t) of S(δ)(t) that is

invested in the jth primary security account S(j)(t), j ∈ {0, 1, . . . , d}, at time t.
This fraction is given by the expression

π
(j)
δ (t) = δ(j)(t)

S(j)(t)

S(δ)(t)
(2.10)

for j ∈ {0, 1, . . . , d}. Note that fractions can be negative and always sum to one,
that is

d∑
j=0

π
(j)
δ (t) = 1 (2.11)
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for t ∈ [0, T ]. By (2.9), (2.6) and (2.10) we get for a nonzero portfolio value
S(δ)(t) the SDE

dS(δ)(t) = S(δ)(t)

(
r(t) dt +

d∑

k=1

bk
δ (t)

(
θk(t) dt + dW k

t

)
)

(2.12)

for a strictly nonzero portfolio. The kth portfolio volatility in (2.12) is given by

bk
δ (t) =

d∑
j=1

π
(j)
δ (t) bj,k(t) (2.13)

and its appreciation rate is of the form

aδ(t) = r(t) +
d∑

k=1

bk
δ (t) θk(t) (2.14)

for t ∈ [0, T ] and k ∈ {1, 2, . . . , d}. Given a strictly positive portfolio S(δ), its
discounted value

S̄(δ)(t) =
S(δ)(t)

S(0)(t)
(2.15)

satisfies the SDE

dS̄(δ)(t) =
d∑

k=1

ψk
δ (t)

(
θk(t) dt + dW k

t

)
(2.16)

by (2.1), (2.12) and an application of the Itô formula with kth portfolio diffusion
coefficient

ψk
δ (t) = S̄(δ)(t) bk

δ(t) =
d∑

j=1

δ(j)(t) S(j)(t) bj,k(t) (2.17)

for k ∈ {1, 2, . . . , d} and t ∈ [0, T ]. Note that ψk
δ (t) makes sense also in the case

if S̄(δ)(t) equals zero. Obviously, by (2.16) and (2.17) the discounted portfolio
process S̄(δ) has discounted drift

αδ(t) =
d∑

k=1

ψk
δ (t) θk(t) (2.18)

at time t ∈ [0, T ], which measures its trend at that time. The trading uncertainty
of a discounted portfolio S̄(δ) at time t ∈ [0, T ] can be measured by its aggregate
diffusion coefficient

γδ(t) =

√√√√
d∑

k=1

(
ψk

δ (t)
)2

(2.19)

or its aggregate volatility

bδ(t) =
γδ(t)

S̄(δ)(t)
(2.20)

for S̄(δ)(t) > 0.

6



2.3 Growth Optimal Portfolio

It is well known, see Kelly (1956) or Long (1990), that the growth optimal portfolio
(GOP), which maximizes expected logarithmic utility from terminal wealth, plays
a central role in finance theory. To identify this important portfolio we apply for
a strictly positive portfolio S(δ) the Itô formula to obtain the SDE for ln(S(δ)(t))
in the form

d ln(S(δ)(t)) = gδ(t) dt +
d∑

k=1

bk
δ (t) dW k

t (2.21)

with portfolio growth rate

gδ(t) = r(t) +
d∑

k=1




d∑
j=1

π
(j)
δ (t) bj,k(t) θk(t)− 1

2

(
d∑

j=1

π
(j)
δ (t) bj,k(t)

)2

 (2.22)

for t ∈ [0, T ].

Definition 2.2 A strictly positive portfolio process S(δ∗) = {S(δ∗)(t), t ∈ [0, T ]}
is called a GOP if, for all t ∈ [0, T ] and all strictly positive portfolios S(δ), the
inequality

gδ∗(t) ≥ gδ(t) (2.23)

holds almost surely.

By using the first order conditions one can determine the optimal fractions

π
(j)
δ∗ (t) =

d∑

k=1

θk(t) b−1 j,k(t) (2.24)

for all t ∈ [0, T ] and j ∈ {1, 2, . . . , d}, which maximize the portfolio growth rate
(2.22). It is straightforward to show in the given continuous financial market, see
Long (1990), Karatzas & Shreve (1998) or Platen (2002), that the GOP value
S(δ∗)(t) satisfies the SDE

dS(δ∗)(t) = S(δ∗)(t)

(
r(t) dt +

d∑

k=1

θk(t)
(
θk(t) dt + dW k

t

)
)

(2.25)

for t ∈ [0, T ] with some appropriate initial value S(δ∗)(0) > 0. Obviously, up to its
initial value the GOP is uniquely determined. From now on we use the GOP as
benchmark and refer to the above financial market model as a benchmark model.

We call any security expressed in units of the GOP a benchmarked security. For
a portfolio S(δ) the corresponding benchmarked portfolio value

Ŝ(δ)(t) =
S(δ)(t)

S(δ∗)(t)
(2.26)
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satisfies the SDE

dŜ(δ)(t) =
d∑

j=0

δ(j)(t) Ŝ(j)(t)
d∑

k=1

(
bj,k(t)− θk(t)

)
dW k

t (2.27)

for t ∈ [0, T ]. Note by (2.9) and (2.6) that this SDE holds also for portfolios that
can become zero or negative. It follows from the driftless SDE (2.27) that any
benchmarked portfolio is an (A, P )-local martingale. On the other hand, since
any nonnegative local martingale is an (A, P )-supermartingale, see Karatzas &
Shreve (1991), a nonnegative benchmarked portfolio is a supermartingale. The
nonnegativity of the total portfolios of investors is natural, since it reflects their
limited liability in the sense that their portfolio value remains at zero as soon as
their total portfolio value becomes zero.

For any nonnegative benchmarked portfolio Ŝ(δ) with Ŝ(δ)(τ) = 0 almost surely
at any stopping time τ ∈ [0, T ] we have by the supermartingale property of Ŝ(δ)

the relations
0 = Ŝ(δ)(τ) ≥ E

(
Ŝ(δ)(T )

∣∣Aτ

)
≥ 0

and therefore
P (S(δ)(T ) > 0) = P (Ŝ(δ)(T ) > 0) = 0. (2.28)

This shows that in a benchmark model any nonnegative portfolio process S(δ),
which reaches at any stopping time τ ∈ [0, T ] the value zero, is modeled in such
a way that its trajectory remains at any later time s ∈ [τ, T ] almost surely at
the level zero. Therefore, the above described benchmark model does not al-
low any nonnegative portfolio process S(δ) with strictly positive value S(δ)(T ) at
the terminal time T if this portfolio has before time T reached the bankruptcy
level zero. This means, the above benchmark framework leads via the super-
martingale property of benchmarked securities to a natural no-arbitrage concept,
which is discussed in more detail in Platen (2004a). Due to the inclusion of
strict supermartingales as benchmarked nonnegative portfolios, the benchmark
approach provides a richer modeling framework than is given, for instance, under
the fundamental theorem of asset pricing derived in Delbaen & Schachermayer
(1994, 1998). Later we will need to use this modeling freedom when we derive a
parsimonious, realistic financial market model.

3 More rather than Less

3.1 Optimal Portfolios

It is now our aim to identify the typical structure of the SDE of a, so called,
optimal portfolio. To describe an optimal portfolio we introduce the following
definition, similar as in Platen (2002).
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Definition 3.1 We call a strictly positive portfolio S(δ̃) optimal, if for all t ∈
[0, T ] and all strictly positive portfolios S(δ) when

γδ̃(t) = γδ(t) (3.1)

we have
αδ̃(t) ≥ αδ(t). (3.2)

Definition 3.1 specifies that a strictly positive portfolio is optimal if at all times
its discounted drift is greater than or equal to that of every other discounted,
strictly positive portfolio with the same value of the aggregate diffusion coeffi-
cient. Essentially, we are simplifying our analysis by discounting since this will
not have an impact on our optimization procedure. Furthermore, our analysis is
strongly simplified by comparing only locally in time discounted drift and aggre-
gate diffusion coefficients. Note that we do not optimize risk premia or aggregate
volatilities. During the optimization we leave the actual value of the portfolio
open. This will lead us to a family of optimal portfolios.

Definition 3.1 encapsulates a precise and simple characterization of what means
more rather than less. It is natural that investors, who keep the freedom to adjust
at any time their strategies according to new information, would prefer to hold
an optimal portfolio. Therefore, we make the following assumption.

Assumption 3.2 Each investor holds with his or her investable wealth an op-
timal portfolio.

Let us introduce the total market price for risk

|θ(t)| =
√√√√

d∑

k=1

(θk(t))2 (3.3)

for t ∈ [0, T ]. If the total market price for risk is zero, then all discounted drifts
are zero and all strictly positive portfolios are by Definition 3.1 optimal. We
exclude this unrealistic case with the following assumption.

Assumption 3.3 The total market price for risk is strictly greater than zero
and finite with

0 < |θ(t)| < ∞ (3.4)

almost surely for all t ∈ [0, T ].

An important investment characteristic is the Sharpe ratio sδ(t), see Sharpe
(1964). It is defined for a portfolio S(δ) with positive aggregate volatility bδ(t) > 0
at time t as the ratio of the risk premium of the discounted portfolio

pδ(t) =
αδ(t)

S̄(δ)(t)
(3.5)
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over its aggregate volatility bδ(t) = γδ(t)

S̄(δ)(t)
, that is,

sδ(t) =
pδ(t)

bδ(t)
=

αδ(t)

γδ(t)
(3.6)

for t ∈ [0, T ], see (2.18)–(2.20).

We can now formulate for our continuous benchmark model a portfolio selection
theorem in the sense of Markowitz (1959) that identifies the structure of the drift
and diffusion coefficients in the SDE of an optimal portfolio.

Theorem 3.4 For any strictly positive portfolio S(δ) the Sharpe ratio sδ(t)
satisfies the inequality

sδ(t) ≤ |θ(t)| (3.7)

for all t ∈ [0, T ], where equality arises when S(δ) is an optimal portfolio. The
value S̄(δ)(t) at time t of a discounted, optimal portfolio satisfies the SDE

dS̄(δ)(t) = S̄(δ)(t)
bδ(t)

|θ(t)|
d∑

k=1

θk(t)
(
θk(t) dt + dW k

t

)
, (3.8)

with optimal fractions

π
(j)
δ (t) =

bδ(t)

|θ(t)| π
(j)
δ∗ (t) (3.9)

for all j ∈ {1, 2, . . . , d} and t ∈ [0, T ].

This means that the family of discounted, optimal portfolios S̄(δ) is at any time t
parameterized by the aggregate volatility bδ(t) ≥ 0. The proof of this theorem is
given in the Appendix. Obviously, for bδ(t) = 0 one obtains the savings account
as optimal portfolio, whereas in the case bδ(t) = |θ(t)| it is the GOP that arises.

By Theorem 3.4 and (2.25), any optimal portfolio value S(δ)(t) can be decomposed
into a fraction of wealth that is invested in the GOP and a remaining fraction that
is held in the savings account. Therefore, Theorem 3.4 can also be interpreted as
a mutual fund theorem or separation theorem, see Merton (1973). The maximum
achievable Sharpe ratio is by (3.7) that of an optimal portfolio and equals the
total market price for risk.

3.2 Markowitz Efficient Frontier

It follows from the SDE (3.8) that at time t the risk premium pδ(t) of an optimal
portfolio S(δ) equals

pδ(t) = bδ(t) |θ(t)| (3.10)

for t ∈ [0, T ]. Note that the risk premium of S(δ) is the appreciation rate of S̄(δ).
By analogy to the mean-variance portfolio theory in Markowitz (1959), one can
introduce an efficient portfolio.
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Definition 3.5 An efficient portfolio S(δ) is one whose appreciation rate aδ(t),
as a function of squared volatility (bδ(t))

2, lies on the efficient frontier, in the sense
that

aδ(t) = aδ(t, (bδ(t))
2) = r(t) +

√
(bδ(t))2 |θ(t)| (3.11)

for all times t ∈ [0, T ].

By relations (3.10) and (3.11) the following result is obtained.

Corollary 3.6 An optimal portfolio is efficient.

Corollary 3.6 can be interpreted as a “local in time” version of the Markowitz
efficient frontier in a continuous time setting. Due to (3.7) and (3.6) it is not
possible to form a strictly positive portfolio that produces an appreciation rate
above the efficient frontier.

The Markowitz efficient frontier and the Sharpe ratio are important tools for
investment management. They can probably be more efficiently exploited in
practice if the stochastic nature of the volatility process of an efficient portfolio
is properly understood. This is a problem that we address towards the end of the
paper.

3.3 Capital Asset Pricing Model

We assume the existence of n ∈ {1, 2, . . .} investors who hold all investable wealth
in the market. The portfolio of investable wealth of the `th investor is denoted
by S(δ`), ` ∈ {1, 2, . . . , n}. The total portfolio S(δ)(t) of the investable wealth
of all investors is then the market portfolio of investable wealth, called market
portfolio, and given by

S(δ)(t) =
n∑

`=1

S(δ`)(t) (3.12)

at time t ∈ [0, T ]. To identify the SDE of the market portfolio we introduce the
following minor technical condition.

Assumption 3.7 The market portfolio S(δ)(t) > 0 is almost surely strictly

positive and the GOP faction π
(0)
δ∗ (t) 6= 1 for the savings account is almost surely

not equal to one for all t ∈ [0, T ].
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The discounted market portfolio S̄(δ)(t) at time t is by Assumptions 3.2 and 3.7,
Theorem 3.4, (3.9), (2.11) and (3.12) determined by the SDE

dS̄(δ)(t) =
n∑

`=1

dS̄(δ`)(t)

=
n∑

`=1

(
S̄(δ`)(t)− δ

(0)
`

)
(
1− π

(0)
δ∗ (t)

)
d∑

k=1

θk(t) (θk(t) dt + dW k
t )

= S̄(δ)(t)

(
1− π

(0)
δ (t)

)
(
1− π

(0)
δ∗ (t)

)
d∑

k=1

θk(t) (θk(t) dt + dW k
t ) (3.13)

for t ∈ [0, T ]. This shows by (3.8) that the market portfolio S(δ)(t) can be
interpreted as an optimal portfolio.

The seminal capital asset pricing model (CAPM) was developed by Sharpe (1964),
Lintner (1965) and Merton (1973) as an equilibrium model of exchange. By (3.5),
(2.12), (2.21) and (3.13) the risk premium pδ(t) of a portfolio S(δ) can be expressed
as

pδ(t) =
d∑

k=1

d∑
j=1

π
(j)
δ (t) bj,k(t) θk(t) =

d〈ln(S(δ)), ln(S(δ))〉t
dt

(
1− π

(0)
δ∗ (t)

)
(
1− π

(0)
δ (t)

) (3.14)

at time t. Here 〈ln(S(δ)), ln(S(δ))〉t denotes the covariation at time t of the stochas-
tic processes ln(S(δ)) and ln(S(δ)), see Karatzas & Shreve (1991). The time deriva-
tive of the covariation is the local in time analogue for continuous time processes of
the covariance of log-returns. For a strictly positive portfolio S(δ) the systematic
risk parameter βδ(t), the portfolio beta, is defined as the ratio of the covariations

βδ(t) =
d〈ln(S(δ)),ln(S(δ))〉t

dt

d〈ln(S(δ))〉t
dt

, (3.15)

for t ∈ [0, T ], where S(δ) denotes again the market portfolio. Since by (3.13) the
market portfolio can be interpreted as an optimal portfolio we get by (3.14) the
following result.

Theorem 3.8 For any strictly positive portfolio S(δ) the portfolio beta has the
form

βδ(t) =
pδ(t)

pδ(t)
(3.16)

for t ∈ [0, T ].
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The above expression of the portfolio beta is exactly what the intertemporal
CAPM suggests. Thus, Theorem 3.8 provides a derivation of the intertemporal
CAPM, see Merton (1973), without any equilibrium or utility assumptions. Note
that, in general, if the market portfolio were not an optimal portfolio, then the
intertemporal CAPM would not hold in a benchmark model.

3.4 GOP and Market Portfolio

Since any bond which has a buyer has also a seller in the market, we make the
following assumption.

Assumption 3.9 The savings account is in net zero supply, that is

π
(0)
δ (t) = 0 (3.17)

almost surely, for all t ∈ [0, T ].

Obviously, the market portfolio has by (3.13), (2.25) and (3.17) the fraction
1−π

(0)
δ (t)

1−π
(0)
δ∗ (t)

= 1

1−π
(0)
δ∗ (t)

invested in the GOP. By (3.13) and (3.17) we get the following

result.

Corollary 3.10 The market portfolio S(δ) is a combination of the GOP and
the savings account, where

dS̄(δ∗)(t) =
(
1− π

(0)
δ∗ (t)

)
dS̄(δ)(t) (3.18)

for all t ∈ [0, T ].

This statement has a number of important consequences. It says that the fractions
of the GOP in the risky primary security accounts are, up to the factor (1−π

(0)
δ∗ (t))

equal to those of the market portfolio. In the case when the GOP is not allowed
to invest in the savings account or has zero investment in the savings account,
then the GOP equals the market portfolio. If, say, the monetary authorities
optimize by their policy the growth rate of the market portfolio, then it equals
the GOP. Further research will clarify when the market portfolio is a good proxy
for the GOP. If one assumes that the market portfolio is observable, for instance,
in the form of the MSCI world stock accumulation index (MSCI) and π

(0)
δ∗ (·) is

also known, then the GOP can be observed, modeled and calibrated. It can then
be used as benchmark in various ways, as described later.

Under Corollary 3.10 one can take directly the observed market capitalization of
stocks to deduce the optimal fractions of the risky securities in the GOP. If one

13



estimates additionally the volatilities from sufficient frequently observed stock
prices, then the kth market price for risk can be obtained via the relation

θk(t) =
(
1− π

(0)
δ∗ (t)

) d∑
j=1

π
(j)
δ (t) bj,k(t) (3.19)

for t ∈ [0, T ] and k ∈ {1, 2, . . . , d}, see (2.24). This then allows by (3.14) also to
estimate the risk premium for a strictly positive portfolio S(δ) in the form

pδ(t) =
(
1− π

(0)
δ∗ (t)

) d∑

k=1

bk
δ (t)

d∑
j=1

π
(j)
δ (t) bj,k(t) (3.20)

for t ∈ [0, T ]. Forthcoming work will demonstrate the feasibility of this new
method to estimate risk premia and market prices for risk.

3.5 Fair Pricing

The direct use of the GOP allows us to generalize in a practical way the well-
known arbitrage pricing theory (APT), introduced by Ross (1976) and further
developed by Harrison & Kreps (1979), Harrison & Pliska (1981) and many others.
Under the benchmark approach one can use the GOP S(δ∗) as numeraire along the
lines of Long (1990). By Corollary 3.10 the numeraire would become the market
portfolio. Note that the Radon-Nikodym derivative process ΛQ = {ΛQ(t), t ∈
[0, T ]} for the candidate risk neutral measure Q can be expressed as inverse of
the discounted GOP

ΛQ(t) =
dQ

dP

∣∣∣
At

=
S̄(δ∗)(0)

S̄(δ∗)(t)
(3.21)

for t ∈ [0, T ], see Karatzas & Shreve (1998). For ΛQ(t) we obtain the SDE

dΛQ(t) = −ΛQ(t)
d∑

k=1

θk(t) dW k
t (3.22)

for t ∈ [0, T ] with ΛQ(0) = 1 by the Itô formula and (2.25). This demonstrates
that ΛQ is an (A, P )-local martingale. Furthermore, by (2.27) it follows that

S̄(δ)(t)ΛQ(t) = S(δ∗)(0) S(δ)(t)

S(δ∗)(t) = S(δ∗)(0)Ŝ(δ)(t) forms an (A, P )-local martingale

for any portfolio S(δ). We emphasize that in a benchmark model this does not
mean that Ŝ(δ) is an (A, P )-martingale. One obtains the following result.

Corollary 3.11 If an equivalent risk neutral martingale measure Q exists and
a given benchmarked portfolio Ŝ(δ) is an (A, P )-martingale, then the risk neutral
pricing formula

S(δ)(t) = S(δ∗)(t) E
(
Ŝ(δ)(s)

∣∣At

)
= E

(
ΛQ(s)

ΛQ(t)

S(0)(t)

S(0)(s)
S(δ)(s)

∣∣∣At

)

= EQ

(
S(0)(t)

S(0)(s)
S(δ)(s)

∣∣At

)
(3.23)
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holds for all t ∈ [0, T ] and s ∈ [t, T ]. Here EQ denotes expectation under the risk
neutral measure Q.

According to Corollary 3.11, Ŝ(δ) needs to be an (A, P )-martingale for S̄(δ) to
be an (A, Q)-martingale, such that the risk neutral pricing formula holds. Note
that even if an equivalent martingale measure exists, then not all benchmarked
portfolios are automatically (A, P )-martingales and not all discounted portfolios
are (A, P )-martingales. This point is sometimes overlooked in the literature.
However, it is mentioned, for instance, in Delbaen & Schachermayer (1994). In
the above sense one recovers the risk neutral pricing methodology of the APT
when assuming the existence of a risk neutral equivalent martingale measure Q.
Relations similar to (3.23) also appear in the literature in connection with pricing
kernels, state price densities, deflators, stochastic discount factors and numeraire
portfolios, see, for instance, Long (1990), Constatinides (1992), Duffie (2001) and
Cochrane (2001).

Since a benchmark model does not require the existence of an equivalent risk
neutral martingale measure it provides a more general modeling framework than
the standard risk neutral setup. In particular, the benchmarked savings account
does not need to be a true martingale and (3.23) may not hold. As we will see,
this is important for realistic modeling.

An indication for the need to go beyond the APT is given by the fact that
by (3.21) the candidate Radon-Nikodym derivative ΛQ for a benchmark model
equals the ratio of the savings account over the GOP. Thus, it can be interpreted
as benchmarked savings account. In the long run the market portfolio, and even
more the GOP, is expected by investors to outperform the savings account. This
means that the trajectory of the discounted market portfolio should rise system-
atically over longer periods of time. However, this means that the presumed
Radon-Nikodym derivative should decrease systematically over longer time peri-
ods. Empirical evidence supports such systematic long term decline for all major
currency denominations, when using the MSCI world stock accumulation index
as proxy for the GOP. For the last century this has been empirically documented
in Dimson, Marsh & Staunton (2002).

Therefore, it is not likely that ΛQ is in reality well modeled as a true (A, P )-
martingale, thereby contradicting the standard APT assumptions. The reader
may be surprised by this observation, however, it appears to be the reality and
has to be taken into account for advanced financial market modeling. Note that
a decreasing graph for ΛQ is still consistent with it being a nonnegative, strict
(A, P )-local martingale and hence a strict supermartingale, see Karatzas & Shreve
(1991). We will come back to this point towards the end of the paper, when we
derive a model for the market portfolio.

For derivative pricing in a benchmark model, where no equivalent risk neutral
martingale measure exists, the fair pricing concept has been proposed in Platen
(2002).
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Definition 3.12 A benchmarked portfolio process (2.26) is called fair if it
forms an (A, P )-martingale.

In practice, it appears that fair pricing is appropriate for determining the com-
petitive price of a contingent claim.

Definition 3.13 The fair price UHτ (t) at time t ∈ [0, τ ] of an Aτ -measurable
contingent claim Hτ , payable at a stopping time τ , is defined by the fair pricing
formula

UHτ (t) = E

(
S(δ∗)(t)

S(δ∗)(τ)
Hτ

∣∣∣At

)
. (3.24)

Note that fair prices are uniquely determined even in incomplete markets. Un-
der the existence of a minimal equivalent martingale measure, see Föllmer &
Schweizer (1991), fair prices have been shown to correspond to local risk mini-
mizing prices, see Christensen & Larsen (2004) and Platen (2004c). Corollary 3.10
makes fair pricing via (3.24) practicable since one can observe, model and cal-
ibrate the GOP via the market portfolio. This enables us to calculate the real
world expectations in (3.24). It is clear from (3.24), (3.23) and (3.21) that fair
pricing generalizes risk neutral pricing. The previous observation that the pre-
sumed Radon-Nikodym derivative process may, in reality, be a strict supermartin-
gale suggests that a benchmarked savings account is a strict supermartingale and
therefore not a fair price process. This observation is not surprising in the light of
the model that we will derive later. Note that the savings account is the limit of
a rollover short term bond account. It is only the theoretical limit of this account
that is not fair because limits of martingales may become strict local martingales
if certain integrability conditions are not satisfied.

For the practically important case where a contingent claim is independent of the
GOP, one obtains the following result by the fair pricing formula (3.24).

Corollary 3.14 For a contingent claim HT that is independent of the GOP
value S(δ∗)(T ), the fair price UHT

(t) satisfies the actuarial pricing formula

UHT
(t) = E

(
S(δ∗)(t)

S(δ∗)(T )

∣∣∣At

)
E

(
HT

∣∣At

)

= P (t, T ) E
(
HT

∣∣At

)
, (3.25)

where P (t, T ) denotes the fair price at time t ∈ [0, T ] of a zero coupon bond with
maturity date T .

The formula (3.25) has been widely used in insurance and other areas of risk
management, see, for instance, Bühlmann (1995) and Gerber (1990). One may
regard (3.25) as a generalized actuarial pricing formula that is still valid when
interest rates are stochastic.
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4 Expectation of Discounted GOP

It is important to have an idea about the typical dynamics of the GOP. The SDE
(2.25) for the GOP reveals a close link between its drift and diffusion coefficients.
More precisely, the risk premium of the GOP equals the square of its volatility.
To see this, let us rewrite (2.25) in the discounted form

dS̄(δ∗)(t) = S̄(δ∗)(t) |θ(t)| (|θ(t)| dt + dWt), (4.1)

where

dWt =
1

|θ(t)|
d∑

k=1

θk(t) dW k
t (4.2)

is the stochastic differential of a standard Wiener process W . This reveals a clear
structural relationship between the drift and diffusion coefficients.

To emphasize this relationship let us reparameterize the GOP dynamics in a
natural way. The discounted GOP drift

α(t) = S̄(δ∗)(t) |θ(t)|2 (4.3)

is the average change per unit of time of the discounted GOP. Using the parametri-
zation (4.3), we get the total market price for risk in the form

|θ(t)| =
√

α(t)

S̄(δ∗)(t)
. (4.4)

By substituting (4.3) and (4.4) into (4.1) we obtain the following SDE for the
discounted GOP

dS̄(δ∗)(t) = α(t) dt +
√

S̄(δ∗)(t) α(t) dWt (4.5)

for t ∈ [0, T ]. This is a time transformed squared Bessel process of dimension
four, see Revuz & Yor (1999). Its transformed time ϕ(t) is at time t given by the
expression

ϕ(t) = ϕ(0) +

∫ t

0

α(s) ds (4.6)

with ϕ(0) ≥ 0 as a possibly hidden random initial value. We will call later
ϕ(t) also the underlying value of S̄(δ∗) because it represents the integral over the
discounted drift αδ∗(t), see (2.18).

Since one obtains the SDE

d
√

S̄(δ∗)(t) =
3 α(t)

8
√

S̄(δ∗)(t)
dt +

1

2

√
α(t) dWt (4.7)

from (4.5) by the Itô formula, the increase of the transformed time ϕ(t) can be
directly observed as

ϕ(t)− ϕ(0) = 4
〈√

S̄(δ∗)
〉

t
(4.8)
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for t ∈ [0, T ]. This emphasizes the fact that we are able to observe the time
integral over the drift of the discounted GOP. It is well known that even under
the simplest stochastic dynamics the estimation of a drift parameter alone for the
market portfolio needs several hundred years of data to guarantee any reasonable
level of confidence. The benchmark approach resolves the problem of identifying
the drift of the market portfolio by exploiting the link between its drift and dif-
fusion coefficient. Of course, for the reliable evaluation of the quadratic variation
in (4.8) one needs still a sufficiently large number of data but drawn only over a
relatively short time period.

For the analysis that follows, let us decompose the discounted GOP value at time
t ∈ [0, T ] as

S̄(δ∗)(t) = S̄(δ∗)(0) + ϕ(t)− ϕ(0) + M(t). (4.9)

Here M = {M(t), t ∈ [0, T ]} is the (A, P )-local martingale

M(t) =

∫ t

0

S̄(δ∗)(s) |θ(s)| dWs (4.10)

for t ∈ [0, T ]. The quantity S̄(δ∗)(t) in (4.9) consists of a part M(t), which
reflects the trading uncertainty of the discounted GOP and a part ϕ(t) − ϕ(0)
that expresses the increase of its underlying value. Since the trading uncertainty
models the speculative component of the discounted GOP the underlying value
can be interpreted by (4.6) as accumulated discounted economic value of the
market portfolio. We have shown by (4.6) and (4.8) that it takes naturally the
form of a transformed time.

The above relationships lead directly to the following result, which exploits equa-
tions (4.9) and (4.6) and a realistic martingale assumption for M .

Corollary 4.1 If the local martingale M in (4.10) is a true (A, P )-martingale,
then the expected change of the discounted GOP value over a given period equals
the expected change of its underlying value. That is,

E
(
S̄(δ∗)(s)− S̄(δ∗)(t)

∣∣At

)
= E

(
ϕ(s)− ϕ(t)

∣∣At

)
(4.11)

for all t ∈ [0, T ] and s ∈ [t, T ].

By Corollaries 4.1 and 3.10 it follows that if the present value of the discounted
GOP is interpreted as its underlying value, then the expected future underlying
value equals the expected future value of the discounted GOP. In this sense the
increase of the martingale part of the discounted GOP fluctuates around its in-
crease in underlying value, which one would naturally expect. It is of practical
importance that one can observe in a benchmark model the latter increase via
the quadratic variation (4.8), see Platen (2004b). We emphasize that we have
still not made any major assumptions about the particular dynamics of the GOP.
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5 Dynamics of the GOP

In Platen (2004b) relation (4.11) has been illustrated for the US market by as-
suming that the market portfolio equals the GOP. It appears in reality that the
underlying value of the discounted GOP, which can be observed via (4.8), evolves
relatively smoothly as a monotone increasing function of time, see Platen (2004b).
This matches the fact that only a rather predictable amount of discounted wealth
is on average generated worldwide per unit of time, which increases smoothly the
underlying value of the discounted GOP. Based on this observation we make the
following assumption.

Assumption 5.1 The underlying value α(·) of the discounted GOP is twice
differentiable with respect to time.

Without loss of generality, the discounted GOP drift can then be expressed as

α(t) = α0 exp

{∫ t

0

η(s) ds

}
(5.1)

for t ∈ [0, T ]. The two parameters in (5.1) are a nonnegative, potentially random
initial value α0 > 0 and an adapted process η = {η(t), t ∈ [0, T ]}, called the
net growth rate. This expression takes the typical growth nature of the GOP
into account. According to (4.4) the parametrization (5.1) allows us to study the
dynamics of the normalized GOP

Y (t) =
S̄(δ∗)(t)

α(t)
=

1

|θ(t)|2 (5.2)

for t ∈ [0, T ]. By application of the Itô formula and using (4.4), (4.11) and (4.5),
we obtain the SDE

dY (t) = (1− η(t) Y (t)) dt +
√

Y (t) dWt (5.3)

for t ∈ [0, T ] with Y (0) = S̄(δ∗)(0)
α0

. It follows that the normalized GOP is a

square root process with the inverse of the net growth rate 1
η(t)

as reference level

for its linear mean-reverting drift. The net growth rate η(t) is then the speed of
adjustment parameter for the mean-reversion. Note that besides initial values,
the net growth rate is the only parameter process needed to characterize the
dynamics of the normalized GOP and its stochastic volatility. Therefore, one
obtains a parsimonious model for the GOP dynamics, namely

S(δ∗)(t) = Y (t) α(t) S(0)(t) (5.4)

for t ∈ [0, T ]. It only remains to specify the initial values S(δ∗)(0) and α0 and
the net growth rate process η as well as the short rate process r. The net growth
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rate for the world stock portfolio, when denominated in units of a US-Dollar
savings account, has been estimated for the entire last century in Dimson, Marsh
& Staunton (2002) to be on average close to η ≈ 4.9%.

The resulting model for the GOP when interpreted as market portfolio is called
the minimal market model (MMM), see Platen (2001), which has been studied,
for instance, in Platen (2002, 2004b) and Heath & Platen (2004). It is important
to note that under the MMM the presumed Radon-Nikodym derivative for the
candidate risk neutral measure equals the inverse of a squared Bessel process of
dimension four, which is a nonnegative, strict local martingale and thus a strict
supermartingale, see Karatzas & Shreve (1991). This potentially explains the
observed systematic decline in the observed candidate Radon-Nikodym derivative,
that is, the benchmarked savings account, when interpreting the MSCI as GOP.
Obviously, under the MMM the APT is not applicable. However, the fair pricing
formula (3.24) makes perfect sense for the competitive pricing of derivatives and
can be directly applied by using the explicitly known transition density of the
squared Bessel process of dimension four, see Revuz & Yor (1999).

The above analysis raises the question of whether the distribution of log-returns
of the market portfolio, as above predicted, are actually observed. If the MMM
is a reasonably accurate description of reality, then estimated log-returns of the
market portfolio, based on long periods of observed data, should appear to be
Student t distributed with four degrees of freedom. This follows because the
squared volatility of the GOP |θ(t)|2 = 1

Y (t)
has a stationary inverse gamma

density with four degrees of freedom, when assuming a constant net growth rate
η. For a sufficiently long observed time series of market portfolio log-returns, this
inverse gamma density acts as mixing density for the resulting normal-mixture
distribution, yielding the above mentioned Student t distribution.

This theoretical feature of the MMM is rather clear and testable. Importantly, it
has already been documented in the literature as an empirical stylized fact for log-
returns of large stock market indices. In an extensive Baysian estimation within
a wide class of Pearson distributions, Markowitz & Usmen (1996) found that the
Student t distribution with about 4.3 degrees of freedom matches well the daily
S&P500 log-return data from 1962 until 1983. Independently, in Hurst & Platen
(1997) it was found by maximum likelihood estimation within the rich class of
symmetric generalized hyperbolic distributions that, not only for the S&P500
but also for most other regional stock market indices, daily log-returns for the
period from 1982 until 1996 are likely to be Student t distributed with about
four degrees of freedom. Another recent study by Breymann, Fergusson & Platen
(2004) confirms, for the daily log-returns of the world stock market portfolio in
34 different currency denominations for the period from 1973 until 2003, that
in all cases the Student t distribution provides the best fit in the rich class of
symmetric generalized hyperbolic distributions. Furthermore, for the majority of
the currency denominations the Student t hypothesis cannot be rejected at the
99% confidence level. The average estimated number of degrees of freedom in
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this study is with about 3.94 very close to the theoretical value of 4.00 predicted
by the MMM.

Furthermore, empirical evidence from index and FX derivatives strongly support
the MMM, see Heath & Platen (2004). Forthcoming work will extend the above
benchmark approach to models with event driven jumps and general semimartin-
gale dynamics.

Conclusion

This paper demonstrates that the growth optimal portfolio (GOP) plays a major
role in various areas of finance, including portfolio optimization, derivative pric-
ing and risk management. We assume that investors always prefer more rather
than less. The paper then identifies optimal portfolios as combinations of the
market portfolio and the savings account. The Markowitz efficient frontier and
Sharpe ratio can then be derived naturally. Under the additional assumptions
that the savings account is in net zero supply, it is shown that the GOP equals a
combination of the market portfolio and the savings account.

The discounted GOP can be realistically modeled as a time transformed squared
Bessel process of dimension four. The transformed time can be interpreted as
its underlying value. The increase in expected discounted GOP value is shown
to equal that of its expected discounted underlying value, which can be observed
via some covariance process. A particular dynamics of the normalized GOP is
derived. It is related to a square root process of dimension four, which appears
to provide realistic log-returns for the market portfolio.

For the pricing of contingent claims the GOP is nominated as numeraire for fair
pricing, with expectations to be taken under the real world probability measure.
In fact, for the minimal market model described here, no equivalent risk neutral
martingale measure exists.
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A Appendix

Proof of Theorem 3.4

To identify a discounted optimal portfolio we maximize the drift (2.18) subject to
the constraint (3.1), locally in time, according to Definition 3.1. For this purpose
we use the Lagrange multiplier λ and consider the function

G(θ1, . . . , θk, γδ̃, λ, ψ1
δ , . . . , ψ

d
δ ) =

d∑

k=1

ψk
δ θk + λ

(
(γδ̃)

2 −
d∑

k=1

(
ψk

δ

)2

)
(A.1)

by suppressing time dependence. For ψ1
δ , ψ

2
δ , . . . , ψ

d
δ to provide a maximum for

G(θ1, . . . , θk, γδ̃, λ, ψ1
δ , . . . , ψ

d
δ ) it is necessary that the first-order conditions

∂G(θ1, . . . , θk, γδ̃, λ, ψ1
δ , . . . , ψ

d
δ )

∂ψk
δ

= θk − 2 λψk
δ = 0 (A.2)

are satisfied for all k ∈ {1, 2, . . . , d}. Consequently, an optimal portfolio S(δ̃),
which maximizes the drift, must have

ψk
δ̃

=
θk

2 λ
(A.3)

for all k ∈ {1, 2, . . . , d}. We can now use the constraint (3.1) together with (2.19)
and (3.3) to obtain from (A.3) the relation

(γδ̃)
2 =

d∑

k=1

(
ψk

δ̃

)2
=

( |θ|
2 λ

)2

. (A.4)

By (3.4) we have |θ(t)| > 0 and obtain the equation

ψk
δ̃
(t) =

γδ̃(t)

|θ(t)| θ
k(t) (A.5)

for t ∈ [0, T ] and k ∈ {1, 2, . . . , d}, from (A.3) and (A.4). This yields by (2.18)
the discounted drift

αδ̃(t) =
|γδ̃(t)| |θ(t)|2

|θ(t)| = |γδ̃(t)| |θ(t)|, (A.6)

which leads for the case of an optimal portfolio to the equality in (3.7). Due to
our optimization it follows the inequality (3.7) for any strictly positive portfolio.

Equation (A.5) substituted into (2.16) provides by (2.19) the SDE (3.8). Fur-
thermore, it follows from (A.5), (2.17), (2.13) and (2.19) that

S̄(δ̃)(t)
d∑

j=1

π
(j)

δ̃
(t) bj,k(t) =

γδ̃(t)

|θ(t)| θ
k(t) = S̄(δ̃)(t) bδ̃(t)

θk(t)

|θ(t)| . (A.7)
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This yields by Assumption 2.1 the optimal fraction

π
(j)

δ̃
(t) =

bδ̃(t)

|θ(t)|
d∑

k=1

θk(t) b−1 j,k(t) (A.8)

and, thus, by (2.24) the equation (3.9) for all j ∈ {1, 2, . . . , d} and t ∈ [0, T ].
¤
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