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Abstract
Background:
Hyperglycemia is prevalent in critical care. That tight control saves lives is becoming more clear, but the 
“how” and “for whom” in repeating the initial results remain elusive. Model-based methods can provide tight, 
patient-specific control, as well as providing significant insight into the etiology and evolution of this condition. 
However, it is still often difficult to compare results due to lack of a common benchmark. This article puts 
forward a benchmark data set for critical care glycemic control in a medical intensive care unit (ICU). Based 
on clinical patient data from Secondary Prevention Reinfarction Israeli Nifedipine Trial (SPRINT) studies,  
it provides a benchmark for comparing and analyzing performance in model-based glycemic control.

Methods:
Data from 20 of the first 150 postpilot patients treated under SPRINT are presented. All patients had longer 
than a 5-day length of stay (LoS) in the Christchurch ICU. The benchmark data set matches overall patient 
data and glycemic control results for the entire cohort and this particular LoS >5-day group. The mortality 
outcome (n = 3, 15%) also matches SPRINT results for this patient group.

Results:
Data cover 20 patients and 6372 total patient hours with an average of 339.4 hours per patient. It includes insulin 
and nutrition inputs along with 4182 blood glucose measurements at an average of 224.3 measurements per 
patient, averaging a measurement approximately every 1.5 hours (16 per day). Data are available via download 
in a Microsoft Excel format. A series of cumulative distribution functions and tables are used to summarize 
data in this article.

Conclusion:
Model-based methods can provide tighter, more adaptable “one method fits all” solutions using methods that 
enable patient-specific modeling and control. A benchmark data set will enable easier model and protocol 
development for groups lacking clinical data, as well as providing a benchmark to compare results of different 
protocols on a single (virtual) cohort based on real clinical data.
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Introduction

Hyperglycemia is prevalent in critical care.1–4 
Increased counterregulatory hormone secretion stimulates 
endogenous glucose production and increases effective 
insulin resistance,3,4 elevating equilibrium glucose levels 
and reducing the amount of glucose that the body can 
utilize with a given amount of insulin. Nutritional 
regimes with high glucose content can exacerbate the 
issue further.5–10

Hyperglycemia worsens outcomes, increasing the risk 
of severe infection,11 myocardial infarction,1 and poly-
neuropathy and multiple-organ failure.2,12 Evidence also 
exists of significant reductions in other therapies with 
aggressive glycemic control.2,13–17 Van den Berghe et al.2,16,17 

and Krinsley14,15 reduced intensive care unit (ICU) 
patient mortality 18–45% for patients with a length of stay 
greater than 3 days. Both studies also showed significant 
cost savings per patient.18,19 Other studies focused 
primarily on glucose control are limited in duration or 
patient numbers and do not extend to mortality end 
points.20–25

All of these studies used ad-hoc sliding scale or 
titration-based protocols developed primarily by clinical 
experience (i.e., expert-based control), a typical “one size 
fits all” solution. They are thus less optimal when faced 
with the dynamic patient variation typical of critical 
care. This issue has been illustrated in simulation26,27 
and clinical analysis.7,27–33 There is also little agreement 
on what constitutes desirable glycemic performance,34–36 
particularly with regard to how tight control affects 
outcome, although evidence is emerging that tighter is 
better.37,38

In contrast, model-based tight glycemic control protocols 
have been successful in producing consistent control.28,39–44  
The general state of model-based glycemic control for 
critical care has been reviewed,45 although the field is 
evolving rapidly. However, almost all such model-based 
clinical studies have been first trialled using some form 
of virtual patient or simulator that is typically based 
on retrospective clinical data,46–49 with similar uses 
in controlling type 1 diabetes.50–55 Thus, a significant 
prerequisite of model-based methods is the availability of 
clinical data, or other validated virtual patient models,56,57 
on which to test and develop glycemic control protocols.

Finally, it is often very difficult to compare results. 
Differences across patient cohorts, condition, and other 

variables are almost impossible to reasonably normalize 
or eliminate, making concrete direct comparison of results 
from different studies or virtual trials infeasible. What 
is needed is the ability to compare different protocols 
on the same patient, a task that is most reasonably 
feasible in virtual or simulated trials. The benchmark  
data set presented here offers the opportunity to make 
these comparisons in an open source data set from 
the ongoing clinical implementation of the SPRINT 
protocol, which has significantly reduced mortality for 
a general medical ICU cohort in Christchurch Hospital  
(New Zealand).26,48,58–60 

Methods

Benchmark Patient Cohort
All 20 patients were part of the ongoing Secondary 
Prevention Reinfarction Israeli Nifedipine Trial (SPRINT) 
clinical practice change in the Department of Intensive 
Care Medicine at Christchurch Hospital. The details of 
SPRINT and its development are well documented from 
initial virtual trials to pilot study results and correlation 
of virtual results with clinical results and the end result of 
this approach to glycemic control.26,48,59,60 However, main 
criteria to note for this benchmark data set include the 
following.

• Entry criteria: random glucose greater than 8 mmol/liter 
or clinician’s choice based on condition, and enteral or 
parenteral nutrition

• Exclusion criteria: none
• Length of stay greater than 5 days on SPRINT

Specific patient data are presented in Table 1, including 
age, sex, Acute Physiology and Chronic Health Evaluation II 
(APACHE II) score and associated risk of death, principal 
diagnosis, and the ICU and hospital mortality outcome. 
Summary statistics are presented in the bottom portion.

All patient data are for time on SPRINT. Stopping criteria 
for SPRINT were implemented when the patient was 
stable and only required 2 U/hour or less of insulin.26 
Therefore, time spent on SPRINT may be shorter than 
the total ICU stay in Table 1. 

SPRINT and Treatment Data 
SPRINT uses data from current and prior glucose 
measurements and prior insulin and nutrition inputs over 
a prior 1- to 2-hour period to determine the intervention. 
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Almost all insulin was given as intravenous boluses over 
~15–30 seconds, but a few patients may have also received 
a background intravenous infusion. Infusions are shown 
separately in data and were given for various clinical 
reasons. The insulin employed for all patients was 
Actrapid™ (Novo Nordisk Pharmaceuticals Ltd., NZ). 

All patients were on a constant nasogastric feed of 
RESOURCE™ Diabetic (Novartis Medical Nutrition) 

or Glucerna (Abbott Laboratories, Illinois) at a rate not 
exceeding 700 kilocalories of glucose per day (~90 ml/h).  
This nutritional input has an approximate caloric value 
of 1 kcal/ml, with 35% derived from carbohydrate. Thus, 
it provides approximately 0.49 mmol/ml of glucose input. 
The minimum feeding rate in SPRINT is 30% of a patient-
specific specified goal feed rate. However, lower values 
may be seen in data, particularly in the first few hours, 
where clinicians have adjusted it based on specific 

Table 1.
Benchmark Patient Cohort Data with Relevant Summary Statistics a

Patient Age Gender
Length of 
SPRINT 
(hours)

Number of 
measure-

ments

APACHE 
II

APACHE 
II risk of 

death (%)
Principal diagnosis

ICU 
LOS 

(days)

Hospital 
LOS 

(days)

ICU 
outcome

Hospital 
outcome

50�7 75 M 755 5�8 �7 ��.7 Respiratory failure 59.0 94.0 Ward CRN

50�� 68 M �78 ��9 �8 �9.� Cardiac surgery �8.� 5�.� Died Died

50�� 7� M ��0 �95 �� 58.9 Bowel perforation �6.� 7�.0 Ward CRN

50�� 68 M �45 86 �9 48.0 Laparotomy 7.7 55.4 Ward Died

50�8 60 F �05 �60 �� ��.� COAD b �0.6 �4.9 Ward CRN

50�0 70 M 5�� �64 �� 7�.� Pneumonia �7.0 50.9 Ward CRN

504� 70 F �59 77 4� 96.4 Bowel obstruction ��.� 59.5 Ward Home

5044 65 F �87 �87 �5 56.� Septic shock ��.4 ��.0 Ward CRN

5055 76 F 458 �85 �0 ��.� Acute AAA c ��.� �5.� Ward CRN

5056 58 F ��9 �0� �5 4.7 Hip replacement 5.9 �5.5 Ward CRN

5058 49 M �97 �5� �0 49.5 Hypoglycemia ��.6 �8.4 Ward CRN

5067 7� M �50 95 �6 ��.6 Pancreatitis 6.5 8.5 Died Died

5069 �0 M 74� 54� �5 ��.7 Trauma 49.� 79.9 Ward Home

508� 74 M �9� �47 �� 45.8 Bowel infarction 9.6 9.8 Ward CRN

509� 6� F ��� �69 �9 58.7 Respiratory failure ��.� 60.0 Ward Home

5099 49 M 75� 507 �4 ��.0 Pancreatitis �8.7 90.9 Ward Home

5�05 45 M 5�4 �50 �6 ��.6 Pancreatitis �7.� 78.6 Ward Home

5��� 7� M �65 �48 �6 ��.4 Respiratory failure ��.� ��.6 Ward Home

5��7 7� M �5� �7� �� �7.8 Orthopedic surgery �0.7 58.7 Ward CRN

5�5� 65 F �40 8� 7 7.6 Pneumonia 6.� 6.� Died Died

Average 6�.�
60% 
male

��9.4 ��4.� �0.5 �6.4 �0.8 46.7

�5th 59.5 �7� ��0 �6 ��.5 �0.4 ��.6

Median 68 �76 �70 �9 ��.6 �4.5 5�.5

75th 7� 47� �6� �4 5�.� �8.4 6�.0

Total 6�7� 4�8� �77.4 886.7

a Hospital outcomes include “Home” for patients who returned home and “CRN” for those who went to chronic nursing care centers. ICU 
survivors go to less acute wards, denoted “Ward.” Mortalities are shaded. These data can also be compared to full SPRINT cohort data 
presented elsewhere.60 

b COAD, chronic obstructive airways disease.
c AAA, abdominal aortic aneurysm.
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clinical needs. These adjustments are seen in less than 
0.3% of the total hours. Some patients received parenteral 
nutrition with 12.5% dextrose for a short part of their 
stay for clinical reasons, which is listed separately in 
glucose infusion data. Additionally, there will be some 
hours without nutritional input, usually before or after 
surgery or due to other complications, during which 
time SPRINT only utilizes the insulin wheel.26,59 

Sensor and dosing errors can be problematic in glycemic 
control. In this case, there were no errors in dose or 
timing reported for the nutrition and insulin inputs 
given. All timings were rounded to the nearest hour 
given based on the format of the clinical data sheets 
used in Christchurch Hospital. Data for nutrition and 
insulin were thus obtained directly from what the 
clinical staff recorded in the patient records while using 
SPRINT and were assumed to occur on or near the hour 
recorded. Hence, no further error was assumed for these 
values when used in modeling. However, the glucose 
measurements were all made using bedside Glucocard™ 
test strip II glucose testing kits (Arkray, Inc., Kyoto, Japan), 
which have a reported error of 7–10% depending on 
glycemic level, and occasional much larger unexplained 
errors.48 These sensor errors were thus embedded within 
data provided.

Data Files, Structure, and Units
Data are provided in Microsoft Excel worksheets in a 
single overall spreadsheet file. Each sheet has data for 
a single patient, including the basic patient number and 
data on length of stay. Data can be exported readily from 
this format to the computational environment of choice 
(e.g., Matlab or C/C++). Table 2 shows the initial portion 
of the first patient record (patient 5017) as an exemplar. 
The international system of units (SI) (mmol/liter) is 
given for all data, as well. Note that millimoles per liter 
and similar SI are used because they were the original 
units provided by the sensors, and there are thus no 
conversions or other manipulations placed on data.  
In the remainder of this article, where specific values 
are referenced in millimoles per liter, the equivalent 
milligrams per deciliter value is given in parentheses 
immediately following. The tables and figures utilize 
only millimoles per liter units to match data.

Within the associated Excel spreadsheet for a given 
patient a series of color codes and notes are used. 
Pink delineates the start of SPRINT using both insulin 
and nutrition wheels. Green denotes periods where 
nutritional inputs were shut off for clinical reasons 
and only the insulin wheel portion of SPRINT is used.  
Some very evident periods of noncompliance to the 

Table 2.
Benchmark Patient Worksheet Example Showing Structure of Data a

A B C D E

� Patient 50�7

� Age (years) 75

� Gender M

4

5 APACHE II score �7

6 APACHE II risk of death (%) ��.7

7 ICU total length of stay (days) 59

8 Hospital total length of stay (days) 94

9

�0 Time (min)
Blood glucose 

(mmol/liter)
Insulin bolus (U)

Insulin infusion 
(U/h)

Enteral Glucose 
(mmol/h)

Parenteral 
Glucose (mmol/h)

�� 0 6.4 � �4.5�����

�� 60 5.8 � �4.5�����

�� ��0 5.8 � �4.5�����

�4 �80 5.7 � �4.5�����
a There is one worksheet for each of the �0 patients.
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SPRINT protocol by the attending clinical staff at 
that time are shaded blue, although these changes or 
deviations may have been clinically related but not 
specifi ed in the notes. Periods where SPRINT has been 
stopped are highlighted in yellow with an associated 
note if it is evident that it was stopped by protocol or for 
clinical reasons.

Performance Metrics and Statistics
Statistically, all data are presented using lognormal 
statistics or nonparametric counted values. Normal 
statistics for glycemic control are often in error because 
of the skew seen in the distributions with higher outliers 
and a lower central mode with few, or no, very low 
values. The main result is that normal distributions 
can overestimate the mean if applied to lognormal 
distributions, providing an approximately 64th percentile 
value, as well as resulting in a much larger standard 
deviation.61 In this case, the mean and standard 
deviation are provided in both formats for comparison 
and illustration, but lognormal statistics are encouraged 
for glucose data. Note that for the nutrition and insulin 
control input interventions given, normal statistics will 
suffi ce, as they do not possess the same skew in this 
case. Finally, nonparametric values, such as the median, 
interquartile range, and 90% confi dence intervals, can 
also be used to describe data without these issues.

Glycemic control performance is also represented in this 
article by percentage time in glycemic bands. The bands 
used here match those of the earlier SPRINT studies 
and overlap to provide a sense of the distribution 
shape. The percentage time in band is calculated by 
measurement value weighted by the time interval 
between measurements, where SPRINT measured 1–2 
hourly based on glycemic stability.26,59 Further results, 
outcomes, and glycemic bands for all SPRINT patients 
are also available in the literature.60

Graphically, data are presented in terms of empirical 
S-shaped cumulative distribution functions derived 
directly from data. These functions provide the likelihood 
from 0.0 to 1.0 of glycemic level or occurrence for a 
given data set where 0.0 is the likelihood of the lowest 
possible measure and 1.0 is the likelihood of the highest. 
If lognormal distribution data (mean, standard deviation) 
derived from the same data were integrated and plotted, 
they would fi t these empirical cumulative distribution 
functions. 

Finally, all data are presented in both overall and per-
patient bases. These metrics thus provide both overall 

cohort results, as well as showing per-patient differences 
or variability. This overall set of summaries should 
provide a complete description of data. 

Ethics approval to audit, collect, and present these data 
was obtained from the South Island Regional Ethics 
Committee, New Zealand.

Virtual Trials and Applications
The goal of providing this data set is to encourage 
further research in the fi eld and enable comparisons in 
virtual trials to the clinical results. Virtual trials can be 
readily run by the following fundamental steps.

1. Fit glucose, insulin, and nutrition data to a model 
obtaining the model parameters as desired.

2. Resimulate the fi tted model with different insulin 
and/or nutritional inputs based on the control protocol 
designed to obtain a “virtual trial” blood glucose 
trajectory.

3. Compare with original data and assess performance 
for individual patients or the entire cohort as desired.

This broad process is outlined in Figure 1. In addition, 
this fundamental process has been employed and 
validated in other studies26,46–48,52 and provides a useful 
means of obtaining an estimate of outcome before clinical 
testing.

Figure 1. Virtual trial outline as utilized in prior work26,48,57,62 showing 
the overall approach and elements for a virtual trial. Note that the 
model used does not have to be the one shown, as the fi gure is used to 
show only the basic steps of the approach.

P(t(i+1)) and u(t(i+1))
Control input/s

SI(i(i)) and pG(t(i))

“Patient” Glycemic 

Response

G(t(i))

Generate patient glycemic 
response to controller-determined 
control inputs

Retrospective patient profi le of 

SI(t) and pG(t)
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The data may also be used for model validation. Simply, 
model parameters may be fit to data using any number 
of methods to determine if a given model can capture 
the clinical dynamics seen. Additional validation can 
be obtained via testing forward prediction of blood 
glucose values for a given intervention in data to ensure 
that a given model can provide proper trend dynamics 
in treatment uses for a set of patient or model-specific 
parameters.

Results
Table 3 outlines glycemic control performance for the 
benchmark cohort for individual patients and selected 
overall statistics. The results are provided in lognormal 
statistics with multiplicative (unitless) standard deviations. 
The overall averages reported for glycemic levels, time in 
band, insulin, and nutrition are weighted by the patient 
time for each record. The maximum and minimum 

Table 3.
Benchmark Cohort Glycemic Performance Summary Data a

Lognormal 
statistics

% of measurements BG range Insulin + nutrition
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e 
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 (U
/h

)

50�7 5.9 �.�7× 6�.� 86.7 94.7 0.9 0 ��.7 �.� 75 65.9 �.7

50�� 5.5 �.�4× 79.9 95.7 97.8 �.� 0 7.4 �.� 75 7�.4 �.4

50�� 6.4 �.��× 46.7 74.4 8�.6 �.5 0 �6.4 �.6 75 6�.� �.�

50�� 6.� �.�8× 5�.� 74.4 87.� �.� 0 9.� �.9 75 56.� �.�

50�8 5.8 �.��× 59.4 80.6 9�.9 �.8 0 �0.6 �.� 60 55.7 �.�

50�0 6.� �.��× 5�.� 9�.8 98.� 0.5 0 8.9 �.� 80 58.� �.0

504� 6.� �.�9× 5�.9 7�.7 90.9 �.� 0 �0.6 �.9 60 69.8 �.4

5044 5.5 �.��× 69.0 79.� 8�.9 �0.� � �8.4 �.� 55 8�.0 �.4

5055 5.7 �.�9× 6�.� 85.6 9�.9 4.� � 8.� �.� 60 6�.� �.4

5056 5.9 �.��× 5�.9 76.5 87.� 4.9 � 8.7 �.� 75 54.� �.6

5058 6.7 �.�7× ��.0 55.� 70.4 4.0 � �4 �.9 90 44.7 �.8

5067 5.� �.�5× 8�.� 9�.7 94.7 4.� 0 7.8 �.5 75 59.9 �.�

5069 5.6 �.�6× 7�.� 94.� 96.5 �.0 0 8.9 �.8 90 �5.0 �.0

508� 6.� �.��× 49.0 67.� 85.0 4.8 0 9.8 �.� 75 �6.� �.4

509� 5.9 �.�9× 68.6 88.� 9�.� 0.6 0 �0.4 �.8 60 74.6 �.9

5099 5.4 �.�7× 79.9 9�.5 95.9 �.0 0 �5.� �.4 90 8�.8 4.�

5�05 5.8 �.��× 59.6 84.8 90.4 �.6 0 9.8 �.� 90 9�.8 �.5

5��� 5.8 �.��× 60.� 85.� 9�.� �.4 0 9.6 �.5 75 9�.8 �.�

5��7 6.� �.�8× 50.9 84.8 9�.4 �.8 0 �0.� �.� 80 4�.5 �.8

5�5� 6.� �.�5× 67.9 84.0 88.9 �.� 0 ��.6 �.7 65 65.7 �.4

Overall 5.8 �.�0× 59.� 89.4 4 �6.4 �.9
a Summary averages are weighted by the number of hours on SPRINT in Table 1 for overall mean and time in band statistics. Overall results 

are presented for selected statistics with the rest determinable from data and/or Figures 2 and 3. Mortalities are shaded.
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summary values are the overall maximum and 
minimum for the cohort. The goal feed is in milliliters 
per hour or feed rate and thus represents the maximum 
patient-specific rate for that individual, while the average 
percentage of goal feed shows the average level given.

Specific data show that the average time in band 
ranges from 59.3 to 89.4% as the band widens from  
4.0–6.1 mmol/liter (72–110 mg/dl) to 4.0–7.75 mmol/liter  
(72–140 mg/dl). Note that the ranges provided by these 
bands match the upper/goal limits of van den Berghe 
et al.2,17 and Krinsley15 where the 4.0- to 7.0-mmol/liter  
(72–126 mg/dl) band is provided in between to give a 
better overall description of the distribution. 

The overall weighted glycemic averages using appropriate 
lognormal statistics are 5.8 mmol/liter (105 mg/dl) with a 
first multiplicative standard deviation of 1.2×, yielding a 
66% one standard deviation range of 4.8–7.0 mmol/liter 
(86–126 mg/dl). The 95% two standard deviation interval 
is thus ~4.0–8.4 mmol/liter (72–151 mg/dl), where the 
lognormal skew in data is now more evident.

Figure 2 shows the overall cumulative distribution 
function for all glycemic measurements, where the x axis 
tick marks are modified to show the different bands in 
Table 3 and the 95% range noted previously. Matching 
glucose ranges or values from Table 3 on Figure 2 reveal 
the same results for time in band or 95% confidence 
intervals. Hence, Figure 2 summarizes overall glycemic 
data of the cohort.

Figure 3 shows same data on a per-patient basis. In this 
case, each individual curve is that of a single patient.  
The darker dashed lines show the calculated median 
patient at each cumulative probability level and the 
related 90% confidence interval range. The interquartile 
range lines are not shown for clarity in this smaller 
cohort. As a check, it is worth noting that the 0.50 or 50th 
percentile value for the median patient is approximately 
the same 5.8-mmol/liter (105 mg/dl) value it is for the 
overall cohort, as expected.

Overall, Figures 2 and 3 show the relatively tight glycemic 
performance. Comparing the two plots indicates that 
while individual patients are different, they are primarily 
shifted rather than crossing by large amounts. Hence, 
the control is similarly tight per patient versus the entire 
cohort, as seen in the lognormal standard deviations in 
Table 3, where the average is 1.1 mmol/liter (20 mg/dl) 
and only 20% (4 patients) exceed 1.2 mmol/liter (22 mg/dl)  
with a maximum of 1.8 mmol/liter (32 mg/dl). Thus, 

the longer-staying patients in this cohort are, overall, 
relatively stable in their control.

Discussion
This benchmark problem cohort has been created to 
mimic the longer-staying general or medical ICU patient 
cohort seen with SPRINT.60 These longer-staying patients 
are the cohort that, in most studies, sees some of the 
greatest benefit from tight glycemic control in terms of 
mortality and other outcomes. However, this specific 

Figure 3. Empirical cumulative distribution functions per patient of 
measured blood glucose. Heavy dashed lines show the (calculated) 
median and 90% confidence interval “patients” at each 0.05 of cumulative 
probability. The nonsymmetric tick marks for blood glucose indicate the 
bounds for the major bands reported in Table 3 and the calculated 95% 
two sigma lognormal range.
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Figure 2. Empirical cumulative distribution function of measured blood 
glucose for the entire benchmark cohort. The nonsymmetric tick marks 
for blood glucose indicate the bounds for the major bands reported in 
Table 3 and the calculated 95% two sigma lognormal range.
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medical ICU cohort may not fully reflect a less critically 
ill cohort, such as a cardiovascular surgery-focused 
cohort. Similarly, the distribution is such that it may not 
represent the more critically ill cohorts found in studies 
focused strictly on sepsis, for example. 

The overall approach of using virtual trials is a data-
driven approach based on real patient data. However, 
it is thus no better or representative than those data.  
In particular, it would take very large numbers, beyond 
that of a simple(r) benchmark problem, to show the 
true range or variability. Hence, this cohort has been 
limited in size, while still attempting to maximize its 
ability to represent a major segment of the SPRINT 
cohort and overall SPRINT cohort behavior. The overall 
mean, standard deviations, and 90% confidence interval 
spreads over this cohort are thus well matched to the 
384 patient SPRINT cohort’s overall results to within  
0.1–0.2 mmol/liter (1.3–3.6 mg/dl) in all overall metrics 
and have a similar distribution as well. Alternatively, it is 
possible to use emerging stochastic modeling techniques 
to create equally well-correlated virtual cohorts.56,57

In terms of usefulness for designing or analyzing 
protocols, the virtual patient approach hinges on how 
well its predicted outcomes match eventual clinical 
results. With SPRINT, the initial Monte Carlo simulation 
of approximately 16,000 patient hours on a 19 patient 
virtual cohort was performed prior to implementing 
SPRINT clinically.26 After the first approximately 16,000 
clinical measurements (over ~160 patients), results of 
the virtual and actual trials were compared, with the 
resulting cumulative distribution functions shown in 
Figure 4, which shows that the original simulations and 
clinical raw data match very well, providing validation 
of the overall approach in this case. The fitted lognormal 
distribution to clinical data provides the same result and 
reinforces the need to use this distribution to represent 
these data.

Figure 4 also contains the SPRINT clinical percentiles 
for different glycemic bands, which closely match data 
in Table 3 for this limited benchmark cohort. Finally,  
Figure 5 shows benchmark raw cumulative distribution 
versus raw clinical data from Figure 4. The close match 
of these two curves graphically indicates the level to 
which the benchmark cohort matches the total cohort 
response.

Overall, Figures 4 and 5 provide further reinforcement 
for two main results. First, the overall virtual trials 
approach can, in this case at least, provide a good 

indicator of how a protocol will perform in practice. 
Second, the benchmark cohort presented, while a very 
limited subset of all SPRINT patients, closely matches 
the overall glycemic performance of the larger SPRINT 
cohort.

Virtual trials also offer the opportunity to test other 
technologies or approaches. In this case, bolus insulin 
delivery and measurement were made using glucometers. 
However, given a fitted patient-specific modeling approach 
based on benchmark data, there is no limitation to utilize 
the same measurement or delivery technologies, or timing 
in subsequent simulation. Thus, enteral versus parenteral 
feeding could be evaluated in silico in terms of glycemic 
control, as could technologies such as continuous sensing 
or different insulin delivery approaches.

A tertiary outcome of presenting this cohort is the 
different approach to performance metrics. In particular, 
the use of cumulative distributions and/or overlapping 
times in glycemic bands provides a clear picture and 

Figure 4. Empirical versus virtual cumulative distributions for the 
first approximately 16,000 glucose measurements in SPRINT. The tight 
similarity helps validate the accuracy of the initially run virtual trials.
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Figure 5. Empirical cumulative distributions for the first approximately 
16,000 glucose measurements in SPRINT and the benchmark cohort.
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allows easy comparison across studies. The cumulative 
distributions can be especially useful in this regard, as 
time or percentage in any band can be obtained directly 
from the plot. These metrics thus provide clear illustration 
of the underlying distribution and performance that 
mean/median values and standard deviations cannot, 
particularly if the statistics used do not fully represent 
the distribution.

Finally, there are limitations to this approach, and there 
is no replacement for clinical validation. However, virtual 
trials can offer a great deal of insight into glycemic 
performance before a protocol is implemented, thus 
potentially reducing the development time and increasing 
the likelihood of success. This outcome is significant 
given the growing number of studies that have had 
difficulty repeating the earliest results in this field.23 

Limitations and Comments on Clinical Data
One potential limitation would be whether 20 patients 
are enough for creating a realistic virtual cohort that 
would provide good results. Benchmark data consist 
of 6372 total patient hours with 4182 blood glucose 
measurements. Thus, there is, on average, approximately 
1 measurement every 1.5 hours or 16 per day. Averaged 
over the 20 patients, it results in 339.4 hours and 224.3 
measurements per patient. This data set is far denser 
than the 19 patient and 1780 patient hour data set 
used in developing SPRINT via virtual trials.26 Hence, 
given the good correlation in Figure 3 with data from 
SPRINT and the subset used in this benchmark cohort, 
it is reasonable to conclude that the data set presented 
has the data density and size to be suitable for effective 
virtual trials.

With respect to clinical data itself, there are some 
limitations. As noted in the data set there are periods 
of noncompliance to the protocol, periods where clinical 
imperatives have overridden the protocol. There are also 
periods where the protocol was stopped. All of these 
can have a variety of clinical causes based on patient 
condition at the time and the resulting clinical staff 
decision making. 

More specifically, some patients are off SPRINT for 
short periods for trips to surgery or other interventions/
therapies outside the unit, including patient movement 
for magnetic resonance imaging scans. Longer periods 
off SPRINT are due, in this cohort, to the protocol-
stopping criterion when the patient is stabilized.  
Thus, for example, patient 5105 has a 92-hour period 
off SPRINT. This patient also has an extended period 

at maximum feed rates that is noncompliant to SPRINT, 
which is assumed because of specific clinical choices 
or reasons. Similarly, patient 5069 has five periods off 
SPRINT ranging from 2 to 24 hours, as this patient 
had several surgical interventions resulting from their 
admission because of trauma. These examples, and the 
others in the set, are typical of ICU data in general 
and reveal the wide range of potential difficulties and 
peculiarities faced by any protocol.

However, these issues do not affect data itself nor does 
it preclude virtual patient cohort development. All data 
presented include any periods of noncompliance for 
clinical or other reasons. Thus, the patients chosen are 
also broadly representative of the best and worst cases in 
terms of interruptions and compliance to provide a good 
picture of the clinical problem within data provided.

Conclusions
A benchmark data cohort was presented for glycemic 
control in critical care, based on clinical results from the 
ongoing SPRINT protocol trials in Christchurch, New 
Zealand. Data and its potential applications in model 
development, model validation, and virtual trial protocol 
development are provided. The overall performance 
is summarized using a variety of information-dense 
metrics that provide a full and clear picture of the overall 
performance achieved. Finally, this benchmark cohort 
presented is offered as a means of enabling comparison 
of model-based protocols on the same cohort, as well as 
providing data for model development and dynamic and 
predictive model validation to those research groups with 
less access.

References:

 1. Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress 
hyperglycaemia and increased risk of death after myocardial 
infarction in patients with and without diabetes: a systematic 
overview. Lancet. 2000;355(9206):773-8.

 2. Van den Berghe G, Wouters P, Weekers F, Verwaest C,  
Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, 
Bouillon R. Intensive insulin therapy in the critically ill patients. N 
Engl J Med. 2001;345(19):1359-67.

 3. Mizock BA. Alterations in fuel metabolism in critical illness: 
hyperglycaemia. Best Pract Res Clin Endocrinol Metab. 
2001;15(4):533-51.



�0

A Benchmark Data Set for Model-Based Glycemic Control in Critical Care Chase

www.journalofdst.orgJ Diabetes Sci Technol  Vol �, Issue 4, July �008

 4. McCowen KC, Malhotra A, Bistrian BR. Stress-induced 
hyperglycemia. Crit Care Clin. 2001;17(1):107-24.

 5. Patino JF, de Pimiento SE, Vergara A, Savino P, Rodriguez M, 
Escallon J. Hypocaloric support in the critically ill. World J Surg. 
1999;23(6):553-9.

 6. Weissman C. Nutrition in the intensive care unit. Crit Care. 
1999;3(5):R67-75.

 7. Woolfson AM. Control of blood glucose during nutritional support 
in ill patients. Intensive Care Med. 1980;7(1):11-14.

 8. Ahrens CL, Barletta JF, Kanji S, Tyburski JG, Wilson RF,  
Janisse JJ, Devlin JW. Effect of low-calorie parenteral nutrition on 
the incidence and severity of hyperglycemia in surgical patients: a 
randomized, controlled trial. Crit Care Med. 2005;33(11):2507-12.

 9. Kim H, Son E, Kim J, Choi K, Kim C, Shin W, Suh O. Association 
of hyperglycemia and markers of hepatic dysfunction with 
dextrose infusion rates in Korean patients receiving total parenteral 
nutrition. Am J Health Syst Pharm. 2003;60(17):1760-6.

10. Krishnan JA, Parce PB, Martinez A, Diette GB, Brower RG. Caloric 
intake in medical ICU patients: consistency of care with guidelines 
and relationship to clinical outcomes. Chest. 2003;124(1):297-305.

11. Bistrian BR. Hyperglycemia and infection: which is the chicken and 
which is the egg? JPEN J Parenter Enteral Nutr. 2001;25(4):180-1.

12. Marik PE, Raghavan M. Stress-hyperglycemia, insulin 
and immunomodulation in sepsis. Intensive Care Med. 
2004;30(5):748-56.

13. Diringer MN. Improved outcome with aggressive treatment of 
hyperglycemia: hype or hope? Neurology. 2005;64(8):1330-1.

14. Krinsley JS. Decreased mortality of critically ill patients with the 
use of an intensive glycemic management protocol. Crit Care Med. 
2003;31:A19.

15. Krinsley JS. Effect of an intensive glucose management protocol 
on the mortality of critically ill adult patients. Mayo Clin Proc. 
2004;79(8):992-1000.

16. Van den Berghe G, Wouters PJ, Bouillon R, Weekers F, Verwaest C, 
Schetz M, Vlasselaers D, Ferdinande P, Lauwers P. Outcome benefit 
of intensive insulin therapy in the critically ill: insulin dose versus 
glycemic control. Crit Care Med. 2003;31(2):359-66.

17. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, 
Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R.  
Intensive insulin therapy in the medical ICU. N Engl J Med. 
2006;354(5):449-61.

18. Krinsley JS, Jones RL. Cost analysis of intensive glycemic control 
in critically ill adult patients. Chest. 2006;129(3):644-50.

19. Van den Berghe G, Wouters PJ, Kesteloot K, Hilleman DE. Analysis 
of healthcare resource utilization with intensive insulin therapy in 
critically ill patients. Crit Care Med. 2006;34(3):612-616.

20. Goldberg PA, Siegel MD, Sherwin RS, Halickman JI, Lee M,  
Bailey VA, Lee SL, Dziura JD, Inzucchi SE. Implementation of a 
safe and effective insulin infusion protocol in a medical intensive 
care unit. Diabetes Care. 2004;27(2):461-7.

21. Laver S, Preston S, Turner D, McKinstry C, Padkin A. Implementing 
intensive insulin therapy: development and audit of the Bath 
insulin protocol. Anaesth Intensive Care. 2004;32(3):311-6.

22. Thomas AN, Marchant AE, Ogden MC, Collin S. Implementation 
of a tight glycaemic control protocol using a web-based insulin 
dose calculator. Anaesthesia. 2005;60(11):1093-1100.

23. Meijering S, Corstjens AM, Tulleken JE, Meertens JH, Zijlstra JG, 
Ligtenberg JJ. Towards a feasible algorithm for tight glycaemic 
control in critically ill patients: a systematic review of the literature. 
Crit Care. 2006;10(1):R19.

24. Goldberg PA, Sakharova OV, Barrett PW, Falko LN, Roussel mg, 
Bak L, Blake-Holmes D, Marieb NJ, Inzucchi SE. Improving 
glycemic control in the cardiothoracic intensive care unit: clinical 
experience in two hospital settings. J Cardiothorac Vasc Anesth. 
2004;18(6):690-697.

25. Shulman R, Finney SJ, O’Sullivan C, Glynne PA, Greene R. 
Tight glycaemic control: a prospective observational study of 
a computerised decision-supported intensive insulin therapy 
protocol. Criti Care. 2007;11(4):R75.

26. Lonergan T, LeCompte A, Willacy M, Chase JG, Shaw GM,  
Wong XW, Lotz T, Lin J, Hann CE. A simple insulin-nutrition 
protocol for tight glycemic control in critical illness: development 
and protocol comparison. Diabetes Technol Ther. 2006;8(2):191-206.

27. Wong XW, Chase JG, Shaw GM, Hann CE, Lin J, Lotz T. 
Comparison of adaptive and sliding-scale glycaemic control in 
critical care and the impact of nutritional inputs. Proc of the 12th 
International Conf on Biomedical Engineering (ICBME 2005); 2005 
Dec. 7-10; Singapore; 2005. 

28. Chee F, Fernando T, van Heerden PV. Closed-loop control of blood 
glucose levels in critically ill patients. Anaesth Intensive Care. 
2002;30(3):295-307.

29. Chase JG, Lonergan T, LeCompte A, Willacy M, Shaw GM,  
Wong XW, Lin J, Lotz T, Hann CE. Tight glucose control in critically 
ill patients using a specialized insulin-nutrition table. Proc of the 
12th International Conf on Biomedical Engineering (ICBME 2005); 
2005 Dec. 7-10; Singapore; 2005.

30. Queale WS, Seidler AJ, Brancati FL. Glycemic control and sliding 
scale insulin use in medical inpatients with diabetes mellitus. 
Arch Intern Med. 1997;157(5):545-52.

31. Kletter GG. Sliding scale fallacy. Arch Intern Med. 
1998;158(13):1472.

32. Radack HB. Sliding scale insulin use. Arch Intern Med. 
1997;157(15):1776.

33. Sawin CT. Action without benefit. The sliding scale of insulin use. 
Arch Intern Med. 1997;157(5):489.

34. Gale SC, Gracias VH. Glycemic control needs a standard reference 
point. Crit Care Med. 2006;34(6):1856-7.

35. Mackenzie I, Ingle S, Zaidi S, Buczaski S. Tight glycaemic control: 
a survey of intensive care practice in large English hospitals. 
Intensive Care Med. 2005;31(8):1136.

36. Schultz MJ, Spronk PE, Moeniralam HS. Tight glycaemic control: 
a survey of intensive care practice in the Netherlands. Intensive 
Care Med. 2006;32(4):618-9.

37. Chase JG, Hann CE, Shaw GM, Wong XW, Lin J, Lotz T,  
Le Compte AJ, Lonergan T. An overview of glycemic control in 
critical care: relating performance and clinical results. J Diabetes 
Sci Technol. 2007;1(1):82-91.

38. Egi M, Bellomo R, Stachowski E, French CJ, Hart G. Variability of 
blood glucose concentration and short-term mortality in critically 
ill patients. Anesthesiology. 2006;105(2):244-52.

39. Chase JG, Shaw GM, Lin J, Doran CV, Hann C, Lotz T, Wake GC, 
Broughton B. Targeted glycemic reduction in critical care using 
closed-loop control. Diabetes Technol Ther. 2005;7(2):274-82.

40. Chee F, Fernando TL, Savkin AV, van Heeden V. Expert PID 
control system for blood glucose control in critically ill patients. 
IEEE Trans Inf Technol Biomed. 2003;7(4):419-25.

41. Blaha J, Hovorka R, Matias M, Kotulak T, Kremen J, Sloukova A, 
Svacina S, Haluzik M. Intensive insulin therapy in critically ill 
patients: comparison of standard and MPC protocols. Intensive 
Care Med. 2005;31(S1):S203.



��

A Benchmark Data Set for Model-Based Glycemic Control in Critical Care Chase

www.journalofdst.orgJ Diabetes Sci Technol  Vol �, Issue 4, July �008

42. Plank J, Blaha J, Cordingley J, Wilinska ME, Chassin LJ,  
Morgan C, Squire S, Haluzik M, Kremen J, Svacina S, Toller W,  
Plasnik A, Ellmerer M, Hovorka R, Pieber TR. Multicentric, 
randomized, controlled trial to evaluate blood glucose control by 
the model predictive control algorithm versus routine glucose 
management protocols in intensive care unit patients. Diabetes 
Care. 2006;29(2):271-6.

43. Doran CV. Modelling and control of hyperglycemia in critical care 
patients. Masters of Engineering (ME). Christchurch, New Zealand: 
University of Canterbury; 2004.

44. Wong XW, Singh-Levett I, Hollingsworth LJ, Shaw GM, Hann CE,  
Lotz T, Lin J, Wong OS, Chase JG. A novel, model-based insulin 
and nutrition delivery controller for glycemic regulation in 
critically ill patients. Diabetes Technol Ther. 2006; 8(2):174-90.

45. Chase J, Shaw GM, Wong XW, Lotz T, Lin J, Hann CE. Model-
based glycaemic control in critical care: a review of the state of the 
possible. Biomed Signal Processing Control. 2006;1(1):3-21.

46. Hovorka R, Wilinska ME, Chassin LJ. In Silico simulation 
environment and glucose control in critically ill subjects: strategic 
considerations. Third European Medical & Biological Engineering 
Conference; 2005 Nov 20-25. Prague, Czech Republic: IFMBE; 2005.

47. Wilinska ME, Chassin LJ, Hovorka R. Automated glucose control 
in the ICU: effect of nutritional protocol and measurement error. 
Conf Proc IEEE Eng Med Biol Soc. 2006;1:67-70.

48. Chase JG, Shaw GM, Lotz T, LeCompte A, Wong J, Lin J,  
Lonergan T, Willacy M, Hann CE. Model-based insulin and 
nutrition administration for tight glycaemic control in critical care. 
Curr Drug Deliv. 2007;4(4):283-96.

49. Wilinska ME, Chassin L, Hovorka R. In silico testing—impact on 
the progress of the closed loop insulin infusion for critically ill 
patients project. J Diabetes Sci Technol. 2008;2(3):417-23.

50. Hovorka R, Chassin LJ, Wilinska ME. Virtual type 1 diabetic 
treated by CSII: model description. WC2003: 2003 Aug 24-29; 
Sydney, Australia; 2003.

51. Luzio S, Dunseath G, Peter R, Pauvaday V, Owens DR. Comparison 
of the pharmacokinetics and pharmacodynamics of biphasic 
insulin aspart and insulin glargine in people with type 2 diabetes. 
Diabetologia. 2006;49(6):1163-8.

52. Chassin LJ, Wilinska ME, Hovorka R. Evaluation of glucose 
controllers in virtual environment: methodology and sample 
application. Artif Intell Med. 2004;32(3):171-81.

53. Lehmann ED. AIDA--A computer-based interactive educational 
diabetes simulator. Diabetes Educ. 1998;24(3):341-6, 348.

54. Wong J, Chase JG, Hann CE, Lotz TF, Lin J, Le Compte A,  
Shaw GM. Development of a clinical type 1 diabetes metabolic 
system model and in silico simulation tool. J Diabetes Sci Technol. 
2008;2(3):425-35.

55. Wong J, Chase JG, Hann CE, Lotz TF, Lin J, Le Compte A,  
Shaw GM. In silico simulation of long-term type 1 diabetes 
glycemic control treatment outcomes. J Diabetes Sci Technol. 
2008;2(3):436-49.

56. Lin J, Lee DS, Chase JG, Hann CE, Lotz T, Wong XW. Stochastic 
modelling of insulin sensitivity variability in critical care. Biomed 
Signal Processing Control. 2006;1:229-42.

57. Lin J, Lee D, Chase JG, Shaw GM, Le Compte A, Lotz T, Wong J, 
Lonergan T, Hann CE. Stochastic modelling of insulin sensitivity 
and adaptive glycemic control for critical care. Comput Methods 
Programs Biomed. 2008;89(2):141-52.

58. Shaw GM, Chase JG, Wong J, Lin J, Lotz T, Le Compte AJ,  
Lonergan TR, Willacy MB, Hann CE. Rethinking glycaemic control 
in critical illness--from concept to clinical practice change. Crit 
Care Resusc. 2006;8(2):90-9.

59. Lonergan T, Compte AL, Willacy M, Chase JG, Shaw GM,  
Hann CE, Lotz T, Lin J, Wong XW. A pilot study of the SPRINT 
protocol for tight glycemic control in critically ill patients. Diabetes 
Technol Ther. 2006;8(4):449-62.

60. Chase JG, Shaw G, Le Compte A, Lonergan T, Willacy M, Wong XW,  
Lin J, Lotz T, Lee D, Hann C. Implementation and evaluation of 
the SPRINT protocol for tight glycaemic control in critically ill 
patients: a clinical practice change. Crit Care. 2008;12(2):R49.

61. Limpert E, Stahel WA, Abbt M. Log-normal distributions across 
the sciences: keys and clues. Bioscience. 2001;51(5):341-52.

62. Chase JG, Shaw GM, Hann CE, Lecompte A, Lonergan T,  
Willacy M, Wong XW, Lin J, Lotz T. Clinical validation of a model-
based glycaemic control design approach and comparison to other 
clinical protocols. Conf Proc IEEE Eng Med Biol Soc. 2006;1:59-62.


