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Abstract. Discrete tomography concerns the reconstruction of func-
tions with a finite number of values from few projections. For a number of
important real-world problems, this tomography problem involves thou-
sands of variables. Applicability and performance of discrete tomography
therefore largely depend on the criteria used for reconstruction and the
optimization algorithm applied. From this viewpoint, we evaluate two
major optimization strategies, simulated annealing and convex-concave
regularization, for the case of binary-valued functions using various data
sets. Extensive numerical experiments show that despite being quite dif-
ferent from the viewpoint of optimization, both strategies show similar
reconstruction performance as well as robustness to noise.

1 Introduction

Discrete tomography (DT) is an active field of research covering a number of
important problems across various application areas [1, 2]. A key aspect of DT
is the reconstruction of functions under non-standard conditions, in contrast to
conventional tomography. A necessary condition for making such reconstructions
feasible is to restrict the range of the functions to be reconstructed to a finite
set. Challenging application problems that can be naturally modeled in this
way include non-destructive testing [3], electron microscopy [5], and medical
imaging [4, 6].

A major problem in connection with DT concerns optimization. In fact, most
applications like DT in medical imaging involve thousands of variables represent-
ing the discrete-valued function to be computed. Solving such large-scale com-
binatorial problems to reach global optimality is generally not possible, hence,
optimization strategies providing a good compromise between the quality of sub-
optimal solutions and runtime are of primary interest.

For these reasons, we study in this paper two different optimization strategies
that showed promising performance in recent work:
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– The first strategy based on the classical approach of simulated annealing
(SA). It is a stochastical optimization strategy, a random-search technique
that is based on the physical phenomenon of metal cooling [10]. The system
of metal particles, here the values of the image pixels, gradually reaches the
minimum energy level where the metal freezes into a crystalline structure.

– The second optimization strategy, convex-concave regularization, was pro-
posed in [7]. It combines convex relaxations of reconstruction functionals
with concave minimization to enforce discrete decisions. A local minimum
is determined by solving a sequence of convex optimization problems, each
of which can be solved to global optimality. The method involves a single
regularization parameter only requiring an application-dependent choice.

In Section 2 we briefly describe the general reconstruction problem. Section
3 details the algorithms related to the two optimization strategies which are
evaluated. The evaluation criteria (data sets, performance measures, parameter
settings) are specified in section 4, and our quantitative numerical results are
presented and discussed in Section 5. We conclude and outline further work in
Section 7.

2 Reconstruction Problem

We consider the reconstruction problem of transmission tomography for binary
objects. As explained in Fig. 1(a), the imaging process is represented by the
algebraic system of equations

Ax = b , A ∈ R
m×n , x ∈ {0, 1}n , b ∈ R

m , (1)

where A and b are given, and the binary indicator vector x representing the
unknown object has to be reconstructed. Though we restrict ourselves here to
parallel beam geometry, Fig. 1(b), this algebraic representation is general enough
to suit other geometries as well.

3 Two Optimization Strategies

This section describes two approaches capable to numerically solve large-scale
instances of the general reconstruction problem (1).

3.1 Simulated Annealing

Actually, a possible way of solving (1) at least approximately is to reformulate
it as an optimization problem. Formally, we should find the minimum of the
following objective function

C(x) = ||Ax − b||2 + γ · Φ(x) , where x is a binary-valued vector . (2)

The first term on the right hand side ensures that we have an x satisfying (1)
at least approximately. The second term allows us to include a priori knowledge
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Fig. 1. (a) Discretization model for transmission tomography. The measured
projection data are given in terms of a vector b ∈ R

m. Each component bi corresponds
to a projection ray measuring the absorption along the ray through the volume which
is discretized into cells. The absorption aj in each cell is assumed to be proportional to
the density of the unknown object. x1, x2, . . . are binary variables indicating whether
the corresponding cells belong to the object (xk = 1) or not (xk = 0). Assembling
all projection rays into a linear system gives Ax = b, x ∈ {0, 1}n, from which the
unknown binary object, represented by x, has to be determined. (b) Parallel beam
geometry. Multiple projections are gathered by rotating the source-detector system
around a center point.

about x into the optimization if there are several good binary vector candidates
that keep ||Ax − b||2 low. In our experiments we have used the following Φ(x)
function

Φ(x) =
n∑

j=0

∑

l∈Qm
j

gl,j · |ξj − ξl| , (3)

where Qm
j is the set of the indexes of the m × m adjacent pixels of the j-th

lattice pixel and gl,j is the corresponding element of a matrix representing a 2D
m×m Gaussian matrix. The gl,j scalar weights the differences according to the
distance of the two adjacent, l-th and j-th pixels. Using this regularization term
we can force the optimization algorithm to find binary matrices with possibly
compact regions of 0s and 1s.

For solving (2) the simulated annealing (SA) optimization method [10] was
used.

3.2 Convex-Concave Regularization and DC-Programming

We also consider the one-parameter family of functionals introduced in [7]:

Jμ(x) := ‖Ax − b‖2 +
α

2

n∑

j=1

∑

l∈Q1
j

(xj − xl)2 − μ
1
2
〈x, x − e〉 , x ∈ [0, 1]n . (4)

The first terms in (4) and (2) coincide. The second term in (4) is similar to
(3), but involves nearest neighbors only, i.e. m = 1, with uniform weighting.
This term is controlled by the regularization parameter α. Proper values depend
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on the application and have to be supplied by the user. The third term in (4),
together with the convex domain of definition x ∈ [0, 1]n, pertains to the second
optimization strategy, to be explained below, that was used to minimize (4). It is
a concave functional which gradually enforces the binary constraint x ∈ {0, 1}n

by increasing the value of μ (e denotes the vector with all components equal
to 1).

Algorithm 1. SA Algorithm
Require: γ ≥ 0 {regularization parameter supplied by the user}
Require: Tstart > 0 {start temperature supplied by the user}
Require: Tmin > 0 {minimum temperature supplied by the user}
Require: 1 > Tfactor > 0 {The multiplicative constant for reducing the temperature

supplied by the user}
Require: 1 > Robjective > 0 {The ratio between the first and the current value of the

objective function supplied by the user}
x := (0, ..., 0)�

T := Tstart

Cstart := Cold := ||Ax − b||2 + γ · Φ(x)
repeat

for i = 0 to sizeof(x) do
choose a random position j in the vector x
x̃ := x
x̃[j] := 1 − x[j] {change the value of x in the position j}
Cnew := ||Ax̃ − b||2 + γ · Φ(x̃)
z := random()
ΔC := Cnew − Cold

if ΔC < 0 or exp(−ΔC/T ) > z , then
x := x̃ {accept changes}
Cold := Cnew

end if
end for
T := T ∗ Tfactor

until T > Tmin or Cold/Cstart > Robjective

Functional (4) can be represented by the sum of a convex and a concave
function

Jμ(x) = g(x) − hμ(x) , x ∈ [0, 1]n , (5)

where

g(x) := ‖Ax − b‖2 +
α

2

n∑

i

∑

j∈Qm
i

(xi − xj)2 , (6)

=: ‖Ax − b‖2 + α〈x, L�Lx〉 , (7)

hμ(x) := μ
1
2
〈x, x − e〉 . (8)
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As a consequence, (4) naturally belongs to the class of dc-programs (dc: difference
of convex functions) and thus provides a basis for algorithm design. It is shown
in [7] that the following algorithm converges to a binary local minimum of the
criterion Jμ:

Algorithm 2. DC Algorithm
Require: α ≥ 0 {regularization parameter supplied by the user}
Require: εin > 0 {termination criterion for the inner loop}
Require: εout > 0 {termination criterion for the outer loop}
Require: εμ > 0 {determines the increment μΔ by eqn. (9)}

x := (0, ..., 0)�

μ = 0
repeat

repeat
x̃ := x
x := argmin

x∈[0,1]n

�
g(x) − 〈x,∇hμ(x̃)〉�

until ‖x − x̃‖2 < εin

μ := μ + μΔ

until max
i

{min{xi, 1 − xi}} < εout

We point out that each x computed in the inner loop is the global optimum
of a convex optimization problem. Our current implementation involves [9] for
this step, but many other convex optimization techniques could be applied as
well.

Furthermore, while the decomposition (5) with (7) and (8) is the most natural
one, a range of alternative decompositions of the functional Jμ are possible to
which algorithm 1 can be applied. We refer to [8] for further details.

4 Evaluation

4.1 Data Sets

For evaluation purposes both reconstruction algorithms were tested on the same
data set of binary images. The images are software phantoms consisting of dis-
cretized versions of geometrical objects like circles, ellipses, etc. – see Fig. 2.

For each phantom, the image reconstruction problem (1) was compiled by
taking parallel projections from different directions. The number p of projections
ranged between 2, 3, 5, and 6. For p ∈ {2, 3, 5}, directions were uniformly chosen
within [0◦, 90◦], and within [0◦, 150◦] for p = 6. For each direction, the number
of measurements was 96 for phantom 1 and 384 for phantom 2 and 3.

In addition to noiseless projection data, we also used noisy data for the evalua-
tion. To this end, the projection data were superimposed by noise with Gaussian
distribution N (0, σ) , σ ∈ {0.5, 1.5, 5}. Negative values that may rarely be gen-
erated in this way, do not make sense physically and were clipped to the value
zero.
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Phantom 1 Phantom 2 Phantom 3

Fig. 2. Phantom images of size 64 × 64, 256 × 256, and 256 × 256 used for the exper-
imental evaluation

4.2 Performance Measures

Let x∗ be the ground truth image and x be a solution to the reconstruction
problem (1) computed by either optimization algorithm. We use the following
error measures for a quantitative evaluation:

E1(x) := ‖Ax − b‖2 ,

E2(x) :=
1∑n

i=1 xi
‖x − x∗‖1 .

For interpreting the corresponding numerical results in the tables below, readers
should keep in mind that these two measures scale quite differently. While a
single pixel error results in a change of E1 of about 101, say, the order of change
of E2 will be 10−2 only.

4.3 Parameter Settings

To compare both approaches numerically, we used a fixed parameter set for each
reconstruction algorithm. These values were used throughout all experiments.

Simulated Annealing Algorithm:

γ = 14.0
Tstart = 4.0

Tmin = 10−14

Tfactor = 0.97
Robjective = 0.00001

DC Algorithm:

α = 0.25
εin = 0.1

εout = 0.01
εμ = 10
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Projections Algorithm Phantom 1 Phantom 2 Phantom 3
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Fig. 3. The phantom images reconstructed from noise free projections (p = 2, 5, 6)

The μ−increment was computed by evaluating the following equation

μΔ :=
εμn1/2λmin (Q)

‖x − 1
2e‖ , Q := A�A + αL�L . (9)
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Projections Algorithm Phantom 1 Phantom 2 Phantom 3
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Fig. 4. The phantom images reconstructed from projections (p = 2, 5, 6) with additive
5 % noise

Here, x denotes the solution of the very first inner loop for μ = 0, and λmin

is the smallest eigen value of the matrix Q that can be computed offline and
beforehand. For details and an interpretation of (9), we refer to [8].
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5 Results

The aim of the experiments was to make a comparison between the two re-
construction methods. Both methods used the same input projections. Also the
same formulas were applied for measuring the errors.

We computed the reconstruction images for phantoms 1-3 from 2, 3, 5, and 6
projections with and without additive noise. Figure 3 shows the reconstruction
results in the case of noise-free projections (the reconstructions from 3 projec-
tions are omitted, because of the lack of space). From all images reconstructed
from noisy projections we present here only those having 5 % additive noise (see
Fig. 4). The cases of 0.5 % and 1.5 % additive errors show something similar
behavior).

The tables 1-3 contain the error values of the measures E1(x) and E2(x)
for all reconstruction scenarios and for both algorithms. Although the same
experiments were repeated with 0 %, 0.5 %, 1.5 %, and 5 % additive noise, we
present here all the tables except the case 0.5 % (which gave similar results as
in the case of 0 %).

Table 1. The error values E1(x)/E2(x) measured on the reconstructed images in noise
free case

Projections Algorithm Phantom 1 Phantom 2 Phantom 3

2
DC 3.464/0.537 6.782/0.835 5.477/1.108
SA 8.173/0.480 15.870/0.841 16.901/1.198

3
DC 0.000/0.000 8.351/0.471 7.804/0.751
SA 6.779/0.020 19.028/0.524 20.453/0.882

5
DC 0.000/0.000 0.005/0.000 14.761/0.545
SA 0.000/0.000 9.040/0.001 26.478/0.537

6
DC 0.000/0.000 0.005/0.000 0.004/0.000
SA 0.000/0.000 10.134/0.001 9.632/0.001

Table 2. The error values E1(x)/E2(x) measured on the reconstructed images in the
case of 1.5 % additive noise

Projections Algorithm Phantom 1 Phantom 2 Phantom 3

2
DC 9.708/0.492 21.375/0.829 21.101/1.181
SA 12.707/0.442 26.854/0.853 26.391/1.188

3
DC 11.892/0.080 24.024/0.489 23.414/0.761
SA 15.993/0.093 31.156/0.565 30.878/0.918

5
DC 19.020/0.080 31.135/0.026 29.182/0.551
SA 23.323/0.059 41.052/0.021 39.057/0.536

6
DC 18.795/0.102 31.298/0.034 33.203/0.045
SA 25.324/0.058 45.537/0.020 43.371/0.042
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Table 3. The error values E1(x)/E2(x) measured on the reconstructed images in the
case of 5 % additive noise

Projections Algorithm Phantom 1 Phantom 2 Phantom 3

2
DC 25.599/0.479 59.701/0.857 59.270/1.160
SA 28.633/0.519 63.004/0.839 62.437/1.162

3
DC 27.276/0.305 68.470/0.525 68.802/0.798
SA 31.936/0.295 73.966/0.563 73.522/0.903

5
DC 44.607/0.292 82.858/0.114 80.945/0.589
SA 48.423/0.265 91.049/0.103 87.514/0.597

6
DC 47.855/0.342 86.354/0.123 86.269/0.151
SA 53.585/0.287 98.575/0.102 95.214/0.145

6 Discussion

Both algorithm perform very similar on the tested reconstruction problems. Con-
sider first the noise free reconstructions. The methods were able to reconstruct
Phantom 1 from 3 or more projections. Phantom 2 was more difficult, 5 or more
projections are necessary for the almost perfect reconstruction. The most difficult
object was Phantom 3, it needs 6 projections for a good quality reconstruction.

The DC method gives smaller errors in almost all cases in Table 1. It is
interesting that the measure E1(x) was smaller for DC than SA in every cases.
The reason can be explained as follows. E1(x) measures the differences between
the input projections (b) and the projections of the reconstructed object (Ax).
For this reason E1(x) takes into account only the projections and not the original
object. (That is, E1(x) can be very small even if the object x is far from the
original one.) Our results shows that the difference between the projections is
not so strongly weighted in the objective function of SA (2). At the same time
SA reaches similarly low values of E2(x) as DC does.

Consider now the results of noisy projections. It is clear that DC gives again
better E1(x) values. The differences in the E2(x) values are small, if we have 5
or more projections then SA seems to give solutions being nearer to the original
object.

7 Conclusion

Summarizing the results we can say that there is no huge difference between the
qualities of the reconstructed images of the two methods.
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