
EPiC Series in Computing

Volume 48, 2017, Pages 65–74

ARCH17. 4th International Workshop on Applied
Verification of Continuous and Hybrid Systems

A Benchmark for Component-based

Hybrid Systems Safety Verification∗

(Benchmark Proposal)

Andreas Müller1, Stefan Mitsch2, Werner Retschitzegger1, Wieland Schwinger1,

and André Platzer2

1 Department of Cooperative Information Systems
Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria

{andreas.mueller,wieland.schwinger,werner.retschitzegger}@jku.at
2 Computer Science Department

Carnegie Mellon University, Pittsburgh PA 15213, USA
{smitsch,aplatzer}@cs.cmu.edu

Abstract

At scale, formal verification of hybrid systems is challenging, but a potential remedy
is the observation that systems often come with a number of natural components with
certain local responsibilities. Ideally, such a compartmentalization into more manageable
components also translates to hybrid systems verification, so that safety properties about
the whole system can be derived from local verification results. We propose a benchmark
consisting of a sequence of three case studies, where components interact to achieve system
safety. The baseline for the benchmark is the verification effort from a monolithic fashion
(i.e., the entire system without splitting it into components). We describe how to split the
system models used in these case studies into components with local responsibilities, and
what is expected about their interaction to guarantee system safety. The benchmark can be
used to assess the performance, automation, and verification features of component-based
verification approaches.

∗Work partly funded by the Austrian Science Fund (FWF) P28187-N31. This research was sponsored by
the AFOSR under grant number FA9550-16-1-0288. The views and conclusions contained in this document are
those of the author and should not be interpreted as representing the official policies, either expressed or implied,
of any sponsoring institution, the U.S. government or any other entity.

G. Frehse and M. Althoff (eds.), ARCH17 (EPiC Series in Computing, vol. 48), pp. 65–74

Component-based CPS Verification Müller, Mitsch, Retschitzegger, Schwinger, Platzer

System

(Component A ∥ Component B)

System Proof

System Contract

(Contract A ∧ Contract B)

Component A

Proof A

Contract A

Component B

Contract B

Proof B

∧
∥

System Contract

System

?
External

Behavior

Internal

Behavior

Formal

Verification

Monolithic Component-based

Figure 1: Monolithic verification combines systems before analysis, component-based verifica-
tion derives system safety from component proofs

1 Introduction

As the complexity of hybrid system models increases, monolithic modeling and subsequent
monolithic analysis techniques become increasingly challenging. However, since complex sys-
tems are typically composed of multiple interacting subsystems, component-based modeling can
help alleviate the challenges. A proper verification benefit requires splitting the analysis into iso-
lated questions about subsystems and their interaction. The ultimate goal is to verify properties
of the entire system, without analyzing it as a whole, but by mere analysis of its components,
cf. Fig. 1.

Since components in a system typically expose only some aspects of their internal behavior
upon interaction, contracts can be used to make the relevant aspects of the individual behav-
ior of components available in the system. A contract describes the (output) guarantees of a
component under certain (input) assumptions. When composing components to form a system,
compatibility of their interaction and communication is required, i.e., the assumptions of a com-
ponent must be satisfied from the guarantees of another component providing input. Aspects
such as communication delay and sensor uncertainty have to be considered. Component-based
safety verification approaches (e.g., [5, 6]) verify safety properties about a system from just
local contract compliance and compatibility of its components.

Especially in the context of hybrid I/O automata, a contract is often termed as an abstraction

of a component. Such component-based safety verification approaches usually state that, given
abstractions of multiple components (e. g., their contract), the composition of these abstrac-
tions is again an abstraction of the composition of the original components. Compositionality
with respect to an abstraction is the central part of component-based verification. Common
abstractions include labeled transition systems as abstractions for hybrid I/O automata (e. g.,
[1]) and first-order logic formulas as contracts for hybrid programs (e. g., [5, 6]).

In this paper, we propose a benchmark for component-based hybrid systems safety verifi-
cation approaches. The benchmark comprises three case studies that were originally modeled
and verified in a monolithic way, but that can be split into components easily. The first case
study is a robot collision avoidance system inspired by [4]. For component-based analysis, the
system is split into a robot component and a moving obstacle component: The robot drives in
two-dimensional space and measures the position of the obstacle to avoid collision. The second
case study is based on the European Train Control system presented in [9]. A radio-block
controller component issues desired target speed and track permission to a train component,

66

Component-based CPS Verification Müller, Mitsch, Retschitzegger, Schwinger, Platzer

𝑥 𝑡𝑋 𝑡
(a) Global contract: bounded re-
gion

𝑥 𝑡 𝑡
(b) Change contract: bounded
magnitude of change

𝑥 𝑡 𝑡
(c) Delay contracts: bounded rate
of change

Figure 2: Bounds on the interaction between components expressible in contracts

which must stay inside the permitted area on the track. The third case study is an adaptive
cruise control system inspired by [3]. A leader car communicates its position and speed to a
follower car, which must guarantee to not collide with the leader. We describe all three case
studies using differential dynamic logic (dL), see [7, 8] for syntax and semantics.

The benchmark case studies are designed to asses

• the performance and degree of automation in comparison to monolithic analysis [3, 4, 9]
and in comparison to our own component-based experiments [6], and

• the practical applicability of component-based verification approaches: continuous dy-
namics range from simple linear straight-line driving to non-linear curved trajectories;
physical components interact with other physical entities (e. g., robot interacts with ob-
stacle) or with purely virtual entities (e. g., train interacts with radio-block controller);
interaction ranges from ideal-world loss-less and instantaneous interaction to sensor un-
certainty to communication delay.

2 Contracts and Component Interaction

When working with component-based hybrid system verification, two major challenges arise:
handling local component contracts and dealing with component interaction and communica-
tion. In a monolithic system, these interactions are baked into the system model, so a system
contract defines properties of the initial states and overall system safety: starting from the ini-
tial state, all runs of the system stay in safe states. When working with components, however,
a local contract for each component together with a way of handling component interaction is
needed, and might include assumptions and guarantees about the communication and inter-
action between components. For example, a contract might restrict a vehicle’s movement to
prevent it from teleporting, or specify the acceptable degree of input sensor uncertainty.

Contracts. Local component contracts ensure local safety properties of a single component in
isolation. They define assumptions and guarantees of a component regarding the interaction and
communication with its environment. The benchmarks in this paper scale contract complexity
as follows, cf. Fig. 2:

Global contracts restrict values to globally known (symbolic) regions, cf. Fig. 2a. For in-
stance, a robot might be confined in a known, fixed area, e. g., the robot’s position must
always be in a fixed interval (e. g., −9 ≤ x ≤ X, where X is a symbolic constant).

67

Component-based CPS Verification Müller, Mitsch, Retschitzegger, Schwinger, Platzer

Out In

(a) Instantaneous, loss-less com-
munication

Out In

(b) Sensor uncertainty

Out In

(c) Communication delay

Figure 3: Communication between components

Change contracts restrict the magnitude of change (e. g., relate a value from the last control
cycle or a previously communicated value with the current value), cf. Fig. 2b. For instance,
a robot may guarantee to not request sudden changes in the sense that the current request
x and the previous request x− are not too far apart (e. g., −9 ≤ x− x− ≤ X).

Delay contracts restrict the rate of change cf. Fig. 2c. For instance, a robot may guarantee to
change its position according to speed, so the current position x and the previous position
x− are related by time t as in −9 · t ≤ x− x− ≤ X · t.

Communication. Communication and interaction between components can be subject to
uncertainty and delay, cf. Fig. 3:

Instantaneous, loss-less communication is often used as a first approximation of sensing
and communication, and can be modeled by a direct assignment of variables, e. g., x̂ := x,
cf. Fig. 3a.

Sensor uncertainty occurs, since sensor measurements often provide slightly off approxima-
tions of the actual values, cf. Fig. 3b. Even though the actual error might be unknown,
the maximum error is often bounded (e. g., according to a sensor specification). Sensor
uncertainty could, for instance, be modeled using a non-deterministically chosen error
value λ (λ := ∗ means non-deterministically assigns any real value to λ), bounded by the
maximum error Λ (the test ? |λ| ≤ Λ ensures that the value of λ is between −Λ and Λ),
which distorts the communicated value, so λ := ∗; ? |λ| ≤ Λ; x̂ := x+ λ.

Communication delay results in accumulated error, e. g., a distance sensor in a car may
report slightly outdated values, cf. Fig. 3c. Their error depends on speed and time delay.

The complexity of the benchmarks in the next section can be scaled according to these
contract and communication options.

3 Benchmark

In this section, we present the case studies in more detail, using hybrid programs and differential
dynamic logic [7, 8] in the paper, and KeYmaera X [2] syntax in the accompanying models. In
general, each system consists of a controller followed by a plant, which are executed arbitrarily
often. The control decisions steer continuous evolution in the plant. Here an ODE (x′ = θ&H)
describes a continuous evolution of x (x′ denotes derivation with respect to the internal system

time τ , i. e., ∂x(τ)
∂τ

) within the evolution domain H. For instance, a vehicle choosing velocity v

as its control decision then moves position x according to the ODE x′ = v. After some time,
the controller can revise its decision, e. g., modeled by executing the controller and the plant
sequentially in a loop, when control decisions have instantaneous effect as commonly assumed
in hybrid systems models.

68

Component-based CPS Verification Müller, Mitsch, Retschitzegger, Schwinger, Platzer

Model 1 Obstacle Component

ctrlr ≡ dxo := ∗; dyo := ∗; ?SAFEobs (1)

plantr ≡ t− := t; (t′ = 1
︸ ︷︷ ︸
∂t(τ)
∂τ

=1

, x′

o = dxo
︸ ︷︷ ︸
∂xo(τ)

∂τ
=dxo

, y′o = dyo
︸ ︷︷ ︸
∂yo(τ)

∂τ
=dyo

& t− t− ≤ ε) (2)

When composing components, their controllers and plants are composed. As time passes
simultaneously in all components, the plants must be composed truly in parallel. We assume
that control statements take instantaneous effect, but their execution order is crucial. As the
actual order in which the component controllers are executed is unknown, we choose the or-
der of controller executions non-deterministically, e. g., for two component controllers: execute
ctrl1 followed by ctrl2 (; represents sequential composition), or ctrl2 followed by ctrl1, i. e.,
ctrl1; ctrl2 ∪ ctrl2; ctrl1 (∪ represents non-deterministic choice). A system expert might fur-
thermore have additional insights into the system and might thus know in which order the
components are actually executed. The original monolithic models of all three case studies
were modeled with specific controller orderings.

Throughout the models, we use x− to refer to the previous value of x (e. g., the value of
x from the previous controller execution, or a previously sensed value). We use x̂ to refer to
component inputs, such as sensor measurements or values transmitted to the component.

In all three case studies, the overall safety property of the monolithic system is known. The
safety properties for the components may vary with a specific component-based verification
approach. Here, we present ctrl and plant for each component, together with a description of
potential assumptions. Furthermore, we suggest possible local component safety properties for
loss-less and instantaneous communication.

3.1 Robot Collision Avoidance

Inspired by [4], in the Robot Collision Avoidance case study, a robot moves on a plane along
curved trajectories. It must avoid (active) collision with a moving obstacle.

System Contract. The overall safety property ensures that the robot’s position never coin-
cides with the obstacle’s position while the robot moves, i. e., sr > 0 → ‖ (xr, yr)−(xo, yo) ‖ > 0.
The responsibility of the robot is to stop before collision occurs. It assumes that the obstacle
obeys a speed limit.

Obstacle. The obstacle (cf. Model 1), e. g., a stationary wall or a moving person, is delib-
erately liberal to allow for many concrete implementations. For the sake of simplicity and
following [4], the obstacle moves arbitrarily in straight lines by choosing velocity and direction
(dxo, dyo), such that the property SAFEobs is satisfied, cf. (1). The plant stores the plant start
time, measures duration t′ = 1 and moves the obstacle according to velocity and direction
(x′

o = dxo, y
′

o = dyo), but no longer than t− t− ≤ ε time to ensure that the controller can react
at least once every ε time, cf. (2).

The obstacle’s maximum speed is assumed non-negative S ≥ 0 and it has positive maximum
plant duration ε > 0. The property SAFEobs is used to check if the chosen direction is safe; it
scales with the type of contract as follows:

69

Component-based CPS Verification Müller, Mitsch, Retschitzegger, Schwinger, Platzer

Model 2 Robot Component

ctrlr ≡ { ar :=−B } (3)

∪ { ?sr = 0; ar := 0; w := 0 } (4)

∪ { ar := ∗; ?−B ≤ ar ≤ A; (5)

k := ∗; w := ∗; ?sr · k = w; ?SAFErob } (6)

plantr ≡ t− := t; (t′ = 1, x′

r = sr · dxr, y
′

r = sr · dyr, (7)

dx′

r = −w · dyr, dy
′

r = w · dxr, s
′

r = ar, w
′ = ar · k & t− t− ≤ ε ∧ sr ≥ 0) (8)

Global contract. The obstacle stays inside a fixed region bounded by Xo and Yo, i. e., xo ≤
Xo∧yo ≤ Yo. The property SAFEobs ensures that the obstacle will not leave the designated
region until the next controller run, i. e. SAFEobs ≡ xo + dxoε ≤ Xo ∧ yo + dyoε ≤ Yo.

Delay contract. The obstacle guarantees to stay inside a circle around its previous position,
with radius according to the duration of motion. In other words, it guarantees to obey
the maximum speed S. The resulting property is ‖(xo, yo)− (x−

o , y
−

o)‖ ≤ S · (t− t−).

In this case, the property SAFEobs ensures that the obstacle’s velocity never exceeds the
maximum velocity, i. e., SAFEobs ≡ dx2

o + dy2o ≤ S2.

Robot. The robot (cf. Model 2) is responsible for collision avoidance. It can either brake
on the current curve (ar := ∗, cf. (3)), remain stopped ar := 0 without steering w := 0 if
it is stopped already (cf. (4)) or choose a new safe curve (cf. (5)–(6)). The model allows
non-deterministic choice between these control decisions, but specifies conditions that prevent
certain choices in certain situations. When selecting a new curve, the controller first chooses
any acceleration ar := ∗ between maximum braking and maximum acceleration ?−B ≤ ar ≤ A,
cf. (5). Then it chooses any steering k := ∗ and the appropriate rotational velocity w := ∗ that
fits to steering and speed as ensured by the test ?sr ·k = w. It only executes these choices when
SAFErob indicates that motion is safe until the next control cycle, cf. (6). In (7), first the current
time is stored. Then, the plant (7)–(8) models curved trajectories with a non-linear differential
equation dx′

r = −w · dyr, dy
′

r = w · dxr, so the direction vector rotates. Position follows from
speed and direction x′

r = sr ·dxr, y
′

r = sr ·dyr. Speed in turn follows from acceleration s′r = ar,
with rotational speed w′ = ar ·k changing to preserve the motion equation sr ·k = w. The plant
duration is restricted by ε to guarantee controller runs at least every ε time units. Furthermore,
negative speeds are not allowed.

Again, SAFErob scales with the contract:

Global contract. The obstacle is assumed to start inside a fixed area (x̂o ≤ Xo ∧ ŷo ≤ Yo),
while the robot starts outside this area (xr > Xo∨yr > Yo), and stays outside, even when

accelerating: SAFErob ≡ max
(
(xr −Xo), (yr − Yo)

)
>

s2r
2·B +

(
A
B
+ 1

)
·
(
A
2 · ε2 + ε · sr

)
.

Delay contract. The obstacle must be far enough away initially to guarantee that the robot
can stop from its initial velocity before a collision occurs, i. e., ‖(xr, yr) − (x̂o, ŷo)‖ >
s2r
2·B + S · sr

B
. Likewise, SAFErob only allows acceleration if the distance to the obstacle is

safe: SAFErob ≡ ‖(xr, yr)− (x̂o, ŷo)‖ >
s2r
2·B + S · sr

B
+
(
A
B
+ 1

)
·
(
A
2 · ε2 + ε · (sr + S)

)
.

70

Component-based CPS Verification Müller, Mitsch, Retschitzegger, Schwinger, Platzer

Model 3 RBC Component

ctrlrbc ≡ {s := brake} (9)

∪ {s := drive; m := ∗; d := ∗; vdes := ∗; (10)

?d ≥ 0 ∧ vdes ≥ 0 ∧ (d−)2 − d2 ≤ 2 ·B ·
(
m−m−

)
} (11)

plantrbc ≡ skip (12)

Further variations on SAFErob to account for sensor uncertainty, together with arithmetic
simplifications (e. g., over-approximate Euclidian distance ‖(xr, yr)−(x̂o, ŷo)‖ with infinity norm
‖(xr, yr)− (x̂o, ŷo)‖∞) are listed in [4].

The robot assumes positive maximum breaking power B > 0, non-negative maximum ac-
celeration A ≥ 0, non-negative maximum speed S ≥ 0 and positive maximum plant duration
ε > 0. Its direction vector is normalized, i. e., dx2

r + dy2r = 1 and initial speed is assumed to be
non-negative, i. e., sr ≥ 0.

Since in this example the obstacle is allowed to be malicious, it is the robot’s responsibility
to ensure system safety and hence the local safety property of the robot resembles the desired
global system safety property, i. e., sr > 0 → ‖(xr, yr)− (x̂o, ŷo)‖ > 0.

3.2 European Train Control System

Inspired by [9], the European Train Control System (ETCS) case study comprises a radio-block
controller (RBC, cf. Model 3) that sends commands to a train (cf. Model 4).

System Contract. The RBC communicates a track permission to the train: inside the per-
mitted area m, the train should not exceed desired speed vdes; when exiting the area, the train
must obey a strict speed limit d. The RBC may also request emergency braking. The system
guarantees that the train moves at most with velocity v ≤ d when its position z is outside the
permitted area, i. e., z ≥ m → v ≤ d.

Radio-Block Controller RBC. The RBC either requests emergency braking (s := brake)
(9) or permits driving (s := drive) in (10). Together with the driving permission, the RBC
chooses the end of the track permission m, the speed limit d for exiting and the speed advice
vdes for driving inside the permitted area. The maximum exit speed d and the speed advice
vdes are non-negative and chosen such that the train can follow, i. e., exit m with at most speed
d when applying brakes B, cf. (11). The RBC is a controller without plant.

The RBC initializes the constants brake = 1 and drive = 0. Initially, the state is assumed
to be s = drive with initial desired speed vdes = 0. The maximum exit speed is assumed to be
non-negative d >= 0, and the maximum braking power is assumed to be positive B > 0.

The contract of the RBC guarantees that it either requests emergency braking with
unchanged maximum exit speed d and unchanged track permission area m, or the state
is drive and the new values for maximum exit speed and movement authority are cho-
sen such that the train can obey the exit speed, i. e., (s = brake ∧m− = m ∧ d− = d) ∨
(
s = drive ∧ d ≥ 0 ∧ vdes ≥ 0 ∧ (d−)2 − d2 ≤ 2 ·B · (m−m−)

)
. This property requires a change

contract as it includes previous values of several variables.

71

Component-based CPS Verification Müller, Mitsch, Retschitzegger, Schwinger, Platzer

Model 4 Train Component

ctrl tr ≡ { { ?v ≤ v̂des; a := ∗; ?−B ≤ a ≤ A } (13)

∪ { ?v ≥ v̂des; a := ∗; ?−B ≤ a ≤ 0 } }; (14)

SB :=
v2 − d̂2

2 ·B
+

(
A

B
+ 1

)

·

(
A

2
· ε2 + ε · v

)

; (15)

{ { ?m̂− z ≤ SB ∨ ŝ = brake; a :=−B } (16)

∪ { ?¬ (m̂− z ≤ SB ∨ ŝ = brake) } } (17)

plant tr ≡ t− := t; (t′ = 1, z′ = v, v′ = a & t− t− ≤ ε ∧ v ≥ 0) (18)

Train. In normal operation, the train performs velocity control to follow vdes. The train
engages brakes in case it receives an emergency braking request or when it is about to exit the
permitted track area.

If the desired maximum speed vdes is not yet exceeded (v ≤ v̂des), the train chooses any
acceleration a := ∗ in the braking and acceleration limits −B ≤ a ≤ A, cf. (13). If the train is
too fast (?v ≥ v̂des), it may slow down (a := ∗; ? − B ≤ a ≤ 0), cf. (14). Then, the distance
SB required for the train to obey the maximum exit speed d is calculated in (15). In (16),
the train engages brakes (a := −B) if required by this distance or requested from the RBC
(?m̂ − z ≤ SB ∨ ŝ = brake). Otherwise, the chosen acceleration is executed, cf. (17). In the
plant, the train moves according to the chosen acceleration, restricted by the maximum plant
duration ε. Furthermore, velocity must remain non-negative, cf (18).

Constants agree with the RBC, so brake = 1, drive = 0, ŝ = drive, the train has working
brakes B > 0 and a functional engine A ≥ 0, and maximum control cycle duration ε > 0.
Initially the train is assumed to be stopped inside the permitted area z ≤ m̂, with desired
speed v̂des = 0, initial velocity v = 0, and maximum exiting speed d̂ = 0.

The train assumes to only receive commands that are compliant with the RBC contract. It
guarantees to exit the permitted track area no faster than allowed, i. e., z ≥ m̂ → v ≤ d̂.

3.3 Adaptive Cruise Control

Based on [3], a follower car (cf. Model 6) uses adaptive cruise control on a highway to drive
safely behind a leader car (cf. Model 5), neither colliding with nor overtaking the leader.

System Contract. The system contract guarantees that the follower remains behind the
leader, i. e., xf < xl . The leader is driving forward, applying at most braking power B. The
follower reads the leader’s position and velocity and guarantees to stay safely behind.

Leader Car. The leader car (cf. Model 5) drives forward on a road modeled as a one-
dimensional straight line. The leader chooses any acceleration al := ∗ between the maximum
braking −B and maximum acceleration A, cf. (19). In the plant, the leader car moves according
to the chosen acceleration, restricted by ε and at most as long as its velocity remains non-
negative, cf. (20).

72

Component-based CPS Verification Müller, Mitsch, Retschitzegger, Schwinger, Platzer

Model 5 Leader Component

ctrl l ≡ al := ∗; ?−B ≤ al ≤ A (19)

plant l ≡ t− := t; (t′ = 1, x′

l = vl , v
′

l = al & t− t− ≤ ε ∧ vl ≥ 0) (20)

The leader assumes positive maximum braking power B > 0, non-negative maximum accel-
eration A ≥ 0, positive maximum plant duration ε > 0, and a non-negative initial speed vl ≥ 0.
The leader’s contract guarantees non-negative velocity vl ≥ 0 with a rate of change according to
the braking and acceleration bounds, i. e., −B ·(t− t−) ≤ vl−v−l ≤ A·(t− t−). In turn, position

is guaranteed to change at most with the mean velocity
vl+v

−

l

2 , so xl − x−

l ≤
vl+v

−

l

2 · (t− t−).

Follower Car. The follower car (cf. Model 6) is responsible for staying safely behind the
leader. The follower chooses non-deterministically to either brake, remain stopped or accelerate,
similar to the robot in Section 3.1. Braking is always allowed, cf. (21). If the car is stopped it
may stay stopped, cf. (22). If the follower can accelerate safely, i. e., without collision with the
leader until the next control cycle (cf. (23)), it chooses any acceleration in −B ≤ af ≤ A, cf.
(24). In the plant, the follower car moves according to the chosen acceleration, restricted by ε

and at most as long as its velocity remains non-negative, cf. (25).
The follower may assume positive maximum braking power B > 0, non-negative maximum

acceleration A ≥ 0, positive maximum plant duration ε > 0, and a positive initial speed vf ≥ 0.
The follower is assumed to start behind the leader (xf < x̂l) and the leader is assumed to not
move backwards (0 ≤ v̂l). Additionally, the follower must be far enough behind the leader, such

that it can stop to avoid collision with the leader, i. e.,
xf +v2

f

2·B <
x̂l+v̂2

l

2·B . If the leader complies
with its contract, the follower guarantees to stay behind the leader, i. e., xf < x̂l .

Model 6 Follower Component

ctrl f ≡ { af :=−B } (21)

∪ { ?vf = 0; af := 0 } (22)

∪ { ?
xf + v2f

2 ·B
+

(
A

B
+ 1

)

·

(
A

2
· ε2 + ε · vf

)

<
x̂l + v̂2l
2 ·B

; (23)

af := ∗; ?−B ≤ af ≤ A } (24)

plant f ≡ t− := t; (t′ = 1, x′

f = vf , v
′

f = af & t− t− ≤ ε ∧ vf ≥ 0) (25)

4 Experiments

The KeYmaera X models and contracts described in this paper are attached to the benchmark
and organized into one folder per case study. Each case study folder contains two compo-
nent models and a monolithic model resulting from applying the parallel composition of [6].
The robot collision avoidance case study in the robix folder contains the robot component
robot.kyx, the obstacle component obstacle.kyx and the monolithic model sys-robix.kyx.

73

Component-based CPS Verification Müller, Mitsch, Retschitzegger, Schwinger, Platzer

The European train control system case study in the etcs folder contains the train component
train.kyx, the RBC component rbc.kyx and the monolithic model sys-etcs.kyx. The adap-
tive cruise control case study in the llc folder contains the leader component leader.kyx, the
follower component follower.kyx and the monolithic model sys-llc.kyx.

We applied component-based hybrid systems theorem proving [5, 6] to the components
of all three case studies and verified their correctness when using loss-less and instantaneous
communication between the components, which can serve as a benchmark baseline together
with the monolithic case studies [3, 4, 9].

As a composition operation, the plants were joined in parallel, whereas the controllers were
executed sequentially in arbitrary non-deterministic order. For composition, [6] requires con-
necting inputs of one component to outputs of another component (e. g., the obstacle position
was connected to the obstacle sensor in the robot). If the connected components are compat-
ible, [6, Theorem 1] guarantees that composing two provably contract-compliant components
result in a joined system property. Components are compatible, if the output guarantees of
one component are at least as strict as the respective input assumptions of the connected
second component. Detailed results, such as proof durations and proof script size, of our ex-
periments with all three examples can be found in [6]. In summary, our results indicate that
component-based verification can lead to performance improvements and smaller user-provided
proof scripts.

References

[1] Goran Frehse, Zhi Han, and B. Krogh. Assume-guarantee reasoning for hybrid I/O-automata by
over-approximation of continuous interaction. In 43rd IEEE Conference on Decision and Control,
CDC, volume 1, pages 479–484 Vol.1, 2004.

[2] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer. KeYmaera X:
An axiomatic tactical theorem prover for hybrid systems. In Amy P. Felty and Aart Middeldorp,
editors, 25th International Conference on Automated Deduction, Proceedings, volume 9195 of LNCS,
pages 527–538. Springer, 2015.

[3] Sarah M. Loos, André Platzer, and Ligia Nistor. Adaptive cruise control: Hybrid, distributed,
and now formally verified. In Michael J. Butler and Wolfram Schulte, editors, 17th International
Symposium on Formal Methods, volume 6664 of LNCS, pages 42–56. Springer, 2011.

[4] Stefan Mitsch, Khalil Ghorbal, and André Platzer. On provably safe obstacle avoidance for au-
tonomous robotic ground vehicles. In Paul Newman, Dieter Fox, and David Hsu, editors, Robotics:
Science and Systems IX, 2013.

[5] Andreas Müller, Stefan Mitsch, Werner Retschitzegger, Wieland Schwinger, and André Platzer. A
component-based approach to hybrid systems safety verification. In Erika Ábrahám and Marieke
Huisman, editors, Integrated Formal Methods - 12th International Conference, Proceedings, volume
9681 of LNCS, pages 441–456. Springer, 2016.

[6] Andreas Müller, Stefan Mitsch, Werner Retschitzegger, Wieland Schwinger, and André Platzer.
Change and delay contracts for hybrid system component verification. In 20th International Con-
ference on Fundamental Approaches to Software Engineering (FASE), 2017 (to appear).

[7] André Platzer. The complete proof theory of hybrid systems. In LICS, pages 541–550. IEEE, 2012.

[8] André Platzer. A complete uniform substitution calculus for differential dynamic logic. J. Autom.
Reas., pages 1–47, 2016.

[9] André Platzer and Jan-David Quesel. European train control system: A case study in formal
verification. In Karin K. Breitman and Ana Cavalcanti, editors, Formal Methods and Software
Engineering, volume 5885 of LNCS, pages 246–265. Springer, 2009.

74

	Introduction
	Contracts and Component Interaction
	Benchmark
	Robot Collision Avoidance
	European Train Control System
	Adaptive Cruise Control

	Experiments

