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SUMMARY

An important tool to evaluate the performance of a dose-finding design is the nonparametric optimal
benchmark that provides an upper bound on the performance of a design under a given scenario. A
fundamental assumption of the benchmark is that the investigator can arrange doses in a monotonically
increasing toxicity order. While the benchmark can be still applied to combination studies in which not all
dose combinations can be ordered, it does not account for the uncertainty in the ordering. In this article,
we propose a generalization of the benchmark that accounts for this uncertainty and, as a result, provides
a sharper upper bound on the performance. The benchmark assesses how probable the occurrence of each
ordering is, given the complete information about each patient. The proposed approach can be applied to
trials with an arbitrary number of endpoints with discrete or continuous distributions. We illustrate the
utility of the benchmark using recently proposed dose-finding designs for Phase I combination trials with
a binary toxicity endpoint and Phase I/II combination trials with binary toxicity and continuous efficacy
endpoints.
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1. INTRODUCTION

There has been growing interest in combination dose-finding trials of several agents administered simulta-
neously. Whilst coadministration can induce improved activity, designing such trials is more challenging
compared to single-agent ones. Many single-agent dose-finding designs are based on the assumption that
toxicity increases monotonically with the dose. However, in a combination study, there are combinations
that cannot be ordered with respect to increasing toxicity.As a result, many novel model-based (see reviews
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by Riviere and others, 2015; Hirakawa and others, 2015, and references therein) and curve-free methods
(e.g. Mozgunov and Jaki, 2019, 2020) were proposed to relax this assumption. Similarly to single-agent
designs, the performance of these methods is conventionally assessed by simulation studies. These stud-
ies use combination-toxicity relationships, scenarios, which are chosen by the researchers themselves.
This adds subjectivity to the assessment as the performance depends on the chosen scenario. The prob-
lem of selecting the scenarios is of relevance in dose-finding trials generally. To reduce the subjectivity,
O’Quigley and others (2002) proposed an evaluation tool, the nonparametric optimal benchmark, that
provides a scenario-specific evaluation of the performance in terms of the proportion of correct selections
(PCS) of single-agent designs. When no strong prior information is used, the benchmark provides the
highest PCS a design can achieve under the given simulation scenario. Occasionally, dose-finding meth-
ods can result in PCS that exceeds the PCS provided by the benchmark under certain scenarios. This is
known as super-efficiency (Paoletti and others, 2004) and might be an indication of the design favoring
particular doses (either due to the prior information or design specification) which the benchmark can
reveal.

The benchmark was proposed under the assumption of monotonically increasing toxicity which typi-
cally holds in single-agent trials. Whilst the original benchmark can be also applied to dose-finding studies
with unknown orderings (Mozgunov and others, 2020), the obtained upper bound for the PCS is expected
to be less sharp compared to the setting when the monotonicity assumption holds.

To illustrate this, consider a hypothetical setting of a dual-agent combination study without early
stopping. Assume that there are three increasing doses of agent A denoted by a1, a2, a3 and three increasing
doses of agent B denoted by b1, b2, b3. Denote the combination of two doses ak and bl by dkl where the first
index refers to the kth dose of agent A, and the second index refers to the lth dose of agent B. There are
nine drug combinations in the trial. Assume that the toxicity of combinations increases within each agent.
This corresponds to at least one of the subscripts in dkl increasing. However, some of the combinations
cannot be ordered, for example, it is unknown whether d12 is more or less toxic than d31 as the dose of A is
increased while the dose of B is decreased. Due to this uncertainty, there are 42 complete orderings of these
combinations (see Supplementary materials available at Biostatistics online) that satisfy the monotonicity
assumption within each agent. We will call the orderings satisfying this assumption the feasible orderings.
The term “complete” refers to the feasible orderings of all nine combinations with respect to increased
toxicity. The term “partial ordering” will refer to an ordered subset of combinations that could be arranged
in increasing toxicity order (Wages and others, 2011a).

Consider a binary toxicity endpoint—occurrence of dose-limiting toxicity (DLT). The toxicity of dkl is
characterized by toxicity probability pkl , k , l = 1, 2, 3. Suppose that the objective is to find the combination
with the toxicity probability closest to 30% and assume a sample size of n = 36 patients. We would like
to evaluate a design under the two scenarios given in Table 1.

The distance between the probabilities closest to the target is nearly the same under both scenarios,
although the locations of the target combinations are different. Under Scenario 1, the target combinations
are d12 and d21. Following the monotonicity assumption, one of these combinations must be in the second
position in any feasible complete ordering. Under Scenario 2, there are more possibilities of the location
of the target combinations. Combination d13 can be in the third, fourth, fifth, sixth, or seventh positions of
the complete orderings, while d22 can be in the fourth, fifth, and sixth positions (Table 6 in Supplementary
material available at Biostatistics online). Therefore, one can expect that it is more challenging to find
the target combinations under Scenario 2. However, the original benchmark (implemented by Wages and
Varhegyi, 2017) disregards the uncertainty in the ordering and treats these scenarios similarly providing
nearly the same PCS (Table 1).

In this article, we propose an extension of the benchmark for studies with unknown ordering. The novel
benchmark accounts for both the uncertainty in the target combination locations within each feasible
ordering and distribution of these orderings. We show that, compared to the original benchmark, the
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Table 1. Toxicity probabilities at each combination and corresponding proportions (in %) of each
combination selection by the original benchmark based on 104 replications under two combination-
toxicity scenarios with nine drug combinations. The target toxicity level and the selection of the
target combinations are in bold.

Toxicity probability

Drug B Drug B
Scenario 1 b1 b2 b3 Scenario 2 b1 b2 b3

Drug A
a1 0.15 0.30 0.45

Drug A
a1 0.05 0.15 0.30

a2 0.30 0.45 0.55 a2 0.15 0.30 0.45
a3 0.55 0.60 0.65 a3 0.45 0.55 0.60

Selection proportions
Drug B Drug B

Scenario 1 b1 b2 b3 Scenario 2 b1 b2 b3

Drug A
a1 12.0 36.5 7.3

Drug A
a1 0.0 5.9 36.2

a2 36.3 7.3 0.2 a2 6.0 36.7 7.2
a3 0.3 0.0 0.0 a3 7.4 0.5 0.0

proposal can provide a sharper bound on the performance of dose-finding designs relaxing monotonicity
assumption while capturing the whole distribution of selections. In contrast to the recent benchmark
proposal for dual-agent combination dose-finding trials by Guo and Liu (2018), the novel approach
uses the original concept of complete information by O’Quigley and others (2002), which assumes that
outcomes of each patient can be observed at all combinations. The benchmark, therefore, uses all available
information about each patient, while accounting for the fact that combinations that cannot be ordered
carry limited information about each other.

In line with extensions of the original benchmark to categorical and continuous endpoints (Cheung,
2014; Mozgunov and others, 2020), the proposal allows for an arbitrary number of endpoints having either
discrete or continuous distributions. We demonstrate how the novel benchmark can be applied to a Phase
I/II dual-agent combination study evaluating a binary toxicity endpoint and a Phase I/II combination study
with binary toxicity and continuous efficacy endpoints.

The rest of the manuscript proceeds as follows.We review the benchmark by O’Quigley and others (2002)
in Section 2. The construction of the benchmark for partial ordering in the combination setting with a
single binary endpoint is given in Section 3 and extended to trials with multiple endpoints in Section 4.
Section 5 demonstrates applications of the proposed benchmark before we conclude with a discussion.

2. THE BENCHMARK FOR SINGLE-AGENT STUDIES WITH BINARY ENDPOINT

Consider a Phase I clinical trial with a binary toxicity outcome, DLT or no DLT, n patients and M
increasing doses of a drug, c1, . . . , cM . Let Y (i)

j be a Bernoulli random variable taking value y(i)j = 0 if
patient i has experienced no DLT at dose cj and y(i)j = 1 otherwise. This distribution of Y (i)

j is characterized

by probability pj such that pj = P

(
Y (i)

j = 1
)

for j = 1, . . . , m and any i. The goal of the trial is to find

the maximum tolerated dose (MTD) defined as the dose having the probability of toxicity closest to the
target level, γ , typically between 20% and 35%.

The benchmark uses the concept of complete information. For a given patient, the complete information
consists of the vector of outcomes (DLT or no DLT) at all doses (in contrast to an actual trial, in which
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patients can only be assigned to one) assuming that p1, . . . , pm are known. Formally, the information
about the DLT of patient i at each dose is summarized in a single value, u(i) ∈ (0, 1), which is drawn
from a uniform distribution, U(0, 1), and is known as a toxicity profile of patient i. The variable u(i) is
transformed to response y(i)j = 0 for doses with pj < u(i) and to y(i)j = 1 otherwise. The procedure is
repeated for n patients, which results in the vector of responses for each dose level yj = (y(1)j , . . . , y(n)j ),
j = 1, . . . , M . Note that the procedure is not sequential—responses for previous patients are not required
to compute the complete information for the next ones. Therefore, there is no assignment criterion used by
the benchmark. Let R(yj, γ ) be a summary statistic for the dose cj, upon which the decision about the MTD

selection is based. For example, in many Phase I trials with binary outcomes, R(yj, γ ) =
∣∣∣

∑n
i=1 y(i)j

n −γ
∣∣∣ is a

conventional choice. Therefore, cj, for which R(yj, γ ) is minimized among all j = 1, . . . , M , is declared as
the MTD in a single trial. The procedure is repeated for Z simulated trials. For each dose, the proportion
of simulated trials that choose this dose as the MTD is computed. This proportion is the benchmark’s
estimate for the upper bounds of the PCS. Importantly, the benchmark is an evaluation tool and is not
obtainable in actual trials. It can however be used at the planning stage to evaluate the performance of a
dose-finding design.

3. BENCHMARK FOR PHASE I COMBINATION STUDIES WITH BINARY ENDPOINT

3.1. Setting

Using the notations above, consider a Phase I dual-agent trial with a1, . . . , aK doses of drug A, b1, . . . , bL

doses of drug B, their combinations dkl , and a binary toxicity outcome, DLT or no DLT. Similarly to the
single-agent setting, let Y (i)

kl be a Bernoulli random variable taking value y(i)kl = 0 if patient i has experienced
no DLT at combination dkl and y(i)kl = 1 otherwise, k = 1, . . . , K , l = 1, . . . , L. The distributions of Y (i)

kl are

characterized by probabilities pkl = P

(
Y (i)

kl = 1|dkl

)
that increase with the dose of each compound. The

goal is to find the maximum tolerated combination (MTC), the combination corresponding to a risk of
toxicity closest to the target value γ . We use the following example throughout this section to demonstrate
the novel benchmark construction.

EXAMPLE Consider the simplest dual-agent trial with 2 doses of drugs A and B with a1 < a2 and b1 < b2,
and four combinations, d11, d12, d21, d22, and suppose the target toxicity is 20%. There are two complete
orderings satisfying the monotonicity assumption within each agent

(a) d11 → d21 → d12 → d22 and (b) d11 → d12 → d21 → d22. (3.1)

Then, the partial orderings are d11 → d12 → d22 and d11 → d21 → d22.
To provide an upper bound for the PCS, the benchmark for unknown ordering proposed in this work

answers two questions: (i) “What is the probability of finding the true MTC if the ordering is known?”
and (ii) “What is the probability of an ordering being identified as a correct one?.” The original bench-
mark answers the first question only, and hence, provides a less accurate PCS upper bound. The general
construction of our proposal is outlined below.

• Assuming the true ordering is known, obtain the patients’ responses at each combination;

• Fixing these responses but not using the information about the true ordering, compute the
probability that these responses were obtained from a given ordering;
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• Under the given ordering, find the combination selected and assign the corresponding probability
of this ordering being identified as a correct one to this combination selection.

3.2. Construction: generating responses

To address the first question, we start by following the original benchmark. Assume that pkl is known for
all k , l. We will refer to these probabilities as the true scenario. In the simulation setting, this sequence is
known.

As before, assume that the toxicity profile of patient i is summarized in a single value u(i) ∼ U(0, 1)
meaning that patient i can tolerate combinations dkl with pkl < u(i) and would experience a DLT if given
combinations dk ′l′ associated with pk ′l′ > u(i). Then, the patient’s response can be written as y(i)kl = 1
for pkl > u(i) and as y(i)kl = 0, otherwise. Assume that there is a sample of n patients with tolerances
u(1), . . . , u(n) and denote the number of DLTs for these n patients at each combination by xkl = ∑n

i=1 y(i)kl ,
k = 1, . . . , K , l = 1, . . . , L. Estimates of the probabilities of toxicity at dkl can then be found as p̂kl = xkl

n .
Note that the patient outcomes are generated using the true scenario and, hence, a true ordering.

EXAMPLE (Continued) Assume that the true probabilities of toxicity pkl for d11, d12, d21, d22 are given by
p11 = .10, p12 = .30, p21 = .20, p22 = .40.

[
0.10 0.30
0.20 0.40

]

implying that the ordering (a) in Equation (3.1) is correct. Assume that n = 10 patients with toxicity
profiles u(1) = 0.59, u(2) = 0.01, u(3) = 0.29, u(4) = 0.28, u(5) = 0.81, u(6) = 0.26, u(7) = 0.72, u(8) =
0.31, u(9) = 0.95, u(10) = 0.11 were generated. This corresponds to the following numbers of DLTs at
each combination x11 = 1, x12 = 5, x21 = 2, x22 = 6.
We now fix the number of DLTs obtained and find how likely is that they were drawn from each of the
feasible orderings.

3.3. Construction: identifying the probability of each ordering

Fixing the values of the true toxicity probabilities and the number of DLTs at each combination, consider
now S complete feasible orderings for these values. We assume that the values of toxicity probabilities
are known but we do not know which probability goes with which combination. Denote the probability
of DLT given dkl under ordering s by q(s)kl , and let s� be a correct ordering. Consequently, q(s

�)

kl = pkl for all
k , l. Probabilities q(s)kl are constructed as all possible permutations (with respect to the complete feasible
orderings) of the true probabilities pkl .

EXAMPLE (Continued) There are two feasible orderings in the considered example, S = 2. Consequently,
q(s)kl , s = 1, 2 are

q(1) =
[

0.10 0.30
0.20 0.40

]
, q(2) =

[
0.10 0.20
0.30 0.40

]
,

where the values corresponding to the uncertainty in the monotonic ordering are underlined.
The second question to be answered by the benchmark can be reformulated as “How likely it is that the
sequence of q(s)kl (also referred to as ordering s) is a correct one, given the observed responses xkl?.” Using
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the data generated for all n patients, the proposed benchmark computes

P

(
Pkl = q(s)kl |xkl

)
, s = 1, . . . , S (3.2)

for all dkl . Note that the probability of toxicity, Pkl , is now considered as a random variable itself, which
can take a discrete number of values which are defined by the true toxicity probabilities that are feasible
at the position (ak , bl).

Using Bayes Theorem, the probability (3.2) is proportional to the likelihood of observing Xkl given the
DLT probability Pkl = q(s)kl , which equals

P

(
Xkl = xkl|Pkl = q(s)kl

)
= Bin

(
xkl , n, q(s)kl

)
=

(
n

xkl

)
q(s)kl

xkl
(

1 − q(s)kl

)n−xkl
,

where Bin (·) is the density function of the binomial random variable. Let tkl be the number of values

Pkl can take, and let h(s)kl = P

(
Pkl = q(s)kl

)
be a prior probability that the toxicity probability at dkl under

ordering s is q(s)kl such that
∑S

s=1 h(s)kl = 1. If all feasible values corresponding to combination dkl are a
priori equally likely then h(s)kl = 1

tkl
. Then, the posterior probability that the DLTs at dkl were obtained from

the probability q(s)kl given DLTs xkl is proportional to

P

(
Pkl = q(s)kl |xkl

)
∝

(
n

xkl

)
q(s)kl

xkl
(

1 − q(s)kl

)n−xkl × h(s)kl . (3.3)

Using these posterior probabilities for each combination corresponding to some ordering s′, we find the
probability of this ordering to be identified as a correct one. We allow for different importances of the
contributions of various combinations to the posterior probability of the responses to be obtained from
ordering s′. Specifically, we assume that it is proportional to

P
(
s = s′|x11, . . . , xKL

) ∝
∏
k ,l

[(
n

xkl

)
q(s

′)
kl

xkl
(

1 − q(s
′)

kl

)n−xkl ×h(s
′)

kl

]wkl

, (3.4)

where wkl is a weighting parameter corresponding to combination dkl . The RHS in (3.4) is the power
likelihood with parameter wkl > 0 used in Bayesian analysis to control the learning rate of Bayesian
update (Holmes and Walker, 2017). Values 0 < wkl < 1 give less prominence to the data than the Bayesian
model. In the context of the study with uncertainty in monotonic ordering, the weights wkl represent
different contributions the combinations provide about the probability of complete ordering. Intuitively,
one learns about the combinations within the same partial ordering more than about combinations that
cannot be ordered. Then, the probability of ordering s′ can be written as

P
(
s = s′|x11, . . . , xKL

) =
∏

k ,l

[
Bin

(
xkl , n, q(s

′)
kl

)
×h(s

′)
kl

]wkl

∑S
s=1

∏
k ,l

[
Bin

(
xkl , n, q(s)kl

)
×h(s)kl

]wkl
. (3.5)

Below, we consider the following form of the weight function

wkl = (1 + #{combinations that cannot be ordered wrt dkl})−1 (3.6)
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corresponding to a higher weight if one has less uncertainty about the toxicity probability of combination
dkl with respect to other combinations. Note that the form of the weight function above is an arbitrary choice
and other forms of the weight function that resembles the idea of assigning less weight to combinations
carrying less information can be used.

EXAMPLE (Continued) Under 1, 5, 2, 6 DLTs observed at combinations d11, d12, d21, d22, the probabilities
of observing these responses xkl under q(1) and q(2) in n = 10 patients are

Bin
(

x11 = 1, P11 = q(1)11 = q(2)11 = 0.10
)

≈ 0.39, Bin
(

x22 = 6, P22 = q(1)22 = q(2)22 = 0.40
)

≈ 0.11,

Bin
(

x12 = 5, P12 = q(1)12 = 0.30
)

≈ 0.10, Bin
(

x12 = 5, P12 = q(2)12 = 0.20
)

≈ 0.03,

Bin
(

x21 = 2, P21 = q(1)21 = 0.20
)

≈ 0.30, Bin
(

x21 = 2, P21 = q(2)21 = 0.30
)

≈ 0.23.

The weight values for each combinations (3.6) are equal to w11 = w22 = 1 and w12 = w21 = 1
2 . The

weight w11 represents that the responses at d11 and d22 provides information for all four combinations,
while the responses d12 and d21 do not provide information about each other.Assume that a priori any of the
probability values specified in the true scenario at the anti-diagonal elements of the combination-toxicity
matrix are equally likely, h(1)12 = h(2)12 = h(1)21 = h(2)21 = 1

2 . Then, the probabilities of each ordering can be
found as P(s = 1|·) = 0.69 and P(s = 2|·) = 0.31.

Note that the posterior probabilities of the orderings in Equation (3.5) should not be used to select a
single correct ordering to base further inference on. Instead, these probabilities will define each ordering’s
contribution to the selection probabilities obtained by the novel benchmark.

3.4. Construction: computing the proportion of selections under the benchmark

Once the probability of each ordering s = 1, . . . , S is found, the benchmark proceeds as follows. Fix the
ordering s′ and find the estimates of the toxicity probabilities at combination dkl , q̂(s

′)
kl under this ordering

using the toxicity profiles u(1), . . . , u(n) generated before and computed as q̂(s
′)

kl =
∑n

i=1 I

(
u(i)<q(s

′)
kl

)

n . Under
ordering s′, the MTC is selected using

R(q̂(s
′)

kl , γ ) =
∣∣∣q̂(s′)kl − γ

∣∣∣. (3.7)

The combination which minimizes criterion (3.7), is selected with the probability that the ordering s′ is
selected, P(s = s′|·). Using the same toxicity profiles, the procedure is repeated for all S orderings. The
resulting estimates are the probability of selection of each combination.

EXAMPLE (Continued) If ordering s = 1 is selected, then the estimates of the toxicity probabilities
are q̂(1)11 = 0.10, q̂(1)12 = 0.50, q̂(1)21 = 0.20, q̂(1)22 = 0.60. Targeting the toxicity probability of 20%, the
combination d21 is selected using criterion (3.7). As ordering s = 1 is selected with probability 0.69, then
d12 is also selected with probability 0.69. Similarly, if the ordering s = 2 is selected, then the estimates
are q̂(1)11 = 0.10, q̂(1)12 = 0.20, q̂(1)21 = 0.50, q̂(1)22 = 0.60, and d12 is selected with probability 0.31. Therefore,
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728 P. MOZGUNOV AND OTHERS

the probability of combinations d11, d12, d21, d22 being selected in this simulated trial with the observed
DLTs are (0.00, 0.31, 0.69, 0.00), respectively.

Finally, by generating Z simulated trials (each with n new toxicity profiles), the probability of each
combination selection can be found in every simulated trial; the mean probability over Z simulations will
be the benchmark’s estimate of the combinations’ selections. These proportions of each combinations’
selections are used to obtain the proportion of correct selections (PCS) for a given definition of a “correct”
combination set by the clinicians in a trial.

A step-by-step guide on how the benchmark for studies with unknown ordering and a binary endpoint
can be constructed based on Z simulated trials is given in Algorithm 1.

Algorithm 1 Computing a partial ordering benchmark for a single binary outcome
1. Specify S feasible complete orderings and toxicity probabilities pkl for all combinations, k = 1 . . . , K ,
l = 1 . . . , L.
2. Generate a sequence of patients’ profiles {ui}n

i=1 from U(0, 1), transform ui to y(i)kl = 1 if pkl > ui and
store xkl = ∑n

i=1 y(i)kl , k = 1 . . . , K , l = 1 . . . , L, X = [x11, . . . , xKL].
3. Compute the probability of ordering s′ being selected, P (s = s′|X), s′ = 1, . . . , S.
4. For each ordering s′, s′ = 1, . . . , S, compute estimates q̂(s

′)
kl , the criterion R(q̂(s

′)
kl , γ ), and find the target

combination dk�l� under ordering s′ and set Qk�l� (z) = P (s = s′|X) .
5. Repeat steps 2–4 for z = 1, . . . , Z simulated trials.
6. Use Q̂kl = ∑Z

z=1 Qkl(z)/Z as the selection proportion of dkl , k = 1 . . . , K , l = 1 . . . , L.

An application of the proposed benchmark to evaluate a dose-finding design for a Phase I dual-agent
combination study is provided in Section 5.1.

4. BENCHMARK FOR COMBINATION STUDIES WITH MULTIPLE ENDPOINTS

We now extend the proposed benchmark to accommodate a growing number of combination stud-
ies evaluating more than a single toxicity endpoint. For example, there are several novel designs for
Phase I/II combination studies evaluating binary toxicity and binary or continuous efficacy simultane-
ously (Hirakawa, 2012; Wages and others, 2014; Yuan and others, 2016). For this, we build on the
benchmark for continuous endpoints (Mozgunov and others, 2020).

Consider a Phase I/II trial with toxicity outcome T (i)
kl and efficacy outcome E(i)

kl with Cumulative Density
Functions (CDFs) Ft,kl and Fe,kl , respectively, at dkl for patient i.Assume that Ft,kl and Fe,kl are parametrized
by θt,kl and θe,kl , respectively, and ft,kl(·), fe,kl(·) are the corresponding density functions.

For patient i, the toxicity profile is given by u(i)t ∈ (0, 1) and the efficacy profile is given by u(i)e ∈ (0, 1).
Then, following Mozgunov and others (2020), the toxicity and efficacy responses, t(i)kl and e(i)kl , patient

i would have at combination dkl can be found as t(i)kl = F−1
t,kl

(
u(i)t

)
, and e(i)kl = F−1

e,kl

(
u(i)e

)
. Repeating

the procedure for n patients, one can obtain the vectors tkl =
(

t(1)kl , . . . , t(n)kl

)
, ekl =

(
e(1)kl , . . . , e(n)kl

)
for

each dkl .
Fixing the values of the toxicity and efficacy parameters, θt,kl , θe,kl , and the toxicity and efficacy responses

tkl , ekl , consider now, St orderings of the values of θt,kl , and Se orderings of the values of θe,kl . We assume
that the values of parameters θt,kl , θe,kl are known, but similar to the setting above, we do not know which
parameters go with which combination. For example, in the setting with binary toxicity and efficacy
responses, these parameters are probabilities of toxicity and efficacy, respectively. Denote the toxicity
parameter associated with combination dkl under ordering st by λ(st )

t,kl , the efficacy parameter associated with
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combination dkl under ordering se by λ(se)
e,kl , and let s�t , s�e be the true orderings (true scenario). Consequently,

λ
(s�t )
t,kl = θt,kl and λ(s

�
e)

e,kl = θe,kl for all k , l. As before, parameters λ(st )
t,kl , λ(se)

e,kl are constructed as all possible
permutations of the true parameter values θt,kl , θe,kl with respect to complete feasible orderings, respectively.

Again, in the setting of the benchmark, one would like to answer the question “What is the probability
of identifying correct orderings s�t and s�e among all feasible orderings given the responses tkl , ekl , k =
1, . . . , K , and l = 1, . . . , L?.” The probability of ordering st = s′

t being identified as a correct one is

P
(
st = s′

t|t11, . . . , tKL

) =
∏

k ,l

[
L

(
tkl , λ

(s′t )
t,kl

)
×h

(s′t )
t,kl

]wkl

∑St
st=1

∏
k ,l

[
L

(
tkl , λ

(st )
t,kl

)
×h(st )

t,kl

]wkl
, (4.8)

where L is the likelihood function L
(

tkl , λ
(s′t )
t,kl

)
= ∏n

i=1 f
(

t(i)kl , λ
(s′t )
t,kl

)
and h

(s′t )
t,kl is the prior probability

that θt,kl equals λ
(s′t )
t,kl under s′. Similarly, one can find P

(
se = s′

e|e11, . . . , eKL

)
. Then, the probability of

identifying orderings s′
t and s′

e simultaneously, is

P
(
st = s′

t , se = s′
e|·

) = P
(
st = s′

t|·
) × P

(
se = s′

e|·
)

∑St ,Se
u,v P (st = u|·)× P (se = v|·) .

Note that the weights wkl have the same interpretation as above, and the function in the form given in
Equation (3.6) is studied further.

Under each combination of orderings st and se, using previously generated responses tkl , ekl , one can
find the target combination (TC) that optimizes some decision criterion R(·). Then, this combination is
selected with probability P (st , se|·). The procedure repeats for Z simulated trials. Algorithm 2 provides
step-by-step guidance on how the benchmark for studies with partial ordering and Q endpoints with
discrete or continuous distributions can be constructed.

Algorithm 2 Computing a partial ordering benchmark for studies with several endpoints
1. Specify CDFs Fq,kl for q = 1, . . . , Q endpoints and all combinations k = 1 . . . , K , l = 1 . . . , L.
Specify S1, . . . , SQ orderings for each endpoints, and criterion R(·).
2. Generate profiles u(i)q for all patients i = 1, . . . , n and all endpoints q = 1, . . . , Q.

3. Apply the quantile transformation y(i)q,kl = F−1
q,kl

(
u(i)q

)
for i = 1, . . . , n, q = 1, . . . , Q, k = 1, . . . , K

and l = 1, . . . , L, and store yq,kl .
4. Compute the probability (4.8) of ordering sq = 1, . . . , Sq being a correct one, q = 1, . . . , Q.
5. For each combination of orderings (s′

1, . . . , s′
Q), compute the values of the criterion T (·), find the

target combination dk�l� and set Qk�l� (z) = P
(
s1 = s′

1, . . . , sQ = s′
Q|·).

6. Repeat steps 2–5 for z = 1, . . . , Z simulated trials.
6. Use Q̂kl = ∑Z

z=1 Qkl(z)/Z as the selection proportion of dkl for k = 1 . . . , K , l = 1 . . . , L.

Note that the construction of the benchmark above concerns a general case of an arbitrary (and possibly
different) number of orderings of toxicities and efficacies. However, there are cases in which it might be
reasonable to assume that the order of toxicities is the same as the order of efficacies, st = se = s. Then,
the construction of the probabilities of orderings for a pair of endpoints reduces to the computation of the
probability of orderings for a single endpoint but using both toxicity and efficacy data. Specifically, in

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/23/3/721/6066695 by guest on 21 August 2022



730 P. MOZGUNOV AND OTHERS

case of the toxicity and efficacy orderings being the same, probability (4.8) can be found as

P
(
s = s′|·) =

∏
k ,l

[
L

(
tkl , λ

(s′)
t,kl

)
× L

(
ekl , λ

(s′)
e,kl

)
×h(s

′)
kl

]wkl

∑S
s=1

∏
k ,l

[
L

(
tkl , λ

(s)
t,kl

)
× L

(
ekl , λ

(s)
e,kl

)
×h(s)kl

]wkl
,

where h(st )
t,kl = h(se)

e,kl = h(s)kl . Applications of the proposed benchmark to evaluate a Phase I/II dual-agent
design for binary toxicity and continuous efficacy when toxicity and efficacy orderings can differ is
provided in Section 5.2, and an evaluation in the setting of binary toxicity and efficacy endpoints with
coinciding orderings is given in Supplementary material available at Biostatistics online.

5. EXAMPLES

Below, we provide two examples of how the novel benchmark can be used at the planning stage of a
trial to provide a more accurate evaluation of a design to be used in the study. Specifically, we consider a
Phase I combination clinical trial with a binary toxicity endpoint, and a Phase I/II clinical trial with binary
toxicity and continuous efficacy endpoints.

5.1. Evaluation of dose-finding designs for combination studies with binary toxicity

The original benchmark for single-agent trials was found to provide an accurate upper bound for the
model-based design, continual reassessment method (O’Quigley and others, 2002, CRM). Therefore, it is
of interest to evaluate how the extension of CRM relaxing the monotonicity assumption proposed by Wages
and others (2011a), Partial Ordering CRM (POCRM), performs compared to the novel benchmark for
partial ordering. Additionally, we also evaluate the Bayesian I2D design by Wang and Ivanova (2005).

5.1.1. Setting Consider a dual-agent combination study with three doses of drug A and five doses of
drug B (resulting in fifteen combinations), n = 60 patients, and a binary toxicity endpoint. The goal of
the trial is to identify the MTC corresponding to the target probability of toxicity γ = 0.30. We consider
ten combination-toxicity scenarios (Table 2) considered by Riviere and others (2015) in their review of
dose-finding designs for combination studies

On top of the true probabilities of toxicity, one needs to specify the feasible toxicity orderings to apply
the proposed benchmark. The total number of orderings satisfying the monotonicity assumption within
each agent is S = 6006 (see Supplementary material available at Biostatistics online for procedures
computing the orderings), and we assume that all orderings are equally likely prior to the trial. Finally,
in line with the objective function of the dose-finding designs under evaluation, we consider absolute
distance decision criterion (3.7) for the dose selection.

We evaluate the maximum likelihood (two-stage) version of the POCRM design proposed by Wages
and others (2011b) and the I2D design by Wang and Ivanova (2005). The core idea of the POCRM is to
run several CRM models under different orderings and allocate patients sequentially based on the most
likely ordering. The maximum likelihood POCRM requires a sequence of initial patients’ allocations to
be used until at least one DLT and one non-DLT have been observed. After this, the combination selection
will be governed by the POCRM. The initial escalation phase as proposed by Wages (2015) is considered.
Furthermore, the POCRM requires the specification of a set of orderings that will be tried by the design. We
consider six orderings as proposed by Wages and Conaway (2013); Wages (2015) that were found to lead
to good operational characteristics. The two-stage design is implemented in R-package pocrm (Wages
and Varhegyi, 2013). We also evaluate the I2D design as specified by Riviere and others (2015).

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/23/3/721/6066695 by guest on 21 August 2022

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa054#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa054#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa054#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa054#supplementary-data


A benchmark for dose-finding studies with unknown ordering 731

Table 2. Ten considered combination-toxicity scenarios. The MTC is in bold.

Drug A Drug B Drug B

b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

Scenario 1 Scenario 2
a1 0.05 0.10 0.15 0.30 0.45 0.15 0.30 0.45 0.50 0.60
a2 0.10 0.15 0.30 0.45 0.55 0.30 0.45 0.50 0.60 0.75
a3 0.15 0.30 0.45 0.50 0.60 0.45 0.55 0.60 0.60 0.80

Scenario 3 Scenario 4
a1 0.02 0.07 0.10 0.15 0.30 0.30 0.45 0.60 0.70 0.80
a2 0.07 0.10 0.15 0.30 0.45 0.45 0.55 0.65 0.75 0.85
a3 0.10 0.15 0.30 0.45 0.55 0.50 0.60 0.70 0.80 0.90

Scenario 5 Scenario 6
a1 0.01 0.02 0.08 0.10 0.11 0.05 0.08 0.10 0.13 0.15
a2 0.03 0.05 0.10 0.13 0.15 0.09 0.12 0.15 0.30 0.45
a3 0.07 0.09 0.12 0.15 0.30 0.15 0.30 0.45 0.50 0.60

Scenario 7 Scenario 8
a1 0.07 0.10 0.12 0.15 0.30 0.02 0.10 0.15 0.50 0.60
a2 0.15 0.30 0.45 0.52 0.60 0.05 0.12 0.30 0.55 0.70
a3 0.30 0.50 0.60 0.65 0.75 0.08 0.15 0.45 0.60 0.80

Scenario 9 Scenario 10
a1 0.005 0.01 0.02 0.04 0.07 0.05 0.10 0.15 0.30 0.45
a2 0.02 0.05 0.08 0.12 0.15 0.45 0.50 0.60 0.65 0.70
a3 0.15 0.30 0.45 0.55 0.65 0.70 0.75 0.80 0.85 0.90

Table 3. Comparison of POCRM and I2D against the benchmark for partial ordering, the original
benchmark, and the GL benchmark.

Scenario 1 2 3 4 5 6 7 8 9 10

POCRM 72.8 69.2 69.7 81.0 69.6 59.4 50.0 54.6 51.8 54.1
I2D 68.0 73.7 66.9 89.7 83.7 37.2 41.9 50.4 5.1 13.0
Benchmark 84.1 84.0 84.1 91.1 92.3 84.3 84.2 83.1 83.2 83.2
PO-Benchmark 73.8 78.2 75.9 91.1 92.3 65.5 66.3 57.7 56.0 54.4
GL 73.3 75.0 75.1 84.6 94.6 77.7 89.6 83.8 82.2 76.3

We also include the benchmark proposed by Guo and Liu (2018) for trials with a single binary endpoint.
We refer to this benchmark as “GL.” It is based on the critical information introduced by the authors that
is argued to offer a middle ground between the complete information and data available in actual trial.
The GL as specified in the original work is used in the evaluation.

5.1.2. Numerical results Table 3 shows the PCS for I2D, POCRM, the original benchmark (Benchmark),
the novel benchmark for partial ordering (PO-Benchmark), and the benchmark by Guo and Liu (2018)
(GL). The results of I2D are extracted from Table 2 in the original review, and the results of POCRM are
extracted from Table 1 in the comment by Wages (2015).
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Comparing the proposed PO-Benchmark and GL approach under scenarios in which the target
combination is located on a diagonal (Scenarios 1–3), they provide similar PCS. Under Scenario 4,
PO-Benchmark results in 7% higher PCS than the GL approach and performs similar to the original
benchmark as there is little uncertainty in the monotonicity associated with the target combination. Under
Scenario 5, a similar behavior for the PO-Benchmark is found but the GL approach now corresponds
to higher PCS than both the PO-Benchmark and original benchmark that employs the monotonicity
assumption.

Under Scenarios 6 and 7, while PO-Benchmark implies that it is more challenging to locate the target
combination than, for example, in Scenarios 1–3, the PCS of 65–66% against 73–78%, the GL approach
suggests otherwise: PCS of 77–89% against 73–75%. This is counter-intuitive due to fewer target combi-
nations (Scenarios 6) and a more complex interaction mechanism of the compounds (Scenario 7). Under
Scenario 7, the GL approach again results in higher PCS than the original benchmark.

Finally, differences between the PO-Benchmark and GL approach can be seen under Scenarios 8–10
with a single target combination. While the PO-Benchmark suggests that these are the most challenging
scenarios to find the target combination, the GL suggests that it is, in fact, easier than, for example,
Scenario 1 with three target combinations located on the same diagonal. Once more the GL approach,
under Scenarios 8 and 9, results in slightly higher or nearly the same PCS as the original benchmark.
Consequently, the GL approach does not provide as sharp an upper bound under a number of scenarios,
and the PO-Benchmark might provide a more accurate guidance on how challenging each scenarios is
under the uncertainty in the ordering.

Under all considered scenarios, the two dose-finding designs result in lower PCS compared to both the
original benchmark and the benchmark for partial ordering. Importantly, the original benchmark consid-
ered all scenarios with the MTC being not the first or last combination (Scenarios 4 and 5, respectively)
as equally difficult with nearly 84% PCS. However, this does not reflect the true challenges that these
scenarios impose as they have a different number of the MTCs located at different places on the combina-
tion grid. The benchmark for partial ordering recognizes these differences and provides a sharper upper
bound for the PCS. Specifically, under Scenario 1, the POCRM and I2D result in 72.8% and 68.0% PCS,
respectively. This corresponds to the ratios (with respect to the PO-Benchmark) of 72.8/73.8 = 98.6% and
68.0/73.8 = 92.1%, respectively. At the same time, under Scenario 6, both POCRM and I2D result in a
much lower PCS 59.4% and 37.2%. Looking at these values alone (or using the original benchmark) can
result in the conclusion that these designs perform poorer in this case compared to Scenario 1. However,
the ratio of PCS with respect to the PO-Benchmark is 59.4/65.5 = 90.7% for POCRM and 37.2/65.5 =
56.8% for I2D. Therefore, POCRM still corresponds to a relatively accurate performance, while the I2D
design does have potential problems under these scenarios but not as severe as one might conclude by
considering the PCS alone.

Regarding the overall performance, POCRM corresponds to a ratio of PCS (compared to PO-
Benchmark) of at least 88% under 8 out of 10 scenarios. Under the other two scenarios, Scenario 5
and Scenario 7, the ratio is around 75% which is still relatively high. While further calibration of the
model parameters can result in less diverse values of ratios, this is an indication that the POCRM design
under the proposed specification is properly calibrated and results in accurate selections under many dif-
ferent scenarios. The I2D design results in the ratio above 87% in 6 out of 10 scenarios. For scenarios
6–7 and 9–10, the I2D design corresponds to ratios of 56.8%, 63.8%, 8.9%, and 23.9%, respectively. This
implies that further tuning of the I2D design is required before the design can be applied to an actual
clinical trial.

Overall, the novel benchmark has provided noticeable added value over the original benchmark. It leads
to the conclusion that the POCRM design results in a good performance in many different scenarios while
I2D requires further attention. We refer the reader to Supplementary material available at Biostatistics
online for another example of the POCRM evaluation with three doses of each drug.
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Table 4. True values of (pkl ,μkl) for each combination of two agents, A and B. The
TC is in bold.

b1 b2 b3 b4

Scenario 1
a1 (0.01, 0.5) (0.10, 0.0) (0.40, −1.5) (0.50, −2.5)
a2 (0.05, −1.5) (0.15,−2.0) (0.45, −3.5) (0.55, −4.5)

Scenario 2
a1 (0.01, 0.0) (0.05, −0.5) (0.15,−3.5) (0.45, −5.5)
a2 (0.45, −1.0) (0.50, −1.5) (0.60, −4.5) (0.90, −6.5)

Scenario 3
a1 (0.01, 0.0) (0.15,−2.0) (0.40, −2.0) (0.50, −2.0)
a2 (0.05, 0.0) (0.20, −2.0) (0.45, −2.0) (0.55, −2.0)

5.2. Evaluation of Phase I/II Design for Binary Toxicity and Continuous Efficacy

Below, we evaluate the Phase I/II design for combination trials with binary toxicity and continuous
efficacy endpoints proposed by Hirakawa (2012). We refer the reader to Supplementary material available
at Biostatistics online for the evaluation of Phase I/II design for binary endpoints.

Hirakawa (2012) considered Phase I/II cervical carcinoma trial, in which the squamous cell carcinoma
antigen (SCCA) was used as a marker of effect on a continuous scale. Among others, a combination setting
with two compounds (A and B) was considered. There were two doses of drug A and four doses of drug
B. The efficacy outcome was “change in log-transformed SCCA levels from baseline and end of treat-
ment.” Consequently, the lower values of the efficacy outcomes correspond to better performance. It was
assumed that the efficacy endpoints has a normal distribution N (μkl , 1) at combination dkl . The toxicity was
evaluated as a binary endpoint characterized by the probability pkl at combination dkl . The goal of the com-
bination trial was to find the TC defined as the safe and efficacious combination having the highest efficacy.
The upper toxicity bound is φ = 0.3, and the upper efficacy bound is ψ = 0 corresponding to no changes
in SCCA levels. To find the target combination, Hirakawa (2012) proposed a model-based approach with
a four-parameter combination-toxicity model and an Emax-type seven-parameter combination-efficacy
model. The combination selection was based on a Mahalanobis-type distance representing the trade-off
between toxicity and efficacy and computed using the posterior distribution of the parameters. We will
adopt the notation “Emax” for this design.

The proposed benchmark requires all feasible orderings to be specified. Assuming that the toxicity and
efficacy increases with the dose, there are 14 feasible orderings (see Supplementary material available
at Biostatistics online). Then, the benchmark as in Algorithm 2 with weight function (3.6) and with the
binomial likelihood for the toxicity endpoints and the normal likelihood for the efficacy endpoint, assuming
that all the orderings are equally likely a priori, can be applied. The following decision criterion is used
by Hirakawa (2012)

R(y1,kl , y2,kl) =
∑n

i=1 y(i)2,kl

n
× I

(∫ +∞

0
g2,kl(v|y2,kl)dv < η2

)
× I

(∫ 1

0.3
g1,kl(v|y1,kl)dv < η1

)
. (5.9)

Three scenarios considered in the original work are given in Table 4, and proportions of each combination
selections by the Emax design and respective benchmarks are given in Table 5.

Under Scenario 1, the original benchmark selects d22 in almost all trials due to the known ordering of
toxicities and efficacies.At the same time, the benchmark for partial ordering selects the target combination
in 88% of trials with d21 having the second largest proportion of selections. It also selects d12 and d13 with
small probabilities. This is in fact in line with the proportion of selections by the Emax design. The ratio
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Table 5. Comparison of the Emax design and the respec-
tive benchmark for partial ordering and the original
benchmark. The selections of the TC is in bold.

Design b1 b2 b3 b4

Scenario 1

Benchmark
a1 0.0 0.0 0.0 0.0
a2 0.0 99.9 0.1 0.0

PO-Benchmark
a1 0.0 2.2 1.6 0.0
a2 8.1 88.1 0.0 0.0

Emax
a1 0.1 5.1 3.4 0.0
a2 14.8 70.1 4.7 0.0

Scenario 2

Benchmark
a1 0.0 0.0 99.9 0.1
a2 0.0 0.0 0.0 0.0

PO-Benchmark
a1 0.0 0.0 99.9 0.1
a2 0.0 0.0 0.0 0.0

Emax
a1 4.3 11.5 78.6 3.1
a2 0.0 0.1 0.3 0.0

Scenario 3

Benchmark
a1 0.0 50.1 1.2 0.0
a2 0.0 47.7 0.0 0.0

PO-Benchmark
a1 0.0 46.8 2.3 0.0
a2 4.2 47.3 0.0 0.0

Emax
a1 0.9 44.9 2.8 0.0
a2 4.3 45.3 1.8 0.0

of PCS with respect to the PO-Benchmark is nearly 80% against approximately 70% using the original
benchmark. Under Scenario 2, both benchmarks lead to the same evaluation of the design resulting in
the conclusion that the unknown ordering does not cause any additional obstacles for a design to select
the target combination. The ratio of PCS is again nearly 80%. Under Scenario 3, the original benchmark
recommends d12 and d22 in almost 99% of trials, and never selects d21 and d31 as the complete ordering is
known. The PO-Benchmark, however, shows that the unknown ordering makes a correct selection more
challenging, and selects corresponding suboptimal combinations in 6.5% of trials. This, again, is in line
with the Emax design which selects the TC in 44.9% of trials (against 46.8% for the PO-Benchmark—the
ratio of PCS is 95%) and combinations d21 and d13 in 7.1% of trials.

Overall, the evaluation of the Emax design using the novel benchmark provides the conclusion that the
design has high accuracy in all three considered scenarios with the ratio of PCS being above 80%. At the
same time, the original benchmark would reveal some problems with the design under Scenario 1, while
the performance is as good as under Scenario 2.

6. DISCUSSION

A novel benchmark for dose-finding studies with unknown ordering is proposed. The novel benchmark
is a generalization of the original proposal by O’Quigley and others (2002) for the setting with unknown
ordering. The distinguishing feature of the proposal is that it assesses the complexity of scenarios taking
into account not only the uncertainty about the parameters but also the uncertainty about the ordering of
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these parameters. The proposed benchmark computes the proportions of each combination selection for a
given scenario (that might have several combinations with either the same or close toxicity probabilities).
It is found that the novel benchmark can provide a more accurate evaluation of dose-finding designs for
combination studies than the analysis compared to the original benchmark. The novel approach is easy
to implement and does not require any additional information other than that which is available in a
simulation study. Finally, the proposed benchmark is computationally feasible even under a large number
of orderings as obtaining the benchmark under each ordering has low computational costs.

The proposed benchmark does not select a correct ordering, but in line with the main objective of many
Phase I trials, selects the MTC. Moreover, the probability of the ordering being identified as a correct one
in itself is not necessarily a useful measure of a good procedure for the MTC selection objective as there
may exist multiple orderings that are identical up to the point of the MTC. Either one of these orderings
can result in recommending a correct MTC. Consequently, the probability of each ordering is used to
compute the probability of the selection under this ordering rather than to select the single ordering and
make the inference solely based on it.

Similarly to the original benchmark, the partial ordering benchmark is an evaluation tool that can be
used to comprehensively assess the performance of a design that might be considered for a trial. Being a
theoretical tool, the benchmark should be used at the planning stage of the trial. Importantly, for the fair
and meaningful comparison, the benchmark should use the same criterion for the combination selection as
the design under evaluation. The benchmark can also stimulate discussions about the sample size (Cheung,
2013). If in some scenarios, one observes a low PCS under the benchmark, this might indicate that the
change in the sample size/number of doses should be explored. At the same time, low PCS should not
be interpreted outside of the context as the benchmark accounts for the difficulty of the scenarios. The
clinical plausibility of each scenario should be accounted for when interpreting the benchmark’ results.
An investigation of the link between the sample sizes and the benchmark performance is subject to future
research.

Exploring the behavior of the designs under various assumptions on the correlation between these
endpoints and interaction between the compounds might be of interest at the planning stage. The benchmark
includes the correlation in its assessment through the algorithm to generate the complete information using
the prespecified value of the correlation coefficient. Similarly, the interaction is accounted for implicitly
via the simulation scenarios themselves by specifying the toxicity probabilities. In this sense, the proposed
benchmark is universal as allows for the assessment of each of these aspects.

While our examples of the benchmark concerned the setting where each of the orderings is equally likely
a priori, the benchmark construction allows for prior information about each ordering to be incorporated.
As the number of complete orderings can be large, we propose to include this information through the prior
information of each combination location in the complete ordering. For example, eliciting the information
about the second combination in the complete ordering can be phrased as “What is the probability that
the second-lowest dose is d12?.”

The original benchmark provides an upper bound for the proportion of correct selections as it employs
the complete information about each patient. However, it is known that a particular method can provide
a higher PCS than the original benchmark under a given scenario if the prior information used is strong
enough (Paoletti and others, 2004). The same applies to the benchmark for the partial ordering. Addition-
ally, the proposed benchmark depends on the choice of weight function, wkl . Whilst we have found that
the proposed weight function results in an accurate upper bound for a dose-finding method’s performance
in many scenarios, it is possible that the PCS of the evaluated method is greater than the benchmark due
to the choice of weight function. Nevertheless, the benchmark still provides a basis for standardization
of the PCS that cannot be achieved if analyzing PCS alone—if the ratio of PCSs (compared to the pro-
posed benchmark) is noticeably higher under one scenario than under others, it implies that the design as
specified favors the selection of the target combinations under this scenarios.
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Finally, it is important to mention that while the proposed benchmark is a useful tool for assessing
the performance of any given dose-finding method for combination studies, similar to the benchmark for
single-agent studies, it does not capture all aspects of the evaluation. For instance, it does not provide
information on the distribution of dose allocation or the average number of DLTs. Developments in these
directions are of great value for a more comprehensive assessment of dose-finding designs.

7. SOFTWARE

Software in the form of R code is available on GitHub (https://github.com/dose-finding/combo-benchmark).

SUPPLEMENTARY MATERIAL

Supplementary material is available at is http://biostatistics.oxfordjournals.org.
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