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A benchmark problem is described for the reconstruction and analysis of biochemical networks given sampled
experimental data. The growth of the organisms is described in a bioreactor in which one substrate is fed into the
reactor with a given feed rate and feed concentration. Measurements for some intracellular components are provided
representing a small biochemical network. Problems of reverse engineering, parameter estimation, and identifiability
are addressed. The contribution mainly focuses on the problem of model discrimination. If two or more model
variants describe the available experimental data, a new experiment must be designed to discriminate between the
hypothetical models. For the problem presented, the feed rate and feed concentration of a bioreactor system are
available as control inputs. To verify calculated input profiles an interactive Web site (http://www.sysbio.de/
projects/benchmark/) is provided. Several solutions based on linear and nonlinear models are discussed.

The analysis of metabolic and regulatory pathways with math-
ematical models contributes to a better understanding of the be-
havior of metabolic processes (Kitano 2000). The setup of the
structure of the model, that is, the stoichiometry of the bio-
chemical reaction network, is mainly based on data from data-
base systems or from literature. Recent efforts in measurement
technologies like cDNA array data or 2D-gel electrophoresis
(Ideker et al. 2001) will enable researchers to produce time
courses of several substances from inside the cell. Given such
data, a challenging task is to identify the underlying structure of
the network (“reverse engineering”) and—if two or more model
structures are suited to describe the experimental data—to design
new experiments that will allow discrimination between the
model candidates. Further problems include identifiability of the
model parameters, sensitivity of the parameters, and metabolic
design (Stelling et al. 2001).

The main focus of work in the field of reverse engineering
lies on the identification of genetic networks, that is, in which
way transcription factors are connected to the respective genes.
The methods used are based on a steady-state description (Tegner
et al. 2003) or on Boolean networks (D’haesseleer et al. 2000;
Repsilber et al. 2002). Using time-lagged-correlation matrices (Ar-
kin and Ross 1995; Arkin et al. 1997) or genetic programming
techniques (Koza et al. 2001), networks could also be recon-
structed if time courses of selected state variables were available.

In contrast to the top-down approach represented by the
reverse engineering techniques, the bottom-up approach starts
with a mathematical model for genetic and metabolic networks
based either on biochemical data from databases or on “car-
toons” from literature. One major problem here is the estimation
of uncertain or even unknown kinetic parameters, that is, the
problem of parameter identification, that covers several tasks. (1)

Identifiability: Simply speaking, identifiability is concerned with
the following question. Given a particular model for a system
and an input–output experiment, is it possible to uniquely de-
termine the model parameters (Faller et al. 2003; Zak et al. 2003)?
(2) Parameter estimation: Using optimization methods, a set of
parameters is determined in such a way that the difference be-
tween the experimentally measured output and the predictive
output of the mathematical model becomes minimal (Moles et
al. 2003). (3) Finally, the accuracy of the parameters has to be
calculated. This is normally done by determining the confidence
limits of the estimated parameters (Faller et al. 2003; Swameye et
al. 2003). To apply statistical methods for this purpose, a large
amount of data is required. On the other hand, using the Fisher-
Information-Matrix (see below), only a lower bound for the vari-
ances of the parameters can be obtained (Ljung 1999; Banga et al.
2002). This lower bound would be reached if the model equa-
tions were linear in the parameters, which is normally not the
case. To overcome both problems, an alternative method, the
bootstrap method (Press et al. 2002), could be applied.

If two or more model variants are available describing the
same experimental observations, methods are available to design
new experiments that allow us to discriminate between the vari-
ants. Early approaches are described in the literature (e.g., Box
and Hill 1967; Munack 1992; Cooney and McDonald 1995). The
key idea is to find an input profile that maximizes the difference
of the outputs of the competing models. In a series of papers,
Asprey and coworkers have developed methods to maximize the
outputs of the system (Asprey and Macchietto 2000; Chen and
Asprey 2003). This is achieved by using an extended weighting
matrix including the variances of the measured state variables
and the variances and the sensitivities of the parameters. In Chen
and Asprey (2003), several methods for model discrimination are
also reviewed.

Here, in silico experimental data for an organism growing in
a chemostat as shown in Figure 1 are presented. For this purpose,
a computer model was set up based on a fictive network struc-
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ture. Parameters are chosen in such a way that a realistic behavior
could be observed. After reaching a steady state, the flow rates qin,
qout as well as the concentration of the substrate in the feed cin are
changed. Measurements are available for three metabolites, M1,
M2, and M3, representing a small biochemical network of the
organism, and for biomass B and substrate S. Because different
algorithms for parameter estimation are already described in the
literature (Moles et al. 2003), this contribution focuses on the
accuracy of the parameters by comparing two methods for deter-
mining the variance of the parameters.

In the next section several problems are formulated to apply
strategies in the field of reverse engineering and model discrimi-
nation. This paper focuses on different methods for model dis-
crimination. For this purpose, two model variants are set up and
parameters are estimated. The paper is written for the interested
biological researcher and represents possibilities based on a sys-
tem-theoretical approach. It will be shown that for the given
problem it is not necessary to construct several mutant strains,
which is often a time-consuming task, but instead, the applica-
tion of system-theoretical methods using only control inputs
available for a bioreactor system is sufficient to provide satisfac-
tory results. Applications for these methods can be found fre-
quently in the field of molecular and cell biology. Considering
signal transduction pathways, open questions concern the
mechanism of action of the stimulus, cross-talk phenomena, that
is, the interaction of separated signal transduction units, and
type of control, for example, control of activity or of synthesis of
the components involved. Further applications are concerned
with the choice of the correct kinetic description for a biochemi-
cal reaction (Asprey and Macchietto 2000) or with the distribu-
tion of metabolic fluxes in complex networks (Kremling et al.
2001).

METHODS

Benchmark Problem

Problem Formulation
Based on the measurement of components (intra- and extracel-
lular) or expression data, the network structure has to be identi-
fied, that is, the interconnections between the given components
have to be detected.

If two or more model variants can describe the available
experimental data, the design of a new experiment is required to
select the most feasible model structure. For larger submodels for

cellular systems, measurements are not available for all state vari-
ables. Moreover, the development of new measurement tech-
niques is very time consuming. Hence, strategies that require a
lesser number of state variables to be measured and moreover
strategies that identify these state variables are advantageous. To
design a new experiment, inputs and outputs must be chosen in
such a way that parameters can be identified. Furthermore, pa-
rameters can only be estimated with high accuracy if the control
inputs direct them into sensitive regions.

The problem could also be used as a study in metabolic
modeling for students to illustrate methods in model setup,
model analysis, and experimental design.

Starting Conditions and Data Generation
Figure 2 shows time courses of metabolite concentrations M1,
M2, and M3 as well as the time courses of biomass concentration
B and substrate concentration S. The conditions during the che-
mostat experiment are summarized in Table 1. The molar mass
for the substrate used is 342.3 g/mol. The initial conditions for
biomass and substrate are 0.1 g/L and 2.0 g/L, respectively. The
volume of the bioreactor was held constant at 1.0 L for the given
time series (the maximal working volume of the reactor is
Vmax = 5.0 L).

Measurements are sampled every 2 h. To allow realistically
complex behavior, the following procedure was used. A set of
kinetic parameters was chosen for the (hidden) network. “Experi-
mental data” (time profiles of substrate, biomass, and metabo-
lites) were generated by simulation of this hidden network with
the abovementioned initial conditions. With a random number
rand, the absolute values of the state variables x were modified
according to x̂ = x(1 + rand), where rand is normally distributed
with mean value m̄ = 0, and the standard deviation � = 0.1.

With the information given so far, the problem of network
identification can be solved.

For the problem of model discrimination, the following ad-
ditional information can be used.

● Metabolite M1 is the first substance synthesized after uptake.
The transport mechanism was identified as a Michaelis–
Menten reaction law with the parameters given in Table 2.

● Substance M3 acts as an enzyme (E) converting metabolite M1
to M2. The reaction is irreversible, and the affinity (dissocia-
tion constant) of M1 was determined (Table 2).

● Degradation of M2 is also identified as a Michaelis–Menten
reaction law with the parameters given in Table 2. It is assumed
that flux from M2 is responsible for the entire biomass:
M2 → biomass.

● The enzyme is subject to control (control of activity or control
of synthesis).

To verify calculated input profiles an interactive Web site (http://
www.sysbio.de/projects/benchmark/) is provided. The site offers
the possibility to enter a vector of time points and corresponding
values for the input profiles for qin, qout, and cin as well as sam-
pling time points (in h). Initial conditions for all state variables
must also be given. Outputs are the time vector at the given
sampling time points and a vector of all state variables with
added random noise. The time series data are shown in several
plots and can also be downloaded.

Model Formulation
Based on the information given above, equations are set up for
the state variables. The equations for reactor volume, entire bio-
mass concentration, and substrate concentration are formulated
in a very general way:

V̇ = qin − qout (1)

Figure 1 Scheme of the bioreactor. Inputs are flow rates qin, qout, and
feed concentration cin. Biomass is assumed to be homogeneously distrib-
uted in the reactor. The structure of the biochemical reaction network is
unknown and must be identified.
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Ḃ = �� −
qin

V � B (2)

Ṡ = qin �cin − S� − r1 Mw B , (3)

where Mw is the molar mass of the substrate and r1 is the uptake
rate. A Michaelis–Menten kinetic rate law is used:

r1 = r1max

S
KS + S

. (4)

Based on the information given above, two possible model vari-
ants are formulated: Model A describes the conversion of M1 to
M2 with a noncompetitive inhibition of the enzyme by M2:

r2A = k2A E
M1

KM1 + M1
KIA

KIA + M2
, (5)

where k2 is the turnover number and KIA the unknown affinity of
the inhibitor M2 to the enzyme. Degradation of metabolite M2 is
also described with a Michaelis–Menten kinetic rate law:

r3 = r3max

M2
KM2 + M2

. (6)

Finally, enzyme synthesis is taken into account with a constant
velocity:

rsynA = ksynmaxA . (7)

In Model B, the control of enzyme synthesis instead of the con-
trol of enzyme activity is considered. Hence, equations 5 and 7
have to be modified. Now, for the enzymatic conversion of M1,
a Michaelis–Menten kinetic rate law is assumed. For the enzyme
synthesis, a formal kinetic rate law representing an inhibition is
used:

r2B = k2B E
M1

KM1 + M1
(8)

rsynB = ksynmaxB

KIB

KIB + M2
, (9)

where KIB represents inhibition of enzyme synthesis by M2.
The following system of equations for the concentrations

M1, M2, and E is obtained for both models:

Table 1. Conditions During Continuous Culture Experiment

Time Input

0–20h qin = 0.25 L/h
qout = 0.25 L/h

cin = 2.0 g/L
20–30h qin = 0.35 L/h

qout = 0.35 L/h
cin = 2.0 g/L

30–60h qin = 0.35 L/h
qout = 0.35 L/h

cin = 0.50 g/L

The volume of the bioreactor was held constant at 1.0 L.

Figure 2 Time series data for biomass and substrate (upper left), for substance M1 (upper right), for substance M2 (lower left), and for substance M3
(lower right). Data were generated as described above. Numerical values of the data are given in the Appendix and can be downloaded from the Web
site given in the problem formulation.

Benchmark for Model Discrimination

Genome Research 1775
www.genome.org



Ṁ1 = r1 − r2 − �M1 (10)

Ṁ2 = r2A�B − r3 − �M2 (11)

Ė = rsynA�B − �E . (12)

The equations for the intracellular components also consider the
dilution by growth represented by the specific growth rate µ. To
describe the growth rate, it is assumed that part of the substrate
taken up by the organisms is converted into biomass with a yield
coefficient YxsThe equation for µ is:

� = Yx�s � r1 . (13)

With the vector of state variables x = [B, S, M1, M2, E], the vector
of inputs u = [qin, qout, cin], and the vector of model parameters p,
the model can now be written in the general form:

ẋ = f�x, u, p, t� , (14)

RESULTS

Estimation of Parameters and Confidence Intervals
Based on the experimental data and the given parameters, the
following parameters have to be identified: Yxs, k2A/B, ksynmaxA/B,
KIA, and KIB.

Parameter Estimation
Using a least-squares approach, the parameters should minimize
the quadratic error between the simulations and the measured
data. As the latter is only available at discrete time points � = {t1,
t2, …, tN}, the errors at each measurement time point are
summed. The squared error is furthermore normalized by the
standard deviation of the corresponding measurement noise �i

and by the maximal measurement. Thus, less noisy signals are
more weighted, and all measurements are brought to the same
scale. This results in the following objective function that the
optimal parameters should minimize:

J = �
t∈�

�
i=1

M �xi�t� − x̃i�t�

�ix̂i
�2

, with x̂i = max
t∈�

xi�t� , (15)

where M is the number of states, xi are the measured state vari-
ables, and x̃i the state variables of the models. The standard de-
viation of the noise is equal for all measurements, that is,
�i = 0.1xi. Table 3 shows the resulting parameter values popt after
a fit with the given experimental data. As the values of the ob-
jective functions attained for Model A and Model B differ only
slightly, it is not clear which one of the models is better suited to
fitting the benchmark problem.

Confidence Intervals
To estimate the confidence intervals of the parameters, two
methods have been applied: local approximation by calculating
the Fisher-Information-Matrix and a bootstrapping approach.

The Fisher-Information-Matrix is determined by the follow-
ing equation:

F = �
t∈�

ST � MV−1 � S , (16)

where MV is the variance–covariance matrix of measurement
errors and S is the sensitivity matrix:

S =�
dx1

dp1

dx1

dp2
…

dx1

dpN

dx2

dp1

dx2

dp2
… �

� . . . �

dxM

dp1
…

dxM

dpN−1

dxM

dpN

� (17)

for a model with M considered states and N parameters. Because
the state variables are time-dependent, the sensitivities are also
time-dependent. A set of M · N differential equations has to
be solved together with the M model equations (Varma et al.
1999):

Ṡ =
�f
�x

� S +
�f
�p

. (18)

Having solved the equations, the Fisher-Information-Matrix is
calculated according to equation 16 by summing up all values
over the time span. The Fisher-Information-Matrix is the inverse
of the parameter estimation error covariance matrix of the best
linear unbiased estimator (Posten and Munack 1990). The stan-
dard deviations of the parameters are therefore the square roots
of the diagonal elements of F�1. They are, however, only lower
bounds for the standard deviations, because the system is non-
linear in the parameters (Ljung 1999; Banga et al. 2002):

�i � �Fii
−1 . (19)

The corresponding 95% confidence intervals can be approxi-
mated by two times the standard deviation (Press et al. 2002):

pi − 2 � �i � pi* � pi + 2 � �i (20)

and are displayed in Figure 3 by solid lines. The figure shows
relative confidence intervals �pi, that is, the confidence intervals
have been normalized by the estimated parameters, given in
Table 3. Thus, a value of 1 corresponds to the estimated param-
eter being equal to the optimal parameter value. For KI, the cal-
culated 95% confidence interval includes negative values, be-
cause a normal distribution was assumed, which is obviously not
correct in this case.

The second approach estimates the “true” spreading of the
parameters by repeating the parameter fitting to a large number
of experiments, a so-called bootstrapping approach (Press et al.

Table 2. Kinetic Parameters for Synthesis of M1, Degradation
of M2, and the Affinity of M1 to Enzyme E

Synthesis of M1 Values rmax = 2.4 � 104 µmol/gDW h
K = 0.4437 µmol/gDW

Affinity M1 � E Value K = 12.2 µmol/gDW

Degradation of M2 Values rmax = 3 � 106 µmol/gDW h
K = 10.0 µmol/gDW

Table 3. Identified Parameters of Both Models, Attained by
Minimizing the Objective Function (15) Over the
Benchmark Experiment

Parameter Model A Model B

YX/S 6.968 � 10�5 g/µmol 7.031 � 10�5 g/µmol
KIA 0.104 µmol/gDW —
KIB — 0.166 µmol/gDW
k2 5.988 � 106 L/h 5.559 � 106 L/h
ksynmax 7.2 � 10�3 µmol/gDW h 8.2 � 10�3 µmol/gDW h
Attained J 70 68
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2002). Here, 50 repeats were performed using the given Web site.
In practice, such a large number of experiments would rarely be
possible. Instead, “new experiments” can be generated by ran-
domly picking a certain number of data points and moving them
according to the uncertainty model of the corresponding mea-
surement. The bootstrap approach estimates not only a mean
and standard deviation of the parameter distribution, but also its
shape. This can be visualized using a box-plot as depicted in
Figure 3. A box-plot is a graphical representation of an ordered set
of numbers. It depicts the median value by the central line. The
median is the center value of a sorted list of data and is preferred
to the mean as it is less sensitive to outliers in the data. The box
shows where the central 50% of the values are, the so-called
second and third quantiles. The vertical bars indicate how the
remaining values are distributed. To eliminate the influence of
outliers, the length of these bars is usually bounded. Here, 1.5

times the height of the box is used as maximal extension. The
box-plot in Figure 3, for example, shows that the distribution is
not symmetric, but that values larger than the median are spread-
ing more than those below the median.

Clearly, the results of the two approaches differ quite sub-
stantially. This is due to nonlinear behavior of the system. Al-
though the first approach (calculating F) assumes that the system
is linear with respect to the parameters, the bootstrap approach is
not based on a linearization. Its drawback is that the underlying
experiment needs to be repeated several times. As high-
throughput experiments become more common, bootstrap ap-
proaches might become more feasible in the future.

As expected, the estimation of parameter YX/S yields almost
identical values for both models (see Table 3). For the other pa-
rameters, the differences lie within the respective confidence
intervals. Both models achieve a good agreement between the

measurements and the simulated data, as
observed from the attained objective func-
tions in Table 3 and Figure 4. Discriminat-
ing between the two enzymatic hypotheses
is therefore not possible.

Solutions for Model Discrimination
In the following sections, different ap-
proaches to the model discrimination prob-
lem are discussed, and every approach sug-
gests a new design experiment. All solutions
presented here are based on the same struc-
ture of the model equations, as given in
“Model Formulation” above.

Large Steps on the Inputs
The idea was to look for simple profiles of
the manipulated variables, which can easily
be implemented in a real world experiment.
One simple possibility investigated here is
applying large changes on the two inputs
qin = qout and cin. This can result in an en-
hancement of small differences between the
time curves calculated using the two tested
models.

The strategy used in this section com-
prises (1) calculation of the steady state of
four initial cases with low or high values of
the feed concentration cin and flow rates
qin = qout; (2) simulation of 12 different step

Figure 3 Parameter confidence intervals and box-plot. The parameter confidence intervals are shown normalized to the optimal values attained for
the benchmark measurements. The 95% confidence interval based on the Fisher-Information-Matrix is depicted by the solid lines. The box-plot depicts
the results of the bootstrap method. For both models, the estimated 95% interval for KI includes negative values. Therefore, the whole interval is not
depicted here.

Figure 4 Benchmark data points (�, �) versus the simulated time courses of Model A (solid) and
Model B (dashed) using the parameters of Table 3. Upper left: X solid, S dashed; upper right: M1;
lower left: M2; lower right: M3.
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experiments (four different initial conditions each with three dif-
ferent input changes: rate, concentration, and both) for both
models; (3) fitting of the model parameters for each experiment
and both models. Thus, 24 parameter sets are obtained, and the
respective objective functions are calculated; (4) comparison of
the resulting objective functions of Models A and B for each
experiment. The objective functions for one experiment are dif-
ferent for both models if one model describes well the obtained
data (low objective function) and the other does not (large ob-
jective function). Based on this comparison, the most discrimi-
nating experiment can be chosen. If the experimental data for
the 12 versions of the second experiment would not be available,
the parameter fitting step (3) was eliminated and the differences
between both simulated time curves (using Models A and B) of
every model state were used to identify the most discriminating
experiment (4). Therefore, the model parameters based on the
benchmark experiment would be used.

The most discriminating step that is suggested as a new ex-
periment is summarized in Table 4. Starting in steady-state con-
ditions with high flow rate and high feed concentration after 24
h, a change in the concentration is performed resulting in high-
flow-rate and low-feed-concentration conditions. Several simi-
larly discriminating cases were found but were not used in the
following. For the rest of the possibilities, either poor fits to the
Web site data and/or lower differences in the objective function
were obtained (data not shown).

The new parameters for Model B are close to those attained
by fitting only the benchmark experiment (see Table 5). The
parameters of Model A, however, are quite different, in particu-
lar, KI. The benchmark and the new experiment can be well fitted
by Model B—see M3 in Figure 5. However, the Model A with the
new parameter set is not any more able to fit M3 in the bench-
mark or the new experiment. Differences can be found all over
the simulated time span, whereas the highest differences can be
seen after the applied step (24 h) in the new experiment—see
Figure 5. The time curves for biomass, substrate, and metabolites
M1 and M2 show almost no differences between the two models.
From the above, it can therefore be concluded that Model A can
be discarded and that Model B describes the benchmark problem

better with the proposed parameters. The control of the enzyme
is realized by regulation of enzyme synthesis.

Linear Model Analysis—Analysis of the Phase Shift
The proposed solution is based on the linearized model. Regard-
ing a steady-state solution (xss) during continuous fermentation
(qin = qout = 0.25 L/h, cin = 2.0 g/L), the linearized model is giv-
en by:

ẋ = J x + B u , (21)

with the Jacobian

J =
�f
�x�xss and B =

�f
�u�xss

.

The input/output behavior of a linear system is characterized by
two important observations: Stimulating the system with a given
frequency w, the output shows the same frequency, but with a
shift, named the phase shift, and amplified amplitude, named
the gain. Linear dynamical model equations as given in equation
21 can be transformed to algebraic equations, called transfer
functions, which can easily be handled.

For the proposed method, the gain and the phase shift for
the transfer functions Gij = Yi/Uj with outputs y1 = M1, y2 = M2,
and y3 = E are analyzed. For Models A and B, all parameters are
fixed except parameters KIA and KIB, respectively. The values for
KIA and KIB are varied in the range 5 � 10�3 < KI1/2 < 10.0. Figure
6 shows the phase shift for input q and output M1. As can be
seen, there exists a small frequency span where the two models
display different phase shifts for all parameter combinations.
Therefore, an experiment should be performed that forces the
system with a distinct frequency inside the frequency window to
see whether Model A or Model B is correct. To verify the ap-
proach, a frequency of w = 0.5 1/h was chosen and phase shifts
�6.2 < ��A < �23.16, and �23.43 < ��B < �31.18 for Models
A and B, respectively, are expected. Figure 7 shows the time
course of the input qin = q0

in + 0.1 sin(wt) and the time course of
M1 (data from the Web site). With the given data it was not
possible to fit parameters KIA or KIB with high quality. How-
ever, for the solution provided, only the phase shift must be
determined. The data were fitted with a second-order transfer
function G:

G =
1.54 s2 + 1.46 s + 0.37

s2 + 0.67 s + 0.06
. (22)

The phase shift for the given frequency w = 0.5 is �� = �28.38,
indicating that Model B is correct. Note that the linear model

Table 4. Experimental Procedure for Model Discrimination

Time (h) cin (g/L) qin, qout (L/h)

0–24 2.0 0.4
24–60 0.1 0.4

Figure 5 Data points of metabolite M3 (�) versus simulated time courses of Model A (solid) and Model B for the benchmark experiment (left) and
the new experiment (right).
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with the correct parameters (but without noise) has a phase shift
�� = �30.66 (see Appendix for the correct model).

Nonlinear Model Analysis
For the purpose of model discrimination, an experiment with an
optimal input profile of the adjustable input variables (qin, qout,
and cin) has to be planned. For reasons of convenience, qin and
qout are held equal here. The task can be formulated as the maxi-
mization of an objective function

max
u

= �t0

tend
��xT �t�W�x�t��dt , (23)

with W being a weighting matrix and �x being the difference
between the responses of the two competing Models A and B
(indexes A and B are used further to point to the model variants).

Many different approaches for the choice of the weighting
matrix can be found in the literature. It is obvious that weighting
should be done if the interesting state variables are within dif-
ferent orders of magnitude. In this case, it is useful to use a di-
agonal weighting matrix with elements:

Wii =
1

�xiA + xiB

2 �2 , (24)

that is, to weight by the average of the two mod-
els. The objective function for a simple example
with two state variables (x1 and x2) reads:

max
u

= �t0

tend �
��x1�2

�x1A + x1B

2 �2 +
��x2�2

�x2A + x2B

2 �2�dt .

(25)

It is, however, also possible to include informa-
tion about the measurement variances, the vari-
ances of the parameters of the model, and the sen-
sitivity of these parameters with respect to the in-
teresting state variables. This can be useful,
because the values of the parameters may be un-
certain. Buzzi Ferraris et al. (1984) and Chen and
Asprey (2003) introduced such a strategy. The
weighting matrix is formulated as follows:

W = �MV + VCA + VCB�−1 , (26)

where VC is the variance–covariance matrix for model predic-
tions:

VC = S � PV � ST . (27)

PV is the parameter estimation error variance–covariance matrix
(F�1). It should be noticed that PV has to be approximated using
the experiments carried out before, which in this case means
only the benchmark experiment. Simplifying this approach by
using only the diagonal elements of MV, PV, and VC clarifies its
meaning: The squared model difference for one state variable is
weighted by a sum given by its measurement variance, and the
square of the sensitivity of each fitted parameter with respect to
the state variable multiplied by the variance of the parameter.
This means that the difference of a state variable contributes less
to the objective function, if (1) the measurement error of that
state variable is large and (2) the state variable in the designed
experiment is very sensitive to parameters that could be esti-
mated only with large errors using the experiment(s) carried out
so far (here the benchmark experiment).

For a simple example with two state variables, the objective
function looks now like this, if two parameters (index 1 and 2)
are considered for each model:

max
u

= �t0

tend � ��y1�2

MV11 + �S11,A
2 � PV11,A� + �S12,A

2 � PV22,A�
+ �S11,B

2 � PV11,B� + �S12,B
2 � PV22,B�

+
��y2�2

MV22 + �S21,A
2 � PV11,A� + �S22,A

2 � PV22,A�
+ �S21,B

2 � PV11,B� + �S22,B
2 � PV22,B�

�dt ,

(28)

Of course, this does not mean that VC has only diagonal ele-
ments (which would be mere chance), but that only the diagonal
elements are considered in the approach.

This approach could help to avoid the case that an experi-
ment is planned in which the model differences depend strongly
on the value of parameters that are poorly fitted with the experi-
ments carried out before. If the elements of MV are much larger
than those of VC and the measurements have a similar standard
variance (as in our case), it could be useful to use the following
weighting matrix, that is, the simplified approach without con-
sideration of the measurement variance:

W = �VCA + VCB�−1 . (29)

Figure 6 Phase shift for input q on output cM1. Solid lines show maximal and minimal
values for Model A, whereas dashed lines show minimal and maximal values for Model B
varying parameters KIA and KIB between 5 � 10�3 and 10. For the small frequency span
indicated by the vertical lines, the models are clearly separated (because of very small
distances between the dashed lines, only one line can be seen).

Figure 7 Time course of qin (dashed), fitted (solid), and experimental
values (circles) for M1; values are plotted minus mean values.
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More interesting parameters, namely, the influence of the con-
sidered model state variables, the definition of the weighting
matrix, and the influence of the optimization method, are ana-
lyzed and discussed. In this particular case study, the model
structure is such that the biomass and the concentration of the
substrate do not depend on the choice of the model. Therefore,
only metabolites M1, M2, and M3 are of interest. Measurements
in biological systems are, however, often very time consuming.
Therefore, it is important to identify the state variables that have
to be measured for model discrimination.

Both using the stochastic method and using the gradient-
based optimization method may have advantages. With the sto-
chastic method, one cannot be caught in local optima, whereas
the gradient method leads to more exact results. Therefore, both
methods will be compared. Equations for the concentrations of
the state variables of both models are used as described in the
section on “Model Formulation” above. In the case of the gradi-
ent-based method, the objective function is maximized using
dynamic optimization offered by the DIVA simulation environ-
ment (Ginkel et al. 2003). In the case of the stochastic method,
the “Optimized Step-Size Random Search” (OSSRS) algorithm de-
veloped by Sheela (1979) is used.

As a result of these considerations, optimization with several
objective functions, differing in the weighting matrices used and
the state variables or combinations of state variables considered,
was performed with both optimization methods. For the calcu-
lations, the following conditions are fixed:

● Input moves are allowed every 10 h.
● The integration time is 60 h.
● The constraints used are given in Table 6. The biomass con-

straint ensures that washout is avoided. Moreover, there is
enough biomass to be sampled out for the experimental mea-
surements.

● The initial conditions for the state variables are chosen such
that the steady-state values of both models are similar (station-
ary state with q = 0.25 L/h and cin = 2.0 g/L).

● Parameter values for the models are as given in Table 3.

Table 7 summarizes the results obtained. A comparison be-
tween the values of the objective function can only be done for
one approach, because it depends on the definition of W. The
differences in the values of the objective function are very small
between stochastic and gradient-based method for nearly all
cases, although the obtained input profiles differ strongly (data
not shown). This hints of the existence of several local optima
with very similar values of the objective function. In some cases
(e.g., case 21) the gradient-based method was, however, stuck to
local optima of very low quality. For cases 1–14 (see Table 7), only
state variable M1 contributes significantly to the objective func-
tion. Therefore, equally high values are reached for all cases in
which M1 was included in the objective function and much

lower values are obtained for the cases in which M1 was not
included. For cases 15–28, only M2 contributes significantly to
the objective function. Only the optimal cases (boldface in Table
7) for each approach have been followed up further.

The following results are obtained from this first step: (1) the
optimal input profiles differ strongly between the approaches
and (2) none of the models can describe the experimental data
with the set of parameters derived from the benchmark experi-
ment. Figure 8 shows exemplarily in silico experimental and
simulation data for case 23 (W as in equation 29, consideration
of M2). Parameter fitting was therefore repeated in a second step
with measurements from both experiments, the benchmark ex-
periment and the new experiment, for the indicated cases.

After parameter estimation, Model A can be excluded in all
cases, because the simulation of the enzyme does not fit the
benchmark experiment. Figure 9 (left) shows this result exem-
plarily for case 1 (without weighting, consideration of only M1).
The corresponding parameters can be found in Table 8. Exclusion
of Model A could be verified by an F-test. The F-test uses the ratio
of the standard deviations of two data sets and tests the null
hypothesis that they are not significantly different. The standard
deviations S of the residuals for the enzyme were calculated to be
1.7133 � 10�4 for Model A and 1.0104 � 10�5 for Model B. The
level of significance was chosen to be 	 = 0.99 and the data sets
contained both 30 residuals.

F�30, 30�	=0.99 = 2.3860 <
SA

SB
= 16.9567.

This means that the null hypothesis has to be rejected and the
residuals of Model B have a significantly lower standard devia-
tion than those of Model A. For the other weighting matrices,
similar results were obtained (data not shown).

The findings of the proposed approach are discussed in the
following: first, the focus is on the question of which model state
variables have to be measured. Interestingly, the enzyme did not
contribute significantly to the objective functions of all the ap-
proaches studied. The conclusion could have been, that it is not
necessary to measure the enzyme. In the simulation results of the
designed experiments, there are big differences in M1 and M2
between the two models, but both models can describe M1 and
M2 after fitting. Therefore, without measurements of the en-
zyme, none of the models would have been able to discriminate
between the two models after fitting.

The second question focuses on the weighting matrix that
leads to the best results. All of the approaches could discriminate
between the two models. It could, however, be seen as an advan-
tage of the last approach (equation 29) that the simulation for
the enzyme with Model A does additionally not fit measure-
ments for the designed experiment (case 23; Fig. 9, right). This
could again be verified by an F-test with a level of significance
	 = 0.99. The standard deviations S of the residuals for the en-
zyme were calculated to be 0.0093 for Model A and

Table 5. Identified Parameters of Both Models, Attained by
Minimizing the Objective Function (15) Over the New and the
Benchmark Experiment

Parameter Model A Model B

YX/S 6.7 � 10�5 g/µmol 6.7 � 10�5 g/µmol
KIA 4.8 µmol/gDW —
KIB — 8.9 � 10�3 µmol/gDW
k2 2.3 � 106 L/h 3.2 � 106 L/h
ksynmax 8.2 � 10�3 µmol/gDW h 1.8 � 10�2 µmol/gDW h

Table 6. Constraints Used for Finding Optimal Input Profiles

Constraints Value

Minimum flow rate 0.05 L/h
Maximum flow rate 1.60 L/h
Minimum feed concentration 0.50 g/L
Maximum feed concentration 10.0 g/L
Minimum volume 1.00 L
Maximum volume 5.00 L
Minimum biomass concentration 0.05 g/L
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2.6202 � 10�4 for Model B. There were 30 measurements within
the designed experiment, and

F�30, 30�	=0.99 = 2.3860 <
SA

SB
= 35.4962 .

Figure 10 shows parameter confidence intervals for the following
exemplary cases: (a) using only the benchmark experiment for
parameter fitting, (b) using only the experiment case 1 (without
weighting, consideration of M1), (c) using only the experiment
case 23 (W as in equation 29, consideration of M1 and M2), and
(d) using both the benchmark experiment and the experiment
case 1. Each designed experiment leads to a reduction of the
parameter confidence intervals, especially for parameters KIA and
KIB, respectively. Case a shows by far the lowest values, lower
than those obtained by using the two experiments in case d.

Third, the influence of the optimization method was ana-
lyzed. Both the stochastic and the gradient-based methods lead
to similar results. Using the stochastic method ensures, however,
that one is not stuck in a significantly suboptimal local optimum.
On the other hand, the stochastic method is very time consuming.

DISCUSSION
A benchmark problem for reverse engineering, parameter iden-
tification, and model discrimination is presented. The focus of
the investigation at hand lies on model discrimination. It is
shown that for a problem that may arise in microbiology or cell
biology, the application of system-theoretical methods allows
one to come to satisfactory results without constructing several
mutant strains. However, the application of the methods requires
that the cellular system can be stimulated from outside. If a bio-
reactor system is available, the feed rate and the feed concentra-

tion may be used. For all methods, dynamical measurements,
that is, time courses of interesting variables, are essential. Based
on new measurement technologies like cDNA-arrays or proteom-
ics, it is expected that such measurements are available in the
near future. Clearly, the methods are general and do not depend
on the special biochemical circuit under consideration.

Three methods for experimental design have been presented
that were all able to discriminate between two model variants.
Several parameters, namely, the influence of model state vari-
ables and control inputs, the definition of weighting matrices,
and the influence of the optimization method were analyzed. In
the case at hand, the problem is formulated in such a way that
biomass and concentration of the substrate do not depend on the
choice of the model. Only intracellular metabolites, M1, M2, and
M3, are of interest. Measurements in biological systems are, how-
ever, often very time consuming. Therefore, it is important to
identify the state variables that have to be measured for model
discrimination. Given in silico experimental data, two model

Table 7. Summary of Results of Nonlinear Model Analysis

Approach Case
State

Variables

Optimization Method

Stochastic Gradient-Based

No weighting 1 M1 3.7195 � 106 3.7342 � 106

2 M2 9.0224 � 10�5 7.8716 � 10�5

3 E 3.6658 � 10�4 8.015 � 10�7

4 M1, M2 3.7198 � 106 3.7342 � 106

W, unity matrix 5 M1, E 3.7198 � 106 3.7342 � 106

6 M2, E 3.6658 � 10�4 7.9476 � 10�5

7 M1, M2, E 3.7195 � 106 3.7367 � 106

Weighted by square of average 8 M1 2.8287 2.8378
9 M2 0.0222 0.1201

10 E 0.0476 0.0493
W as in equation 24 11 M1, M2 2.8394 2.8428

12 M1, E 2.8685 2.8806
13 M2, E 0.0686 0.0692
14 M1, M2, E 2.8739 2.8857

Simplified Chen and Asprey 15 M1 1.356 3.6054
16 M2 36.3359 2.1768
17 E 2.6896 0.099
18 M1, M2 36.4986 7.6538

W as in equation 26 19 M1, E 2.6897 2.5091
20 M2, E 36.9019 2.4782
21 M1, M2, E 37.0645 7.763

Simplified Chen and Asprey without measurement variance 22 M1 24.88 22.9863
23 M2 1.5598 � 1011 1.4355 � 1011

24 E 3.6623 2.6398
25 M1, M2 1.5598 � 1011 1.4355 � 1011

W as in equation 29 26 M1, E 24.88 3.6468
27 M2, E 1.5598 � 1011 3.6207
28 M1, M2, E 1.5598 � 1011 1.4355 � 1011

Table 8. Identified Parameters of Both Models, Attained by
Minimizing the Objective Function (15) Over the New
Experiment Designed Without Weighting and the
Benchmark Experiment

Parameter Model A Model B

KIA 0.0138 µmol/gDW —
KIB — 0.0136 µmol/gDW
k2 22.4 � 106 L/h 6.05 � 106 L/h
Ksynmax 0.00366 µmol/gDW h 0.0135 µmol/gDW h
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variants are formulated, and it was shown that both models are
able to describe the given data.

Application of the three methods led to very different input
profiles for inputs q and cin in the experiment designed for model
discrimination. The first approach focuses on the largest possible
steps on the system inputs by starting from values representing
the limits of meaningful inputs. Simulation runs have been car-
ried out for the resulting 12 experimental versions. The experi-
ment that led to the largest differences between the objective
functions (equation 15) of the models has been chosen to be the
new experiment. This method represents a very intuitive ap-
proach.

The section on “Linear Model Analysis” above provides a
more “sophisticated” solution based on the phase shift of the
linearized models. Using this approach, the phase shift of the

output has to be determined given a calcu-
lated input frequency. The only input/
output combination that could be used here
was the pair q, cM1. Drawbacks of the ap-
proach are generating such an input (needs a
process control system) and the length of the
experiment, because only the tuned system
can be analyzed. Because the approach is
based on linear models, the input signal
should be small to stay within the linear
range of the model. This leads to very small
changes in the desired output that can be
difficult to measure in a real-world experi-
ment.

The third approach discriminates the
models by bringing the states as apart as pos-
sible, however weighting the differences of
the state variables. A method recently pro-
posed by Chen and Asprey (2003) was sim-
plified to clarify the weights used. The
method calculates an input profile in such a
way that the difference of a state variable
contributes less to the objective function if
the measurement error of that state variable
is large and if the state variable in the de-
signed experiment is very sensitive to param-
eters that could hardly be estimated using
the benchmark experiment. Nonlinear opti-
mization leads to very different input pro-
files, depending on the weighting matrices
used and on the optimization method. One
of these profiles represents also a form of

large steps in the inputs (see Fig. 8), but the resulting differences
in enzyme concentration are larger than those obtained by the
first approach (cf. Figs. 5 and 9).

Common to all the methods is the observation that per-
forming the newly designed experiment (here, with the interac-
tive Web site) results in rather bad model predictions, if the in
silico data are compared with the simulation. This is based on the
large variance of the parameters determined in the initial experi-
ment. Therefore, the parameters had to be identified again and
Model A was excluded as a candidate model, because one state
variable could not be fitted with both experiments. Interestingly,
this state variable (M3) did not significantly contribute to the
objective functions.

The model used for the Web interface is given in the Ap-
pendix. It is composed of both control of the enzyme activity and

Figure 8 Optimal experiment, designed with W as in equation 29 (case 23). Optimal input
profiles, in silico measurement results (circles), and results obtained with Model A (solid line) and
Model B (dashed line) with the initial sets of parameters. Differences between the results of the
two models are most notable in M1.

Figure 9 (Left) Enzyme concentration in benchmark experiment after fitting with the benchmark experiment and designed experiment for case 1.
(Right) Enzyme concentration in the designed experiment (case 23) after fitting with the benchmark experiment and the designed experiment for case
23. In silico measurement results (circles) and results obtained with Model A (solid line) and Model B (dashed line). Results of Model A do not fit.
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control of enzyme synthesis. However, the influence of control
of enzyme activity, represented by parameter KIA, is very small.
Therefore, the choice of Model B is the correct one. Comparing
the parameters estimated in the first and third approaches and
the correct parameters given in the Appendix (Table 9), the third
approach gets better results. Moreover, the confidence region for
the parameters is almost always smaller than for the benchmark
experiment. For the second approach, the re-estimation of pa-
rameters is not necessary. However, one has to determine the
phase shift for the frequency calculated that will last some time,
because the system has to be tuned.

Based on our results, it is not possible to recommend one of
these approaches. The application of one of these methods de-
pends strongly on the possibilities to stimulate the system and to
obtain measurements with high quality. The first method could
be performed as a first initial experiment if there was little time
to optimize the system. Comparing the stochastic versus the gra-
dient-based optimization methods, the former leads to better re-
sults. However, the computational effort for this method is very
high, as the calculation may last some days.

Another concern of this paper was the explanation and
comparison of two methods for the determination of parameter
accuracy. A very common method for this purpose is the approxi-
mation of parameter variances by use of the Fisher-Information-
Matrix. The parameter variances obtained by this method repre-
sent, however, only lower bounds, that is, the actual variances
will be larger. Furthermore, calculating the 95% confidence in-
tervals as two times the standard deviations, as was done in this
contribution, implies a normal distribution of the parameters. It
is, therefore, not surprising that application of the bootstrapping
approach, which does not have these drawbacks, leads to very
different results (although the proportions between the param-

eters are similar). They represent the “true” spreading of the pa-
rameters. For the application of this method, either the possibil-
ity of repeating the experiment several times or the existence and
application of an uncertainty model of the corresponding mea-
surement are necessary. As high-throughput experiments be-
come more common, bootstrapping approaches might become
more feasible in the future.
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APPENDIX

Measurement

time [h] X [g/l] S [g/l]
0 0.1088 1.9134
2.0000 0.4345 0.0805
4.0000 0.4811 0.0791
6.0000 0.4114 0.0734
8.0000 0.3956 0.0990

10.0000 0.3714 0.0724
12.0000 0.3995 0.0782
14.0000 0.4477 0.0752
16.0000 0.4190 0.0853
18.0000 0.3540 0.0725
20.0000 0.3690 0.0781
22.0000 0.4345 0.1195
24.0000 0.3183 0.1178
26.0000 0.3767 0.1099
28.0000 0.3489 0.1243
30.0000 0.4019 0.1249
32.0000 0.2023 0.0403
34.0000 0.1595 0.0703
36.0000 0.1068 0.0691
38.0000 0.0868 0.0933
40.0000 0.1047 0.0893
42.0000 0.0967 0.1000
44.0000 0.0714 0.0965
46.0000 0.0916 0.1122

Figure 10 (Left) Parameter confidence intervals for Model A. (Right) Parameter confidence intervals for Model B. Four cases are compared. From left
to right 1 (dot): experiment with W as in equation 29; 2 (solid) benchmark experiment; 3 (dashed) experiment obtained without weighting; 4 (dash-dot)
benchmark experiment and experiment obtained without weighting.

Table 9. Additional Parameters of the Correct Model

Parameter Value

YX/S 7.0 � 10�5 g/µmol
KIA 0.01 µmol/gDW �
KIB 10.0 µmol/gDW
k2 6.0 � 106 L/h
ksynmax 0.0168 µmol/gDW h
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48.0000 0.0992 0.1234
50.0000 0.0877 0.1180
52.0000 0.0766 0.1133
54.0000 0.0747 0.1196
56.0000 0.0769 0.1256
58.0000 0.0786 0.1269
60.0000 0.0781 0.1138

M1 M2 M3
0.0620 0.0079 0.0749
0.4479 0.0110 0.0124
0.3045 0.0102 0.0173
0.2534 0.0133 0.0266
0.2569 0.0116 0.0294
0.2736 0.0125 0.0378
0.2561 0.0130 0.0257
0.2268 0.0112 0.0332
0.2086 0.0121 0.0305
0.2375 0.0121 0.0296
0.2539 0.0128 0.0342
0.4895 0.0169 0.0258
0.4561 0.0147 0.0176
0.4673 0.0173 0.0187
0.5358 0.0144 0.0152
0.5961 0.0149 0.0156
0.1357 0.0067 0.0319
0.1584 0.0089 0.0432
0.1873 0.0121 0.0418
0.2860 0.0138 0.0296
0.3434 0.0135 0.0322
0.4408 0.0152 0.0267

time [h] X [g/l] S [g/l]
0.4767 0.0161 0.0225
0.5163 0.0180 0.0222
0.5675 0.0165 0.0189
0.5399 0.0181 0.0202
0.5851 0.0177 0.0176
0.6062 0.0157 0.0157
0.5443 0.0128 0.0205
0.6399 0.0143 0.0154
0.6020 0.0127 0.0142

The values of M1, M2, and M3 are in [µmol/gDW]. A file with the
presented data can be downloaded from the Web site.

The Correct Model
The correct model is given by:

V̇ = qin − qout (30)

Ḃ = �� −
qin

V � B (31)

Ṡ = qin �cin − S� − r1 Mw B . (32)

For reaction rates r1, r2, and r3 the following equations hold:

r1 = r1max

S
KS + S

(33)

r2 = k2 E
M1

KM1 + M1
KIA

KIA + M2
(34)

r3 = r3max

M2
KM2 + M2

. (35)

Enzyme synthesis is taken into account with:

rsynB = ksynmax

KIB

KIB + M2
. (36)

The following system of equations for the concentrations of M1,
M2, and E is obtained for both models:

Ṁ1 = r1 − r2 − � M1 (37)

Ṁ2 = r2 − r3 − � M2 (38)

Ė = rsyn − � E . (39)

To describe the growth rate, it is assumed that part of the sub-
strate taken up by the organisms is converted into biomass with
a yield coefficient Yxs. The equation for µ is:

� = Yxs � r1 . (40)

The correct parameters are summarized in Table 9.
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