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A benchmark for non-covalent interactions in solids (C21) based on the experimental sublimation
enthalpies and geometries of 21 molecular crystals is presented. Thermal and zero-point effects are
carefully accounted for and reference lattice energies and thermal pressures are provided, which
allow dispersion-corrected density functionals to be assessed in a straightforward way. Other thermal
corrections to the sublimation enthalpy (the 2RT term) are reexamined. We compare the recently
implemented exchange-hole dipole moment (XDM) model with other approaches in the literature
to find that XDM roughly doubles the accuracy of DFT-D2 and non-local functionals in computed
lattice energies (4.8 kJ/mol mean absolute error) while, at the same time, predicting cell geometries
within less than 2% of the experimental result on average. The XDM model of dispersion interactions
is confirmed as a very promising approach in solid-state applications. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4738961]

I. INTRODUCTION

Dispersion interactions1–4 are essential in a collection
of active research fields in solid-state physics and chem-
istry, including molecular crystal packing,5, 6 crystal struc-
ture prediction,7 surface adsorption and reactivity,2 and
supramolecular chemistry.8 The representation of dispersion
interactions in density-functional theory (DFT) is not pos-
sible within local or semilocal functionals because disper-
sion arises from non-local correlation effects involving distant
fragments in the crystal.1 In recent years, the dispersion prob-
lem has been one of the primary fronts of research in DFT,9

and new ideas to incorporate dispersion effects into the other-
wise excellent semilocal description of hard matter are being
proposed regularly to this day.10 Because of the paramount
importance DFT has among solid-state electronic structure
methods, a set of reference data to assess the performance of
new functionals for non-covalent interactions would be very
useful.

In sharp contrast with the abundance of good-quality ref-
erence datasets in molecular quantum chemistry,11–16 these
are rare in the solid-state. The usual procedure to assess the
performance of dispersion-corrected density functionals is to
examine a restricted number of very well studied weakly
bound crystals17–31 or to reproduce gas-phase results using
the datasets mentioned above.17, 32, 33 There are two reasons
for this lack of reference data: (i) accurate wavefunction cal-
culations are very difficult to apply to solids except case-by-
case (for instance, Refs. 34 and 19), and (ii) experimental data
needs careful correction for thermal and zero-point effects in
order to compare to static DFT results. In the case of lattice
energies, this correction introduces an uncertainty that, com-
bined with experimental errors, limits the insight to be gained
from the comparison.35

a)Electronic mail: aoterodelaroza@ucmerced.edu.
b)Electronic mail: ejohnson29@ucmerced.edu.

One of the objectives of this work is to present good-
quality reference data derived from experimental results on
molecular crystals (the C21 set) to allow the straightforward
testing of new density functionals. Such benchmark sets exist
in the case of hard solids (see Ref. 36 and references therein)
and compilations of experimental binding energies of molec-
ular crystals are available6, 22, 35 that use a simple correction
to reduce thermal effects (the 2RT term). However, as we
shall see below, this procedure has its limitations and, to our
knowledge, there are no test sets in the literature that include
a proper thermal and zero-point effect correction to binding
energies or that provide reference data for crystal geometries.

The crystal equivalent of the binding energy of a dimer,
the lattice energy, is related to the experimental sublima-
tion enthalpy of a molecular crystal, for which an extensive
database is available.37 Regarding geometries, diffraction ex-
periments provide very accurate cell lengths and atomic po-
sitions of a periodic crystal at a given temperature. Thermal
effects on both sublimation enthalpies and crystal geometries
are accounted for in this article using a combination of ac-
curate DFT vibrational frequencies and numerical and physi-
cal approximations. The soundness of these approximations is
checked against a simple molecular crystal (carbon dioxide)
and is confirmed a posteriori by the excellent results some of
the dispersion-corrected functionals offer. The proposed ref-
erence values, if not as accurate as their molecular counter-
parts, provide a stepping-stone for dispersion-related density
functional development in solids.

The second objective in this work is to assess the
performance of the exchange-hole dipole moment (XDM)
model,13, 14, 30, 38–46 recently implemented for solids,30 com-
pared to other dispersion functionals in the literature. The
choice of functionals has been guided by availability, pop-
ularity, and computational simplicity: in addition to XDM,
we have chosen the DFT-D2 method by Grimme,47 the
Tkatchenko-Scheffler scheme,32 and two non-local function-
als by Langreth et al.33, 48 As pointed out by Tkatchenko
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et al.,2 the accuracy of these methods has not been fully es-
tablished in solids. As we show below, the excellent perfor-
mance of the XDM model opens new exciting perspectives in
the first-principles prediction of surface adsorption energies,
polymorph ranking, molecular crystal phase transitions, and
ab initio molecular dynamics.

II. DISPERSION MODELS

In this section, we review the dispersion models we
compare using our C21 test set. The choice of methods has
been guided by three criteria: (i) availability, (ii) popularity
in condensed-matter studies, and (iii) modest computational
cost. In the following, we give a brief description of the XDM
model on account of its novelty in solid-state studies.

The XDM model, developed by Becke and
Johnson13, 14, 30, 38–46 describes the dispersion energy of
two neutral fragments as the electrostatic interaction of the
dipoles formed by electrons and their associated exchange
holes. The dispersion energy is added to the DFT energy

E = EDFT + Edisp, (1)

where the Edisp contains the usual R−6 leading term as well as
two additional higher order atomic-pairwise terms

Edisp = −1

2

∑
ij

∑
n=6,8,10

Cn,ij

Rn
vdw,ij + Rn

ij

. (2)

The fundamental objects in this equation are the inter-
atomic interaction coefficients Cn, ij that in the XDM model
are calculated exclusively from first-principles quantities us-
ing second-order perturbation theory44
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where αi are the atomic polarizabilities and 〈M2
l 〉i are the ex-

pectation values of the square of the atomic l-moments. In
order to define atomic quantities, the Hirshfeld partitioning
scheme49 is used.13 For instance, atom-in-molecule polariz-
abilities are obtained by scaling the free-atom values (αfree)
with Hirshfeld volumes50

αi =
∫

r3ωi(r)ρ(r)dr∫
r3ρi,free(r)dr

αi,free, (6)

where ωi(r) is the Hirshfeld weight, ρ is the electron density
and ρi,free is the free-atom electron density. In a similar vein,

the moments are computed as:〈
M2

l

〉
i
=

∑
σ

∫
ωi(r)ρσ (r)

[
rl
i − (ri − dXσ )l

]2
dr (7)

where ρσ is the spin density, ri is the distance from nu-
cleus i, and dXσ is the magnitude of the exchange-hole dipole
moment.

The exchange-hole dipole moment is the fundamental
quantity in the XDM dispersion model (hence its name) and
can be computed in two ways. In the original version,39 the
exact exchange-hole is used, an approach that is computation-
ally demanding, particularly using a plane-wave basis-set. To
avoid this, the Becke-Roussel (BR) (Ref. 51) model of the
exchange hole is used in its place.14, 40, 45 The BR model de-
pends exclusively on local quantities (ρ, ∇2ρ, τ ) so the XDM-
corrected functional (Eq. (1)) formally represents a meta-
generalized gradient approximation (meta-GGA) functional.
Indeed, the derivation of the potential and the self-consistent
implementation of XDM has been reported before52 and the
authors show that there is little difference between the self-
consistent and the post-SCF approaches. As a consequence,
we use the post-SCF XDM dispersion, purely for practical
reasons. Also, it should be noticed that the calculation of the
dispersion correction adds negligibly to the total computa-
tional cost.

All the equations above are parameter-free, except for the
damping expression in Eq. (2). The interatomic van der Waals
radii (Rvdw,ij ) control the distance at which the pairwise dis-
persion interactions are switched off, and are defined using
two parameters, a1 and a2,

Rvdw,ij = a1Rc,ij + a2, (8)
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]

,

(9)

where Rc, ij are the critical radii. The value of these param-
eters has been obtained by fitting to a training set both in
gas-phase14, 45 and under periodic-boundary conditions.30 In
the last case, the training set consisted of binding energies
of dimers and not crystals, as would have been reasonable,
precisely because of the mentioned lack of proper solid-state
training sets.

Because the dispersion coefficients are calculated rather
than fitted, Eq. (1) works under the assumption that the DFT
functional presents a completely dispersionless behavior.
This requirement is not met by most GGA functionals,
which are sometimes too repulsive and sometimes spuriously
binding, depending on the reduced-density-gradient tail be-
havior of the exchange enhancement factors.45, 53 In previous
articles,45, 53 it has been shown that the Becke86 (Ref. 54)
(B86b) and Perdew-Wang86 (Ref. 55) (PW86) exchange
functionals best describe the Hartree-Fock-like repulsive
wall. When coupled with any other exchange functional (for
instance, Perdew-Burke-Ernzerhof, PBE; Ref. 56), the param-
eters in Eq. (2) account partially for the erroneous behavior of
the exchange energy. As a consequence, B86b and PW86 per-
form systematically better than the other functionals studied
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as shown in previous studies14, 30 and below. In this work, we
use two XDM-corrected functionals: (i) B86b exchange with
PBE correlation (B86b-XDM), and (ii) PBE (PBE-XDM).

In addition to XDM, we consider several popular dis-
persion models in the literature. The simplest and most
widespread approach, both in molecular and solid-state calcu-
lations, is the DFT-D method, popularized by Grimme.23, 47, 57

As in the case of XDM, the DFT-D method is based on the
calculation of Edisp (Eq. (1)) using an attenuated dispersion
formula. The like-atom interaction coefficients C6, ii as well
as the van der Waals radii are tabulated using a combination
of computed and experimental data. The unlike-atom coef-
ficients are calculated using a geometric-mean combination
formula. This approach is sometimes coupled with the mod-
ification of the parameters in the non-dispersion part of the
density functional (the B97D functional47).

The DFT-D2 functional47 presents some drawbacks: (i)
the expansion of the dispersion energy is truncated at the
R−6 term, while it is known that higher order terms may
be important for its accurate description,13, 30 (ii) the inter-
action coefficients do not respond to changes in the chemi-
cal environment,58 and (iii) while the main-group elements
are reasonably well represented, the interaction coefficients
for transition metals are rather poor (all first-row transition
metals are represented by the same C6, ii, for instance). In
spite of these problems, the statistics of DFT-D2 when ap-
plied to S22 are good59 (for instance, a mean absolute error
of 0.44 kcal/mol using B97D), especially taking into account
the simplicity of the model. It has also been parametrized for a
large number of functionals and extensively tested.60 Because
forces and stresses are easily calculated,23 DFT-D2 is present
in most quantum chemistry and solid-state codes and provides
a cheap way to avoid the appalling deficiency of common
GGAs for dispersion-bound crystals, explaining its popular-
ity. A newer version of DFT-D (DFT-D3) has been recently
proposed60 that tries to correct the problems mentioned above,
but it is not as fully established or widely available as its older
relative. In this work, we will use DFT-D2 combined with the
PBE functional, as implemented in Quantum ESPRESSO by
Barone et al.23 (PBE-D).

The method by Tkatchenko and Scheffler32 (TS) also cal-
culates the asymptotic dispersion energy in Eq. (1). Simi-
lar to DFT-D, the dispersion expansion is truncated at the
leading-order R−6 term. The interaction coefficients are cal-
culated from the like-atom values using an expression derived
from the London formula. The characteristic point of devia-
tion from DFT-D2, however, is that the homoatomic C6 are
calculated by scaling the free-atom values using Hirshfeld
atomic volumes, therefore factoring in the effect of the chem-
ical environment

Ceff
6,ii =

(
V eff

i

V free
i

)2

Cfree
6,ii , (10)

where V eff
i is the atom-in-molecule Hirshfeld volume and

V free
i is the volume of the free atom. The free-atom Cfree

6,ii coef-
ficients are obtained from a database of reference values and
the agreement of the calculated molecular C6 with experi-
mental coefficients is remarkable.32 Thanks to the possibil-
ity of treating dispersion in different chemical environments,

including metallic surfaces, the TS correction has been ex-
tensively used to study surface adsorption problems.2 In this
work, we apply it coupled with the PBE functional (PBE-TS).

Calculating the dispersion energy as in Eq. (2) presents
drawbacks: (i) it is only valid at the infinite separation limit
so a damping function is always required, which introduces
some degree of parametrization, and (ii) the R−6 behavior is
not always correct, for instance in the case of interacting con-
ducting slabs.4 Much work has been put into the design of
seamless functionals that include a non-empirical non-local
contribution and are able to treat covalent and non-covalent
interactions on the same level. A well-known collection of
non-local functionals has been proposed by Langreth and co-
workers33, 48, 61 and they are collectively referred to as vdw-
DF. The functionals are based on the seminal work by An-
dersson et al.62 and write the exchange-correlation energy as

Exc = EGGA
x + ELDA

c + Enl
c , (11)

where they combine a GGA exchange functional, local den-
sity approximation (LDA) correlation and the non-local term
that accounts for dispersion. The latter can be written in the
most general form as double density integral of a non-local
kernel φ(r, r ′),

Enl
c = 1

2

∫
d r

∫
d r ′n(r)φ(r, r ′)n(r ′) (12)

that is calculated using the density and its gradient at r and r′.
Two well-studied versions of vdw-DF in the literature are

the ones proposed by Dion et al.48 (vdw-DF1), that was turned
into a full-fledged self-consistent approach by Thonhauser
et al.61 and the more recent version of Lee et al.33 (vdw-DF2).
Contrary to the original Andersson-Langreth-Lundqvist func-
tional, no a priori specification of the interacting fragments is
required. The non-local correlation kernel is obtained by mak-
ing successive approximations to the adiabatic connection
fluctuation-dissipation formula4 and the functional is seam-
less because Enl

c vanishes in the uniform-gas limit, there-
fore recovering the (correct) LDA correlation. It would ap-
pear that the double integral in Eq. (12) is computationally
expensive, but the cost of vdw-DF is actually only slightly
higher than semilocal functionals.63 The exchange functional
is one of the major components modified from vdw-DF1
to vdw-DF2, again because a dispersionless exchange is re-
quired. The vdw-DF1 version uses the revised PBE exchange
functional64 (revPBE), while vdw-DF2 uses a revised PW86
functional33 (rPW86). It has been shown33 that this change
improves the description of energetics and particularly ge-
ometries of solids, and we confirm below that this is indeed
the case for molecular crystals as well.

III. COMPUTATIONAL DETAILS

The calculations have been carried out using a mod-
ified copy of Quantum ESPRESSO,65 in which we have
implemented the XDM method.30 We have also incorporated
the TS scheme as a simple offspring of the XDM code. In
addition, DFT-D2 and both vdw-DF were already available,
as implemented by other authors.23, 65 The vdw-DF function-
als include the computation of forces and stresses, which
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TABLE I. The column labels are, in order: the average over experimental sublimation enthalpy measurements corrected to room temperature (via Cp calculated
by group additivity37), the relaxation energies (Eq. (15)), the deviation of the intermolecular vibrational contribution of the solid from the Dulong-Petit value
(6RT), the intermolecular zero-point vibrational contribution of the solid, the difference between our correction to the lattice energy (�Evib + 4RT in Eq. (14))
and −2RT (Eq. (17)), and the total thermal correction on sublimation enthalpies (Ecorr

vib = �E
exp
el − �Hsub(T 0), T0 = 298.15 K) . The last two columns are the

reference data for the benchmark: experimental lattice energies and thermal pressures. Units are kJ/mol (energies) and GPa (pressures).

Name �H
exp
sub (T 0) �Erelax

vib �E
s,inter
vib E

s,inter
vib,zp Eerror

vib Ecorr
vib �E

exp
el pth

14-cyclohexanedione 81.13 − 0.26 − 2.08 2.25 0.42 5.40 86.53 0.275
Acetic acid 67.95 0.91 − 2.85 3.29 − 0.47 3.85 71.80 0.201
Adamantane 58.43 0.90 − 1.63 1.74 − 0.79 4.00 62.43 0.343
Ammonia 29.81 1.57 − 5.87 10.72 3.28 7.76 37.57 0.592
Anthracene 98.17 2.06 − 1.78 1.89 − 1.95 2.40 100.58 0.224
Benzene 45.11 − 0.12 − 2.39 2.62 0.35 5.30 50.41 0.538
CO2 24.62 − 0.12 − 1.89 2.13 − 0.43 3.18 27.80 0.400
Cyanamide 75.51 2.77 − 5.11 6.60 − 1.28 3.65 79.16 0.095
Cytosine 163.44 − 0.24 − 3.14 3.43 0.54 5.37 168.81 0.294
Ethylcarbamate 78.71 − 0.30 − 2.29 2.49 0.50 5.46 84.17 0.331
Formamide 71.77 − 1.37 − 4.20 4.99 2.16 6.97 78.74 0.137
Imidazole 81.37 0.94 − 3.12 3.49 − 0.58 4.38 85.75 0.267
Naphthalene 71.27 0.06 − 1.95 2.09 0.09 5.04 76.32 0.215
Oxalic acid (α) 93.70 3.04 − 3.55 3.96 − 2.63 2.32 96.02 0.496
Oxalic acid (β) 93.63 2.99 − 2.62 2.87 − 2.74 2.22 95.85 0.510
Pyrazine 56.27 − 0.72 − 2.34 2.54 0.93 5.89 62.16 0.252
Pyrazole 72.36 0.82 − 3.17 3.55 − 0.44 4.47 76.83 0.316
Triazine 55.66 0.21 − 2.12 2.32 − 0.01 4.85 60.51 0.531
Trioxane 56.25 − 1.22 − 1.82 1.95 1.34 6.29 62.54 0.661
Uracil 129.18 0.85 − 3.05 3.27 − 0.64 3.72 132.90 0.398
Urea 93.79 − 0.02 − 3.34 3.75 0.43 5.64 99.43 0.613

are required in order to properly carry out the benchmark
calculations.

We have used the projector-augmented wave (PAW)
method66 in the plane-wave basis set scheme. The pseudopo-
tentials were adapted from the atompaw library67 and are the
same as in our previous work,30 but adapted to the appropri-
ate functionals. The plane-wave kinetic energy cutoff is 80
Ry which ensures the convergence of crystal and molecular
energies to around 0.1 mRy, enough to obtain accurate energy
differences on the order of 0.01–0.1 kJ/mol.

In the following, the calculation of two quantities are de-
scribed: sublimation enthalpies and the equilibrium geometry
under a negative pressure. Both involve geometry relaxations
of molecular crystals, and the former also requires the calcula-
tion of the isolated molecules in a supercell. The k-point grid
used in the condensed-phase calculation and the cell length in
the molecular calculation have both been converged indepen-
dently with respect to the total energy and are listed in Table I
of the supplementary material.68 In the particular case of vdw-
DF functionals, because of memory limitations, the maximum
cell length has been capped at 35 bohr. The molecular geome-
tries and geometries were obtained from gas-phase calcula-
tions using the PBE functional69, 70 and the 6-31++G** basis
set, as implemented in the GAUSSIAN09 program.71

IV. REFERENCE DATA

The C21 set consists of 21 crystals (see Table I of the
supplementary material68). Four criteria have been used in the
selection of these: (i) the crystals need to be small (few atoms
per cell) in order to compute their vibrational properties, re-

quired for the thermal correction, in a reasonable amount of
time, (ii) the sublimation enthalpies need to be known with
reasonable precision, which means that there must be abun-
dant and recent data, including the temperature range of the
measurement, (iii) the crystals should not present polymor-
phism at room temperature and zero-pressure (except for ox-
alic acid, where sublimation enthalpies for both forms are
available), and (iv) there must not be configurational disor-
der as in, for instance, the phases of ice. The chosen crystals
also try to span several types of intermolecular interactions
(π -stacking, electrostatic, hydrogen-bond,. . . ) and interaction
energies (from around 20 kJ/mol to 160 kJ/mol, see Table I
below). In the following, all sublimation enthalpies and lat-
tice energies are reported per molecule.

The C21 benchmark is based on the first-principles deter-
mination of two different properties: lattice energies, related
to experimental sublimation enthalpies, and crystal structures.
The former requires the calculation of the lattice energy of
the molecular crystal, which is the energy required to pull
the molecules apart from each other. The latter requires a ge-
ometry optimization in order to compare to x-ray diffraction
data. Neither of the two can be compared directly to exper-
imental sublimation enthalpies or crystal structures because
of the effect temperature has on those quantities (mainly via
atomic vibrations). Experimental data, particularly sublima-
tion enthalpies, is subject to uncertainties which set the er-
ror bar of the benchmark. For instance, Chickos cites for
the sublimation enthalpy an average experimental error of
4.9 kJ/mol,72 so two methods that deviate on average from the
reference data by an amount below this number, have both hit
the precision limit of the benchmark and no assessment can
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be made about their relative accuracy. On the other hand, x-
ray diffraction data are accurate enough so that no method
reaches the precision limit, except for the positions of the hy-
drogens, which we refrain from using as reference. The sec-
ond source of error comes from the reduction of temperature
effects on the experimental data. Because calculation of the
complete vibrational profiles for these molecular crystals is
unfeasible, we have to turn to reasonable but necessarily ap-
proximate estimations. As we show below, the XDM method
is accurate enough to reach the precision limit of the subli-
mation enthalpy benchmark, while four of the explored meth-
ods are able to predict experimental cell lengths (which are
controlled by non-covalent interactions in molecular crystals)
with an error of 1%–2% on average, confirming a posteriori
the soundness of our thermal corrections.

The use of sublimation enthalpies of molecular crystals
to compare the behavior of different dispersion-corrected
density functionals has been tried before,22, 35 but a rigorous
treatment of the solid vibrations is still required. A further
advantage of this treatment is that we can assess the accu-
racy of typical approximate corrections on the sublimation
enthalpy. We point out that a usual pragmatic concession
in intermolecular force field fitting is to include thermal
effects by parametrizing using the experimental sublimation
enthalpies in the training sets,5 thereby including temperature
effects in the static picture. In that case, direct comparison
to experiment is permissible, while in the case of DFT lattice
energies failing to include the thermal correction introduces
a systematic bias in the analysis.

At a given temperature T, the sublimation enthalpy is

�Hsub = E
g

el + E
g
trans + E

g
rot + E

g

vib + pV − (
Es

el + Es
vib

)
,

(13)
where g denotes gas-phase and s solid-phase quantities.
The subscripts correspond to the electronic (el), translational
(trans), rotational (rot), and vibrational (vib) contributions to
the enthalpy. No low-lying electronic states or configurational
disorder are present in our crystals. A very reasonable ap-
proximation, especially considering the low vapor pressure
of molecular crystals6 is to assume the gas is ideal, which
means E

g
trans = 3/2RT , E

g
rot = 3/2RT (or RT if the molecule

is linear), and pV = RT . The above equation reduces to (we
consider only the nonlinear molecule case for clarity)

�Hsub(T ) = �Eel + �Evib + 4RT, (14)

where �Eel is the (temperature-independent) difference in
electronic energies calculated directly from DFT, the lattice
energy. �Evib is the difference in vibrational energies be-
tween the molecules in the gas-phase and in the solid. The in-
tramolecular vibrational frequencies and modes in both cases
are expected to be very similar, and in the case of the stiffest
of those, also decoupled from intermolecular modes in the
crystal. As a consequence, the vibrational contribution can be
written as

�Evib = E
g

vib − Es
vib

= E
g

vib − E
s,intra
vib − E

s,inter
vib

= �Erelax
vib − E

s,inter
vib , (15)

where inter and intra denote the intermolecular and in-
tramolecular contribution to the vibrational energy of the
solid, respectively. We call �Erelax

vib the relaxation energy, re-
lated to the change in the frequency of the intramolecular
modes when molecules pack to form the crystal. In the har-
monic approximation, the internal vibrational energy is given,
both in the crystal and the molecule, as73, 74

Evib = NA

∑
i

ωi

2
+ ωi

eωi/kBT − 1
, (16)

where the frequencies are given in atomic units of energy, kB

is the Boltzmann constant, and NA is Avogadro’s number. In
the isolated molecule, the sum goes over the 3n − 6 vibra-
tional modes, with n the number of atoms. In the crystal, the
sum involves a weighted sampling of the first Brillouin zone
(1BZ) and is usually replaced by the corresponding integral
using the phonon density of states, g(ω). The density of states
is normalized to 3nZ, where Z is the number of molecules per
primitive cell.

The computation of the molecular vibrational frequencies
is relatively inexpensive and straightforward. The determina-
tion of g(ω), however, is complex because it involves the cal-
culation of frequencies on a grid sampling the 1BZ. These cal-
culations in solids have experienced great advances in recent
years with the development of linear-response methods,75, 76

but for the case at hand it is still too onerous, especially given
the very high-quality energy cutoff and k-point sampling we
need to use to reach the desired accuracy.

Fortunately, because intramolecular vibrations in molec-
ular crystals are so stiff, they are essentially incapable of car-
rying energy along the crystal and the dispersion relations
are virtually q-independent. This is clearly shown for CO2 in
Figure 1. Therefore, a sound approximation to g(ω) is the Ein-
stein model, in which each branch is represented by a sin-
gle frequency calculated at the � point. For the three acoustic
branches, the zero-point term is neglected and the thermal part
is computed at the high temperature limit (kBT per branch).
In the particular case of CO2 shown above, numerical inte-
gration of g(ω) gives a vibrational energy per molecule of
43.63 kJ/mol, of which 10.86 is thermal and 32.77 is
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FIG. 1. The phonon density of states of CO2, calculated at the PBE-XDM
equilibrium geometry using a 4 × 4 × 4 sampling grid, Fourier-reinterpolated
to 503.
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zero-point. The total energy using the Einstein model is
42.89 kJ/mol, of which 11.21 is thermal and 31.68 is zero-
point. The approximation to both terms is excellent and,
moreover, the larger the molecule forming the crystal is, the
greater the number of intramolecular low-dispersion modes
will exist. Thus, CO2 is in this respect a worst-case scenario
for the Einstein model, while the error it introduces is already
negligible compared with the precision of the experimental
sublimation enthalpies.

Armed with these results, the vibrational energy differ-
ence in Eq. (14) can be calculated by substracting the vi-
brational energy of the solid from the gas-phase molecule.
The former is obtained using Eq. (16), where the frequen-
cies at � are calculated using the density-functional pertur-
bation theory76 (DFPT) at the PBE-XDM equilibrium ge-
ometry. The vibrational energy of the gas is obtained by
relaxing the geometry of the isolated molecule and calculat-
ing the frequencies at the PBE/6-31++G** level. It is impor-
tant to use the same functional for both calculations to ben-
efit from the error cancellation of the systematic deviation
of the functional. To gauge the error introduced by compar-
ing plane-wave/pseudopotentials (PWPS) to gaussian-basis-
set/all-electron results, we calculated the frequencies of the
CO2 molecule in a supercell in the PWPS approach. The
difference in each individual frequency is on the order of
10 cm−1, which introduces a negligible difference in the
vibrational energy. Table I shows the average experimen-
tal sublimation enthalpies corrected to room temperature
(�Hsub(T 0), T0 = 298.15 K) and the proposed corrected lat-
tice energies (�E

exp
el ). The latter can be used to benchmark

any dispersion method by direct comparison with DFT lattice
energies.

A widely used way to remove thermal effects from ex-
perimental sublimation enthalpies is to add a constant 2RT,
independent of the crystal5, 6, 22, 35

�Hsub(T ) = �Eel − 2RT, (17)

where the last term would be −3/2RT in the case of a linear
molecule . This approximation rests on three assumptions: (i)
the intramolecular frequencies are assumed to be equal in the
crystal and in the gas-phase (�Erelax

vib = 0 in Eq. (15)), (ii) the
temperature is high enough to treat intermolecular vibrations
as if they were at the high-temperature limit (Es,inter

vib = 6RT ),
and (iii) the intermolecular zero-point effects can be neglected
(Es,inter

vib,zp = 0). Table I shows the relaxation energy, the devia-
tion of the intermolecular vibrational energy from the high-
temperature limit and the intermolecular zero-point contribu-
tion. If the 2RT approximation were exact, all three of them
should be zero independently. While the relaxation energy is
relatively small (except for both phases of oxalic acid), nei-
ther �E

s,inter
vib nor E

s,inter
vib,zp are negligible compared to the total

thermal correction or the experimental precision. Fortunately,
assuming the Dulong-Petit high-temperature limit overesti-
mates the intermolecular vibrational energy, which corrects
for the missing zero-point intermolecular energy. The total
deviation of the 2RT correction (Eerror

vib ) shows that this er-
ror cancellation leads, in general, to an acceptable estimate
of the real value, but users should be aware that this cancel-
lation is not valid at all temperatures (the zero-point term is

temperature-independent) and that in some cases (such as am-
monia or oxalic acid) the error can be significant. It is also a
mistake to use the 2RT correction together with a zero-point
correction.26

The comparison of equilibrium structures to diffraction
data poses a different problem. In this case, the vibrations of
the solid at the diffraction temperature induce a thermal ex-
pansion that introduces a systematic deviation from the static
DFT equilibrium structures. The equilibrium volume V and
internal coordinates x of a crystal (which include the atomic
positions and cell shape) at a given temperature (T) and pres-
sure (p) are found by minimizing the non-equilibrium Gibbs
energy

G(x, V ; p, T ) = Eel(x, V ) + pV + Fvib(x, V ; T ), (18)

where Fvib is the non-equilibrium vibrational Helmholtz en-
ergy. In the quasiharmonic approximation,74 it is given by

Fvib =
∑

j

[ωj

2
+ kBT ln(1 − e−ωj /kBT )

]
, (19)

where frequencies depend on V and x. As in the case of the
vibrational energy, we use the Einstein model to reduce the
computational cost of evaluating the vibrational Helmholtz
energy.

Volume and x are implicit functions of T and p via mini-
mization of G. It is a common approximation to assume that
temperature effects apply primarily to volume and that the
internal coordinates are determined by minimization of Eel

constrained to a fixed volume V (p, T ). This statically con-
strained approximation is, in general, excellent, and also very
difficult to avoid from the computational point of view.77 Min-
imizing G (Eq. (18)) with respect to volume at zero pressure
and constant temperature gives

psta(V ) = −pth(V, T ), (20)

where the static pressure is psta = −dEel/dV and the ther-
mal pressure is pth = −dFvib/dV . The calculation of the lat-
ter involves the volume derivative of the frequencies (the
Grüneisen mode γ is) for which there is no simple estimate
in molecular crystals.78 As a consequence, the thermal pres-
sure needs to be calculated by explicit differentiation of Fvib

for several volumes.
To avoid sampling an extensive volume range, a further

simplifying approximation can be made thanks to pth depend-
ing very slightly on volume.79 We can substitute the thermal
pressure in Eq. (20) by its value at the equilibrium geometry.
In practice, this means that we can approximately incorpo-
rate thermal effects into the DFT geometries by relaxing the
crystal structure at a negative external pressure equal to −pth.
We compute the thermal pressure by sampling three volume
points: the equilibrium geometry, and volumes reduced by
10% and 20% (the calculation is faster in compression than
in expansion), and using a finite-difference formula on the
calculated Fvib. The procedure is illustrated in Figure 2 for
CO2. The vibrational Helmholtz energy is almost linear with
volume and the thermal pressure calculated from finite differ-
ences is 0.397 GPa, in excellent agreement with the value for
the quartic fit to the whole curve, 0.403 GPa. The convergence
criterion on the target pressure used in our DFT calculations is
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FIG. 2. The vibrational Helmholtz energy of carbon dioxide against volume
is shown, together with a quartic fit (black, full line), a parabolic fit to the
equilibrium volume and two points on compression (red, stippled line), and
the line tangent to the vibrational energy curve at the equilibrium volume
(blue, dotted line). The arrow marks the equilibrium geometry.

0.01 GPa, larger than the error in the finite-difference approx-
imation to the derivative and five times less than the default
value in Quantum ESPRESSO. A deviation of this magnitude
in the pressure has a negligible impact on the geometries. The
calculated thermal pressures for all crystals in the C21 set at
their respective diffraction temperatures are shown in Table I.

In summary, the last two columns of Table I allow the
benchmark of dispersion-corrected methods for lattice ener-
gies and geometries of molecular solids. The DFT lattice en-

ergy is directly compared to �E
exp
el . By relaxing the structure

at the external pressure −pth, thermal and zero-point effects
on the crystal geometry are introduced and it is possible to
compare to directly to experimental diffraction results.

V. BENCHMARK RESULTS

Table II and Figure 3 show the lattice energies of the
C21 crystals calculated using the different functionals and
compared to the reference values. The best statistics are ob-
tained with the XDM method, especially when coupled with
the B86b functional. Its accuracy (6.23%) approximately dou-
bles that of PBE-D (11.94%) and the vdw-DF non-local func-
tionals (10.11% and 10.22%) and is almost four times bet-
ter than PBE-TS (22.08%). The PBE-XDM result is slightly
worse (6.74%), which as shown before,30 is a consequence of
the spurious binding of the exchange functional. It should be
noted that the mean absolute errors (MAE) for B86b-XDM
(4.8 kJ/mol) is below the average experimental error pro-
posed by Chickos72 for sublimation enthalpy measurements
(4.9 kJ/mol), so the agreement of B86b-XDM with the ex-
act lattice energy may be even better than that value. The
rest of the functionals, including PBE-XDM, however, fail
to hit the precision limit of the benchmark and can be safely
ranked using our reference data. By these results, B86b-XDM
is shown to be a very accurate method to include dispersion
interactions at a semilocal DFT computational cost. Also, all
methods improve greatly the uncorrected PBE result, which
grossly underestimates sublimation enthalpies, particularly

TABLE II. Lattice energies of the C21 crystals compared to the experimental reference data. The mean absolute errors (MAE) and mean absolute relative
errors (MA%E) are indicated. The last two lines show the MA%E when no thermal correction and the 2RT term are used. Units are kJ/mol.

Name B86b-XDM PBE PBE-D PBE-TS PBE-XDM vdw-DF1 vdw-DF2 �E
exp
el

14-cyclohexanedione 85.81 37.56 97.32 107.22 84.64 104.39 103.33 86.53
Acetic acid 71.76 48.12 77.60 83.66 72.52 77.38 78.10 71.80
Adamantane 72.80 − 0.35 83.94 108.92 69.83 82.56 79.48 62.43
Ammonia 38.56 28.86 46.23 44.03 39.15 37.47 40.31 37.57
Anthracene 101.23 14.77 106.22 135.46 96.29 116.98 108.55 100.58
Benzene 51.23 10.57 56.32 66.51 49.49 59.94 55.87 50.41
CO2 21.55 10.46 24.37 25.72 22.63 35.76 33.81 27.80
Cyanamide 87.24 67.51 92.43 94.10 87.75 84.58 88.40 79.16
Cytosine 151.25 104.24 163.83 172.82 150.25 153.92 157.53 168.81
Ethylcarbamate 83.76 50.83 92.82 99.49 84.18 95.96 95.92 84.17
Formamide 77.95 59.63 84.12 86.79 78.65 79.22 82.56 78.74
Imidazole 87.54 57.09 94.46 100.76 87.32 89.99 89.58 85.75
Naphthalene 75.74 11.35 80.40 100.53 72.24 88.06 81.44 76.32
Oxalic acid (α) 111.28 81.05 119.65 125.17 112.12 120.25 125.43 96.02
Oxalic acid (β) 113.81 85.45 122.95 128.20 114.99 120.77 124.70 95.85
Pyrazine 59.66 21.83 64.47 74.90 58.48 69.09 67.75 62.16
Pyrazole 75.99 46.78 83.65 87.69 75.76 79.40 79.18 76.83
Triazine 54.73 20.30 61.20 67.98 53.93 68.38 66.50 60.51
Trioxane 57.95 23.37 67.23 75.78 57.34 77.64 79.31 62.54
Uracil 130.42 87.27 138.21 150.21 130.19 137.31 140.01 132.90
Urea 101.91 77.23 112.02 112.62 102.51 101.93 108.28 99.43

MAE 4.81 35.83 9.05 16.97 5.35 10.22 10.11
MA%E 6.23 47.22 11.94 22.08 6.74 13.53 13.11

MA%E (no correction) 10.10 43.32 18.99 30.47 9.40 21.75 21.35
MA%E (plus 2RT) 6.42 47.23 12.27 22.37 6.98 13.15 12.80
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FIG. 3. Graphical representation of the lattice energy errors relative to the reference value for all the functionals used. The black crosses mark single experi-
mental results and give an idea of the spread and quality of the reference.

for dispersion-bound crystals, such as benzene, naphthalene,
anthracene, or adamantane.

Next to XDM, PBE-D, and the vdw-DF functionals
achieve a MAE around 10 kJ/mol, with PBE-D giving slightly
better results. Because the crystal selection is restricted to or-
ganic molecules, the C21 set is favorable for PBE-D. Future
work will explore surface adsorption and lattice energies of
organometallic crystals (for instance, ferrocene, for which ex-
tensive sublimation enthalpy data are available). The newer
vdw-DF2 does not seem to improve appreciably the energet-
ics with respect to vdw-DF1. Lastly, PBE-TS results are rather
poor (MAE 16.97 kJ/mol), which is curious especially consid-
ering the good performance for the S22 set.32 Our results for
CO2, benzene, naphthalene, anthracene, and cytosine are con-
sistent with Ref. 31, and the geometries predicted by PBE-TS
are good (see below), which at first sight rules out errors in
the implementation. Certainly, the problem of weak interac-
tions in molecular solids, where many different types of non-
covalent bonding situations happen concurrently is different
(and possibly tougher, as the statistics show) than dimer bind-
ing. This result warns against judging performance from the
S22 statistics alone when shifting from molecules to solids,
particularly if this database has been used as a training set for
the functional.

The vdw-DF functionals, PBE-D, and especially PBE-
TS, are clearly biased towards overbinding. A possible expla-
nation of this effect in the case of PBE-D and PBE-TS comes
from the higher order pairwise contributions to the disper-
sion energy. Contrary to XDM, both methods only include
the leading R−6 term in the dispersion expansion, and use
a combination of overestimated C6 coefficients derived from
the free-atom values and the damping function to account for
the missing stabilizing energy. For instance, the C6,ii for car-
bon in benzene (atomic units) are 19.72 (B86b-XDM), 19.56
(PBE-XDM), 32.27 (PBE-TS), and 30.35 (PBE-D). The PBE-
TS and PBE-D coefficients are more than 60% larger than
their XDM equivalents, a trend that is repeated for other crys-
tals and atoms. The damping parameters are fit to a train-
ing set of dimers, which are much less densely packed than

molecular crystals. Intermolecular interactions in the solid,
that should be decaying like R−8 and R−10, are represented
by a R−6 term and, because their number is much greater than
in the training set, the dispersion energy is overestimated. The
success of XDM can, therefore, be explained by the introduc-
tion of higher order terms and the lack of reference to the
free-atom interaction coefficients, which are much larger than
the in-molecule ones.58 The overestimation of the lattice ener-
gies by vdw-DF functionals is, however, not explained by this
hypothesis.

Another possible explanation for the overestimation is
the lack of the non-additive many-body effects in the dis-
persion energy expansion. The leading three-body term (cor-
responding to a triple-dipole interaction, the Axilrod-Teller-
Muto term) is, in general, repulsive in condensed phases and
could lead to a correction to PBE-TS and PBE-D system-
atic deviations. In a recent article, Tkatchenko et al.80 report
that including the non-additive many-body contributions to
the dispersion energy reduces the overestimation in PBE-TS
and improves its S22 statistics, in line with previous observa-
tions of the relative importance of this term.81 The evaluation
of the many-body contributions (particularly the triple-dipole
Axilrod-Teller-Muto term) in XDM is possible and will be the
subject of a future work.

It has been argued before35 that the 2RT correction to the
sublimation enthalpy should not be included when compar-
ing static lattice energies to sublimation enthalpies. Table II
shows that this is clearly not the case. Using the uncorrected
sublimation enthalpies doubles the MAE because the refer-
ence is shifted to smaller values, increasing the overbinding.
The 2RT correction gives MAE similar to, but slightly larger
than, those obtained using the rigorous thermal correction, ex-
cept in the case of vdw-DF.

Table III and Table 2 of the supplementary material68

compare the equilibrium geometries at −pth external pressure
with diffraction data. The agreement of B86b-XDM, PBE-
D, vdw-DF2, and PBE-TS with experiment is remarkable,
predicting cell lengths within 1%–2% (a little more than 0.1
bohr) of the correct result, angles within 0.2%, and errors in
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TABLE III. Mean absolute and relative deviations of cell lengths, angles, and atomic positions. The coordinates
of hydrogen atoms have not been included in the statistics. Length units are bohr.

Name B86b-XDM PBE-D PBE-TS PBE-XDM vdw-DF1 vdw-DF2

MAD lengths 0.12 0.11 0.10 0.20 0.31 0.14
MA%D lengths 1.76 1.31 1.58 2.75 4.40 1.88

MAD angles 0.17 0.19 0.14 0.29 0.11 0.13
MA%D angles 0.16 0.18 0.13 0.27 0.10 0.12

MAD internal 0.00063 0.00046 0.00054 0.00085 0.00050 0.00032

the internal coordinates in the order of 10−3–10−4. The lat-
ter value indicates that intramolecular interactions involving
covalent bonds are not affected by the dispersion correction
and the excellent GGA description of covalent distances pre-
vails. Curiously, in spite of its poor statistics for energetics,
PBE-TS cell lengths are accurate. It is clear from these results
that good agreement with experimental geometries does not
automatically ensure good energetics.

PBE-D, B86b-XDM, and vdw-DF2 are in the same ac-
curacy range, with lengths predicted better in that order and
angles in the reverse order. PBE-XDM gives poorer results
than B86b-XDM, even more so than in the case of lattice en-
ergies, with a MA%D escalating up to 2.75%. The PBE-XDM
cell lengths are on average 0.20 bohr away from the experi-
mental values, which we still consider usable. Also, there is a
great improvement in vdw-DF2 compared to vdw-DF1, cor-
recting the systematic overestimation of the cell lengths, in
agreement with previous results.29, 33

VI. CONCLUSIONS

In this article, we propose the C21 set, a benchmark
for non-covalent interactions in molecular solids based on
experimental sublimation enthalpies and diffraction crystal
geometries. Using a careful procedure involving reasonable
physical and numerical approximations, we take into account
thermal and zero-point effects on both measures. Sublima-
tion enthalpies are reduced to lattice energies, directly com-
parable to electronic-structure static results. Diffraction data
can be compared with static results by optimizing the crys-
tal structure under an external pressure equal to the thermal
pressure, which is calculated from the vibrations of the crys-
tal. We used the new benchmark to assess the performance
of several dispersion-corrected functionals: DFT-D2 (PBE),
Tkatchenko-Scheffler (PBE-TS), two non-local functionals
by Langreth et al. (vdw-DF1 and vdw-DF2), and the XDM
model, recently implemented in solids (B86b-XDM and PBE-
XDM). The most accurate results are obtained with B86b-
XDM, which predicts lattice energies with a mean absolute
deviation of 4.8 kJ/mol, less than the experimental precision
for sublimation enthalpy measurements (4.9 kJ/mol). Also,
lattice constants are in agreement with experiment within
1%–2%, cell angles within 0.1%–0.2% and the deviation in
the atomic coordinates is in the range of 10−4–10−3.

B86b-XDM is confirmed as an excellent method for lat-
tice energies and geometries of molecular crystals and further
applications to surface adsorption and polymorph ranking are

in progress. The lattice energies are predicted with a mean
absolute percent error (6.23%) that at least roughly doubles
the accuracy of other common approaches in the literature
(PBE-D, PBE-TS, vdw-DF1, vdw-DF2), while still offering
very good crystal geometries and retaining the computational
cost of a semilocal DFT calculation. In contrast, PBE-XDM
presents poorer energetics and geometries than B86b-XDM
because of the spurious binding of the exchange functional.
While the crystal structures predicted by PBE-D and PBE-TS
are in very good agreement with diffraction data, their lat-
tice energies are affected by overbinding, possibly caused by
neglecting the higher order terms in the dispersion asymp-
totic formula. The most recent non-local functional, vdw-
DF2, does not predict better lattice energies but greatly im-
proves the crystal geometries compared to vdw-DF1.
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