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Center for Imaging Science, Johns Hopkins University

308B Clark Hall, 3400 N. Charles St., Baltimore MD 21218, USA

http://www.vision.jhu.edu

Abstract

Over the past few years, several methods for segment-

ing a scene containing multiple rigidly moving objects have

been proposed. However, most existing methods have been

tested on a handful of sequences only, and each method has

been often tested on a different set of sequences. Therefore,

the comparison of different methods has been fairly limited.

In this paper, we compare four 3-D motion segmentation al-

gorithms for affine cameras on a benchmark of 155 motion

sequences of checkerboard, traffic, and articulated scenes.

1. Introduction

Motion segmentation is a very important pre-processing

step for several applications in computer vision, such as

surveillance, tracking, action recognition, etc. During the

nineties, these applications motivated the development of

several 2-D motion segmentation techniques. Such tech-

niques aimed to separate each frame of a video sequence

into different regions of coherent 2-D motion (optical flow).

For example, a video of a rigid scene seen by a moving cam-

era could be segmented into multiple 2-D motions, because

of depth discontinuities, occlusions, perspective effects, etc.

However, in several applications the scene may contain

several moving objects, and one may need to identify each

object as a coherent entity. In such cases, the segmentation

task must be performed based on the assumption of several

motions in 3-D space, not simply in 2-D. This has motivated

several works on 3-D motion segmentation during the last

decade, which can be roughly separated into two categories:

1. Affine methods assume an affine projection model,

which generalizes orthographic, weak-perspective and

paraperspective projection. Under the affine model,

point trajectories associated with each moving object

across multiple frames lie in a linear subspace of di-

mension at most 4. Therefore, 3-D motion segmen-

tation can be achieved by clustering point trajectories

into different motion subspaces. At present, several al-

gebraic and statistical methods for performing this task

have been developed (see §2 for a brief review). How-

ever, all existing techniques have been typically evalu-

ated on a handful of sequences, with limited compari-

son against other methods. This motivates a study on

the real performances of these methods.

2. Perspective methods assume a perspective projection

model. In this case, point trajectories associated with

each moving object lie in a multilinear variety (bilinear

for two views, trilinear for three views, etc.) There-

fore, motion segmentation is equivalent to clustering

these multilinear varieties. Because this problem is

nontrivial, most prior work has been limited to alge-

braic methods for factorizing bilinear and trilinear va-

rieties (see e.g. [18, 7]) and statistical methods for two

[15] and multiple [13] views. At present, the evalua-

tion of perspective methods is still far behind that of

affine methods. It is arguable that perspective methods

still need to be significantly improved, before a mean-

ingful evaluation and comparison can be made.

In this paper, we present a benchmark and a compari-

son of 3-D motion segmentation algorithms. We choose to

compare only affine methods, not only because the affine

case is better understood, but also because affine meth-

ods are at present better developed than their perspective

counterparts. We compare four state-of-the-art algorithms,

GPCA [16], Local Subspace Affinity (LSA) [21], Multi-

Stage Learning (MSL) [14] and RANSAC [4], on a database

of 155 motion sequences. The database includes 104 in-

door checkerboard sequences, 38 outdoor traffic sequences,

and 13 articulated/non-rigid sequences, all with two or three

motions. Our experiments show that LSA is the most accu-

rate method, with average classification errors of 3.45% for

two motions and 9.73% for three motions. However, for two

motions, GPCA and RANSAC are faster and have a limited

1%-2% drop in accuracy. More importantly, the results vary

depending on the type of sequences: LSA is more accurate

for checkerboard sequences, while GPCA is more accurate

for traffic and articulated scenes. The MSL algorithm is of-

ten very accurate, but significantly slower.



2. Multibody Motion Segmentation Problem

In this section, we review the geometry of the 3-D

motion segmentation problem from multiple affine views

and show that it is equivalent to clustering multiple low-

dimensional linear subspaces of a high-dimensional space.

2.1. Motion Subspace of a Rigid-Body Motion

Let {xfp ∈ R
2}f=1,...,F

p=1,...,P be the projections of P 3-D

points {Xp ∈ P
3}P

p=1
lying on a rigidly moving object onto

F frames of a rigidly moving camera. Under the affine pro-

jection model, which generalizes orthographic, weak per-

spective, and paraperspective projection, the images satisfy

the equation

xfp = AfXp, (1)

where Af = Kf

⎡

⎣

1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦

[

Rf tf

0
⊤ 1

]

∈ R
2×4 is the

affine camera matrix at frame f , which depends on the cam-

era calibration parameters Kf ∈ R
2×3 and the object pose

relative to the camera (Rf , tf ) ∈ SE(3).
Let W1∈R

2F×P be the matrix whose P columns are the

image point trajectories {xfp}
P
p=1

. It follows from (1) that

W1 can be decomposed into a motion matrix M1 ∈ R
2F×4

and a structure matrix S1 ∈ R
P×4 as

W1 = M1S
⊤
1

⎡

⎢

⎣

x11 · · ·x1P

...
...

xF1 · · ·xFP

⎤

⎥

⎦

2F×P

=

⎡

⎢

⎣

A1

...

AF

⎤

⎥

⎦

2F×4

[

X1 · · ·XP

]

4×P
,

(2)

hence rank(W1) ≤ 4. Note also that the rows of each Af

involve linear combinations of the first two rows of the ro-

tation matrix Rf , hence rank(W1) ≥ rank(Af ) = 2. There-

fore, under the affine projection model, the 2-D trajecto-

ries of a set of 3-D points seen by a rigidly moving camera

(the columns of W1) live in a subspace of R
2F of dimension

d1 = rank(W1) = 2, 3 or 4.

2.2. Segmentation of Multiple Rigid-Body Motions

Assume now that the P trajectories {xfp}
P
p=1

corre-

spond to n objects undergoing n rigid-body motions relative

to a moving camera. The 3-D motion segmentation problem

is the task of clustering these P trajectories according to

the n moving objects. Since the trajectories associated with

each object span a di-dimensional linear subspace of R
2F ,

the 3-D motion segmentation problem is equivalent to clus-

tering a set of points into n subspaces of R
2F of unknown

dimensions di ∈ {2, 3, 4} for i = 1, . . . , n.

Notice that the data matrix can be written as

W =
[

W1, W2, · · · , Wn

]

Γ ∈ R
2F×P , (3)

where the columns of Wi ∈ R
2F×Pi are the Pi trajecto-

ries associated with the ith moving object, P =
n
∑

i=1

Pi, and

Γ⊤ ∈ R
P×P is an unknown matrix permuting the P trajec-

tories according to the n motions. Since Wi can be factorized

into matrices M̂i ∈ R
2F×di and Ŝi ∈ R

Pi×di as

Wi = M̂iŜ
⊤

i i = 1, . . . , n, (4)

the matrix associated with all the objects can be factorized

into matrices M ∈ R
2F×

P

n
i=1

di and S ∈ R
P×

P

n
i=1

di as

W =
[

W1, W2, · · · , Wn

]

Γ ∈ R
2F×P

=
[

M̂1, M̂2, · · · , M̂n

]

⎡

⎢

⎢

⎢

⎢

⎣

Ŝ
⊤

1

Ŝ
⊤

2

. . .

Ŝ
⊤

n

⎤

⎥

⎥

⎥

⎥

⎦

Γ

= MS
⊤
Γ.

(5)

It follows that one possible way of solving the motion

segmentation problem is to find a permutation matrix Γ,

such that the matrix WΓ⊤ can be decomposed into a mo-

tion matrix M and a block diagonal structure matrix S. This

idea has been the basis for most existing motion segmenta-

tion algorithms [1, 3, 5, 8, 10, 11, 19]. However, as shown

in [10], in order for W to factor according to (5), the motion

subspaces {Wi ⊂ R
2F }n

i=1
must be independent, that is,

for all i �= j = 1, . . . , n, we must have dim(Wi∩Wj) = 0,

so that rank(W) =
∑i

i=1
di, where di = dim(Wi).

Unfortunately, most practical motion sequences exhibit

partially dependent motions, i.e. there are i, j ∈ {1, . . . , n}
such that 0 < dim(Wi ∩ Wj) < min{di, dj}. For exam-

ple, when two objects have the same rotational but different

translational motion relative to the camera [14], or for artic-

ulated motions [20]. This has motivated the development of

several algorithms for dealing with partially dependent mo-

tions, including statistical methods [6, 14], spectral meth-

ods [21, 22] and algebraic methods [16]. We review some

of these methods in the next section.

3. Multibody Motion Segmentation Algorithms

3.1. Generalized PCA (GPCA) [17, 16]

Generalized Principal Component Analysis (GPCA) is

an algebraic method for clustering data lying in multiple

subspaces proposed by Vidal et al. [17]. The main idea be-

hind GPCA is that one can fit a union of n subspaces with a

set of polynomials of degree n, whose derivatives at a point

give a vector normal to the subspace containing that point.

The segmentation of the data is then obtained by grouping

these normal vectors, which can be done using several tech-

niques. In the context of motion segmentation, GPCA op-

erates as follows [16]:



1. Projection: Project the trajectories onto a subspace of

R
2F of dimension 5 to obtain the projected data matrix

Ŵ = [w1, . . . ,wP ] ∈ R
5×P .

The reason for projecting is as follows. Since the max-

imum dimension of each motion subspace is 4, project-

ing onto a generic subspace of dimension 5 preserves

the number and dimensions of the motion subspaces.

As a byproduct, there is an important reduction in the

dimensionality of the problem, which is now reduced

to clustering subspaces of dimension at most 4 in R
5.

Another advantage of the projection, is that it allows

one to deal with missing data, as a rank-5 factoriza-

tion of W can be computed using matrix factorization

techniques for missing data (see [2] for a review).

2. Multibody motion estimation via polynomial fitting:

Fit a homogeneous polynomial representing all motion

subspaces to the projected data. For example, if we

have n motion subspaces of dimension 4, then each

one can be represented with a unique normal vector in

R
5 as {w : b

⊤

i w = 0}. The union of n subspaces is

represented as {w : qn(w) = (b⊤

1
w) · · · (b⊤

nw) = 0}.

qn is a polynomial of degree n in w that can be written

as c
⊤νn(w), where c is the vector of coefficients, and

νn(w) is the vector of all monomials of degree n in w.

The vector of coefficients is of dimension O(n4) and

can be computed from the linear system

c
⊤

[

νn(w1) νn(x2) · · · νn(wP )
]

= 0. (6)

3. Feature clustering via polynomial differentiation: For

n = 2, ∇q2(w) = (b⊤

2
w)b1 + (b⊤

1
w)b2, thus if wp

belongs to the first motion, then ∇q2(w) ∼ b1. More

generally, one can obtain the normal to the hyperplane

containing point wp from the gradient of qn(w) at wp

b(wp) ∼ ∇qn(wp). (7)

One can then cluster the point trajectories by applying

spectral clustering [12] to the similarity matrix Sij =
cos2(θij), where θij is the angle between the vectors

∇qn(wi) and ∇qn(wj) for i, j = 1, . . . , P .

The first advantage of GPCA is that it is an algebraic al-

gorithm, thus it is computationally very cheap. Second, as

each subspace is represented with a hyperplane containing

the subspace, intersections between subspaces are automat-

ically allowed, and so the algorithm can deal with both in-

dependent and partially dependent motions. Third, GPCA

can deal with missing data by performing the projection step

using matrix factorization techniques for missing data [2].

The main drawback of GPCA is that c is of dimension

O(n4), while there are only 4n unknowns in the n nor-

mal vectors. Since c is computed using least-squares, this

causes the performance of GPCA to deteriorate as n in-

creases. Also, the computation of c is sensitive to outliers.

3.2. Local Subspace Affinity (LSA) [21]

The LSA algorithm proposed by Yan and Pollefeys

in [21] is also based on a linear projection and spectral

clustering. The main difference is that LSA fits a subspace

locally around each projected point, while GPCA uses the

gradients of a polynomial that is globally fit to the projected

data. The main steps of the local algorithm are as follows:

1. Projection: Project the trajectories onto a subspace of

dimension D = rank(W) using the SVD of W. The

value of D is determined using model selection tech-

niques. The resulting points in R
D are then projected

onto the hypersphere S
D−1 by setting their norm to 1.

2. Local subspace estimation: For each point i, compute

its k nearest neighbors using the angles between the

vectors or their Euclidean distance as a metric. Then fit

a local subspace Wi to the point and its neighbors. The

dimension di of the subspace Wi depends on the kind

of motion (e.g., general motion, purely translational,

etc.) and the position of the 3-D points (e.g. general

position, all on the same plane, etc.). The dimension di

is also determined using model selection techniques.

3. Spectral clustering: Compute a similarity matrix be-

tween two points i, j = 1, . . . , P as

Sij = exp{−

dij
∑

m=1

sin2(θm)}, (8)

where the {θm}
dij

m=1
are the principal angles between

the two subspaces Wi and Wj , and dij is the minimum

between dim(Wi) and dim(Wj). Finally, cluster the

features by applying spectral clustering [12] to S.

The LSA algorithm has two main advantages when com-

pared to GPCA. First, outliers are likely to be “rejected”,

because they are far from all the points and so they are

not considered as neighbors of the inliers. Second, LSA

requires only Dn ≤ 4n2 point trajectories, while GPCA

needs O(n4). On the other hand, LSA has two main draw-

backs. First, the neighbors of a point could belong to a dif-

ferent subspace – this case is more likely to happen near the

intersection of two subspaces. Second, the selected neigh-

bors may not span the underlying subspace. Both cases are

a source of potential misclassifications.

During our experiments, we had some difficulties in find-

ing a set of model selection parameters that would work

across all sequences. Thus, we decided to avoid model se-

lection in the first two steps of the algorithm and fix both

the dimension of the projected space D and the dimensions

of the individual subspaces {di}
n
i=1

. We used two choices

for D. One choice is D = 5, which is the dimension used

by GPCA. The other is D = 4n, which implicitly assumes

that all motions are independent and full-dimensional. In

our experiments in §5 we will refer to these two variants as

LSA 5 and LSA 4n, respectively. As for the dimension of

the individual subspaces, we assumed di = 4.



3.3. Multi-Stage Learning method (MSL) [14]

The Multi-Stage Learning (MSL) algorithm is a statis-

tical approach proposed by Sugaya and Kanatani in [14].

It builds on Costeira and Kanade’s factorization method

(CK) [3] and Kanatani’s subspace separation method (SS)

[10, 11]. While the CK and SS methods apply to indepen-

dent and non-degenerate subspaces, MSL can handle some

classes of degenerate motions by refining the solution of SS

using the Expectation Maximization algorithm (EM).

The CK algorithm proceeds by computing a rank-D ap-

proximation V ∈ R
P×D of W from its SVD W = UΣV⊤. As

shown in [10], when the motions are independent, the shape

interaction matrix Q = VV⊤ ∈ R
P×P is such that

Qij = 0 if points i and j belong to different objects. (9)

With noisy data, this equation holds only approximately.

CK’s algorithm obtains the segmentation by maximizing the

sum of squared entries of the noisy Q in different groups.

However, this process is very sensitive to noise [5, 10, 19].

The SS algorithm [10, 11] deals with noise using two

principles: dimension correction and model selection. Di-

mension correction is used to induce exact zero entries in

Q by replacing points in a group with their projections onto

an optimally fitted subspace. Model selection, particularly

the Geometric Akaike Information Criterion [9] (G-AIC), is

used to decide whether to merge two groups. This can be

achieved by applying CK’s method to a scaled version of Q

Sij =
G-AICWi,Wj

G-AICWi∪Wj

max
k∈Wi,l∈Wj

|Qkl| . (10)

However, in most practical sequences the motion sub-

spaces are degenerate, e.g. of dimension three for 2-D trans-

lational motions. In this case the SS algorithm gives wrong

results, because the calculation of the G-AIC uses the in-

correct dimensions for the individual subspaces. The MSL

algorithm deals with degenerate motions by assuming that

the type of degeneracy is known (e.g. 2-D translational), and

computing the G-AIC accordingly. Another issue is that in

most practical sequences the motion subspaces are partially

dependent. In this case, the SS algorithm also gives wrong

results, because equation (9) does not hold even with per-

fect data. To overcome these issues, the MSL algorithm it-

eratively refines the segmentation given by the SS algorithm

using EM for clustering subspaces as follows:

1. Obtain an initial segmentation using SS adapted to in-

dependent 2-D translational motions.

2. Use the current solution to initialize an EM algorithm

adapted to independent 2-D translational motions.

3. Use the current solution to initialize an EM algorithm

adapted to independent affine subspaces.

4. Use the current solution to initialize an EM algorithm

adapted to full and independent linear subspaces.

The intuition behind the MSL algorithm is as follows. If

the motions are degenerate, then the first two stages will

give a good solution, which will simply be refined by the

last two stages. On the other hand, if the motions are not

degenerate, then the third stage will anyhow provide a good

initialization for the last stage to operate correctly.

As with all algorithms based on EM, the MSL method

suffers from convergence to a local minimum. Therefore,

good initialization is needed to reach the global optimum.

When the initialization is not good, it often happens that the

algorithm takes a long time to converge (several hours), as

it performs a series of optimization problems. Another dis-

advantage is that the algorithm is not designed for partially

dependent motions, thus sometimes its performance is not

ideal. In spite of these difficulties in theory, in practice the

algorithm is quite accurate, as we will see in §5.

3.4. Random Sample Consensus (RANSAC) [4, 15]

RANdom SAmple Consensus (RANSAC) is a statistical

method for fitting a model to a cloud of points corrupted

with outliers in a statistically robust way. More specifically,

if d is the minimum number of points required to fit a model

to the data, RANSAC randomly samples d points from the

data, fits a model to these d points, computes the residual of

each data point to this model, and chooses the points whose

residual is below a threshold as the inliers. The procedure is

then repeated for another d sample points, until the number

of inliers is above a threshold, or enough samples have been

drawn. The outputs of the algorithm are the parameters of

the model and the labeling of inliers and outliers.

In the case of motion segmentation, the model to be fit

by RANSAC is a subspace of dimension d. Since there are

multiple subspaces, RANSAC proceeds iteratively by fitting

one subspace at a time as follows:

1. Apply RANSAC to the original data set and recover a

basis for the first subspace along with the set of inliers.

All points in other subspaces are considered as outliers.

2. Remove the inliers from the current data set and repeat

step 1 until all the subspaces are recovered.

3. For each set of inliers, use PCA to find an optimal basis

for each subspace. Segment the data into multiple sub-

spaces by assigning each point to its closest subspace.

The main advantage of RANSAC is its ability to handle

outliers explicitly. Also, notice that RANSAC can deal with

partially dependent motions, because it computes one sub-

space at a time. However, the performance of RANSAC de-

teriorates quickly as the number of motions n increases, be-

cause the probability of drawing d inliers reduces exponen-

tially with the number of subspaces. Another drawback of

RANSAC is that it uses d = 4 as the dimension of the sub-

spaces, which is not the minimum number of points needed

to define a degenerate subspace (of dimension 2 or 3).



3.5. Reference

Data from real sequences contain not only noise and out-

liers, but also some degree of perspective effects, which are

not accounted for by the affine model. Therefore, obtaining

a perfect segmentation is not always possible.

In order to verify the validity of the affine model on real

data, we will also compare the performance of affine algo-

rithms with an “oracle” algorithm (here called Reference).

This algorithm cannot be used in practice, because it re-

quires the ground truth segmentation as an input. The algo-

rithm uses least-squares to fit a subspace to the data points in

each group using the SVD. Then, the data are re-segmented

by assigning each point to its nearest subspace.

This Reference algorithm shows, with a perfect estima-

tion of the subspaces, if the data can be segmented using

the approximation of affine cameras and constitutes a good

term of comparison for all the other (practical) algorithms.

4. Benchmark

We collected a database of 50 video sequences of indoor

and outdoors scenes containing two or three motions. Each

video sequence X with three motions was split into three

motion sequences X g12, X g13 and X g23 containing the

points from groups one and two, one and three, and two

and three, respectively. This gave a total of 155 motion se-

quences: 120 with two motions and 35 with three motions.

Figure 1 shows a few sample images from the videos in

the database with feature points superimposed. The entire

database is available at http://www.vision.jhu.edu.

These sequences contain degenerate and non-degenerate

motions, independent and partially dependent motions, ar-

ticulated motions, nonrigid motions, etc. To summarize the

amount of motion present in all the sequences, we estimated

the rotation and translation between all pairs of consecutive

frames for each motion in each sequence. This information

was used to produce the histograms shown in Figure 2.

Based on the content of the video and the type of motion,

the sequences can be categorized into three main groups:

Checkerboard sequences: this group consists of 104 se-

quences of indoor scenes taken with a handheld camera un-

der controlled conditions. The checkerboard pattern on the

objects is used to assure a large number of tracked points.

Sequences 1R2RC–2T3RTCR contain three motions: two

objects (identified by the numbers 1 and 2, or 2 and 3 ) and

the camera itself (identified by the letter C ). The type of mo-

tion of each object is indicated by a letter: R for rotation,

T for translation and RT for both rotation and translation.

If there is no letter after the C, this signifies that the cam-

era is fixed. For example, if a sequence is called 1R2TC

it means that the first object rotates, the second translates

and the camera is fixed. Sequence three-cars is taken from

[18] and contains three motions of two toy cars and a box

moving on a plane (the table) taken by a fixed camera.

(a) 1R2RCT B (b) 2T3RCRT

(c) cars3 (d) cars10

(e) people2 (f) kanatani3

Figure 1: Sample images from some sequences in the

database with tracked points superimposed.
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Figure 2: Histograms with the amount of rotation and trans-

lation between two consecutive frames for each motion.

Traffic sequences: this group consists of 38 sequences of

outdoor traffic scenes taken by a moving handheld camera.

Sequences carsX–truckX have vehicles moving on a street.

Sequences kanatani1 and kanatani2 are taken from [14] and

display a car moving in a parking lot. Most scenes contain

degenerate motions, particularly linear and planar motions.



Articulated/non-rigid sequences: this group contains 13

sequences displaying motions constrained by joints, head

and face motions, people walking, etc. Sequences arm and

articulated contain checkerboard objects connected by arm

articulations and by strings, respectively. Sequences peo-

ple1 and people2 display people walking, thus one of the

two motions (the person walking) is partially non-rigid. Se-

quence kanatani3 is taken from [14] and contains a moving

camera tracking a person moving his head. Sequences head

and two cranes are taken from [21] and contain two and

three articulated objects, respectively.

For the sequences used in [14, 18, 21], the point trajecto-

ries were provided in the respective datasets. For all the re-

maining sequences, we used a tool based on a tracking algo-

rithm implemented in OpenCV, a library freely available at

http://sourceforge.net/projects/opencvlibrary. The

ground-truth segmentation was obtained in a semi-

automatic manner. First, the tool was used to extract the

feature points in the first frame and to track them in the fol-

lowing frames. Then an operator removed obviously wrong

trajectories (e.g., points disappearing in the middle of the

sequence due to an occlusion by another object) and manu-

ally assigned each point to its corresponding cluster.

Table 1 reports the number of sequences and the aver-

age number of tracked points and frames for each category.

The number of points per sequence ranges from 39 to 556,

and the number of frames from 15 to 100. The table con-

tains also the average distribution of points per moving ob-

ject, with the last group corresponding to the camera motion

(motion of the background). This statistic was computed on

the original 50 videos only. Notice that typically the num-

ber of points tracked in the background is about twice as

many as the number of points tracked in a moving object.

Table 1: Distribution of the number of points and frames.

2 Groups 3 Groups

# Seq. Points Frames # Seq. Points Frames

Check. 78 291 28 26 437 28

Traffic 31 241 30 7 332 31

Articul. 11 155 40 2 122 31

All 120 266 30 35 398 29

Point Distr. 35%-65% 20%-24%-56%

5. Experiments

We tested the algorithms presented in §3 on our bench-

mark of 155 sequences. For each algorithm on each se-

quence, we recorded the classification error defined as

classification error =
# of misclassified points

total # of points
(11)

and the computation time (CPU time). Statistics with the

classification errors and computation times for the differ-

ent types of sequences are reported in Tables 2–5. Figure 3

shows histograms with the number of sequences in which

each algorithm achieved a certain classification error. More

detailed statistics with the classification errors and compu-

tation times of each algorithm on each of the 155 sequences

can be found at http://www.vision.jhu.edu.

Because of the statistical nature of RANSAC, its seg-

mentation results on the same sequence can vary in differ-

ent runs of the algorithm. To have a meaningful result, we

run the algorithm 1,000 times on each sequence and report

Table 2: Classification error statistics for two groups.

Check. REF GPCA LSA 5 LSA 4n MSL RANSAC

Average 2.76% 6.09% 8.84% 2.57% 4.46% 6.52%

Median 0.49% 1.03% 3.43% 0.27% 0.00% 1.75%

Traffic REF GPCA LSA 5 LSA 4n MSL RANSAC

Average 0.30% 1.41% 2.15% 5.43% 2.23% 2.55%

Median 0.00% 0.00% 1.00% 1.48% 0.00% 0.21%

Articul. REF GPCA LSA 5 LSA 4n MSL RANSAC

Average 1.71% 2.88% 4.66% 4.10% 7.23% 7.25%

Median 0.00% 0.00% 1.28% 1.22% 0.00% 2.64%

All REF GPCA LSA 5 LSA 4n MSL RANSAC

Average 2.03% 4.59% 6.73% 3.45% 4.14% 5.56%

Median 0.00% 0.38% 1.99% 0.59% 0.00% 1.18%

Table 3: Average computation times for two groups.

GPCA LSA 5 LSA 4n MSL RANSAC

Check. 353ms 7.286s 8.237s 7h 4m 195ms

Traffic 288ms 6.424s 7.150s 21h 34m 107ms

Articul. 224ms 3.826s 4.178s 9h 47m 226ms

All 324ms 6.746s 7.584s 11h 4m 175ms

Table 4: Classification error statistics for three groups.

Check. REF GPCA LSA 5 LSA 4n MSL RANSAC

Average 6.28% 31.95% 30.37% 5.80% 10.38% 25.78%

Median 5.06% 32.93% 31.98% 1.77% 4.61% 26.01%

Traffic REF GPCA LSA 5 LSA 4n MSL RANSAC

Average 1.30% 19.83% 27.02% 25.07% 1.80% 12.83%

Median 0.00% 19.55% 34.01% 23.79% 0.00% 11.45%

Articul. REF GPCA LSA 5 LSA 4n MSL RANSAC

Average 2.66% 16.85% 23.11% 7.25% 2.71% 21.38%

Median 2.66% 16.85% 23.11% 7.25% 2.71% 21.38%

All REF GPCA LSA 5 LSA 4n MSL RANSAC

Average 5.08% 28.66% 29.28% 9.73% 8.23% 22.94%

Median 2.40% 28.26% 31.63% 2.33% 1.76% 22.03%

Table 5: Average computation times for three groups.

GPCA LSA 5 LSA 4n MSL RANSAC

Check. 842ms 16.711s 17.916s 2d 6h 285ms

Traffic 529ms 12.657s 12.834s 1d 8h 135ms

Articul. 125ms 1.175s 1.400s 1m 19.993s 338ms

All 738ms 15.013s 15.956s 1d 23h 258ms
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Figure 3: Histograms with the percentage of sequences in which each method achieves a certain classification error.

the average classification error. Also, the thresholds were

set with some hand-tuning on a couple of sequences (and

then the same values were used for all the others).

The reference machine used for all the experiments is an

Intel Xeon MP with 8 processors at 3.66GHz and 32GB of

RAM (but for each simulation each algorithm exploits only

one processor, without any parallelism).

6. Discussion

By looking at the results, we can draw the following con-

clusions about the performance of the algorithms tested.

Reference. The results from this “oracle” algorithm show

that the affine camera approximation (linear subspaces)

gives reasonably good results for nearly all the sequences.

Indeed, the reference method gives a perfect segmentation

for more than 50% of the sequences, with a classification

error of 2% and 5% for two and three motions, respectively.

GPCA. For GPCA, we have to comment separately the re-

sults for sequences with two and three motions. For two

motions, the classification error is 4.59% with an average

computation time of 324 ms. For three motions, the results

are completely different: the increase of computation time

is reasonable (about 738 ms), but the segmentation error is

significantly higher (about 29%). This is expected, because

the number of coefficients fitted by GPCA grows exponen-

tially with the number of motions. Nevertheless, notice that

GPCA has higher errors on the checkerboard sequences,

which constitute the majority of the database. Indeed, for

the traffic and articulated sequences, GPCA is among the

most accurate methods, both for two and three motions.

LSA. When the dimension for the projection is chosen as

D = 5, the LSA algorithm performs worse than GPCA.

This is because points in different subspaces are closer to

each other when D = 5, and so a point from a different

subspace is more likely to be chosen as a nearest neighbor.

GPCA, on the other hand, is not affected by points near the

intersection of the subspaces. The situation is completely

different when we use D = 4n. The LSA 4n algorithm

has the smallest error among all methods: 3.45% for two

groups and 9.73% for three groups. We believe that these

errors could be further reduced by using model selection to

determine D. Another important thing to observe is that

LSA 4n is the best method on the checkerboard sequences,

but has larger errors than GPCA on the traffic and articu-

lated sequences. On the complexity side, both variations of

LSA have computation times in the order of 7-15 s, which

are far greater than those of GPCA and RANSAC.

MSL. If we look only at the average classification error,

we can see that MSL and LSA 4n are the most accurate

methods. Furthermore, their segmentation results remain

consistent when going from two to three motions. How-

ever, the MSL method has two major drawbacks. First, the

EM algorithm can get stuck in a local minimum. This is

reflected by high classification errors for some sequences

where the Reference method performs well. Second, and

more importantly, the complexity does not scale favorably

with the number of points and frames, as the computation

times grow in the order of minutes, hours and days. This

may prevent the use of the MSL algorithm in practice, even

considering its excellent accuracy.



RANSAC. The results for this purely statistic algorithm are

similar to what we found for GPCA. Again, in the case of

two sequences we obtain good segmentation results and the

computation times are small. On the other and, the accu-

racy for three motions is not satisfactory. This is expected,

because as the number of motions increases, the probabil-

ity of drawing a set of points from the same group reduces

significantly. Another drawback of RANSAC is that its per-

formance varies between two runs on the same data.

7. Conclusions

We compared four different motion segmentation algo-

rithms on a benchmark of 155 motion sequences. We found

that the best performing algorithm (and the only one us-

able in practice for sequences with three groups) is the LSA

approach with dimension of the projected space D = 4n.

However, if we look only at sequences with two motions,

GPCA and RANSAC can obtain similar results in a frac-

tion of the time required by the others. Thus, they are apt to

be used in real-time applications. Moreover, GPCA outper-

forms LSA when they work on the same dimension D = 5.

From the results given by the reference method, we con-

clude that there is still room for improvement using the

affine camera approximation (as one can note from the gap

between the best approaches and the reference algorithm,

which is in the order of 1.5%-5%). It remains open to find a

fast and reliable segmentation algorithm, usable in real-time

applications, that works on sequences with three or more

motions. We hope that the publication of this database will

encourage the development of algorithms in this domain.
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