
A Benchmark for the Evaluation of RGB-D SLAM Systems

Jürgen Sturm1, Nikolas Engelhard2, Felix Endres2, Wolfram Burgard2, and Daniel Cremers1

Abstract— In this paper, we present a novel benchmark for
the evaluation of RGB-D SLAM systems. We recorded a large
set of image sequences from a Microsoft Kinect with highly
accurate and time-synchronized ground truth camera poses
from a motion capture system. The sequences contain both the
color and depth images in full sensor resolution (640× 480)
at video frame rate (30 Hz). The ground-truth trajectory was
obtained from a motion-capture system with eight high-speed
tracking cameras (100 Hz). The dataset consists of 39 sequences
that were recorded in an office environment and an industrial
hall. The dataset covers a large variety of scenes and camera
motions. We provide sequences for debugging with slow motions
as well as longer trajectories with and without loop closures.
Most sequences were recorded from a handheld Kinect with
unconstrained 6-DOF motions but we also provide sequences
from a Kinect mounted on a Pioneer 3 robot that was
manually navigated through a cluttered indoor environment. To
stimulate the comparison of different approaches, we provide
automatic evaluation tools both for the evaluation of drift of
visual odometry systems and the global pose error of SLAM
systems. The benchmark website [1] contains all data, detailed
descriptions of the scenes, specifications of the data formats,
sample code, and evaluation tools.

I. INTRODUCTION

Public datasets and benchmarks greatly support the scien-

tific evaluation and objective comparison of algorithms. Sev-

eral examples of successful benchmarks in the area computer

vision have demonstrated that common datasets and clear

evaluation metrics can significantly help to push the state-

of-the-art forward. One highly relevant problem in robotics

is the so-called simultaneous localization (SLAM) problem

where the goal is to both recover the camera trajectory and

the map from sensor data. The SLAM problem has been

investigated in great detail for sensors such as sonar, laser,

cameras, and time-of-flight sensors. Recently, novel low-cost

RGB-D sensors such as the Kinect became available, and

the first SLAM systems using these sensors have already

appeared [2]–[4]. Other algorithms focus on fusing depth

maps to a coherent 3D model [5]. Yet, the accuracy of the

computed 3D model heavily depends on how accurate one

can determine the individual camera poses.

With this dataset, we provide a complete benchmark that

can be used to evaluate visual SLAM and odometry systems

on RGB-D data. To stimulate comparison, we propose two

evaluation metrics and provide automatic evaluation tools.

1 Jürgen Sturm and Daniel Cremers are with the Computer Vision Group,
Computer Science Department, Technical University of Munich, Germany.
{sturmju,cremers}@in.tum.de

2 Nikolas Engelhard, Felix Endres and Wolfram Burgard
are with the Autonomous Intelligent Systems Lab, Com-
puter Science Department, University of Freiburg, Germany.
{engelhar,endres,burgard}@informatik.uni-freiburg.de

(a) Office scene (“fr1”) (b) Industrial hall (“fr2”)

(c) Handheld Kinect sensor with
reflective markers

(d) Pioneer robot with Kinect sensor

Fig. 1. We present a large dataset for the evaluation of RGB-D SLAM
systems in (a) a typical office environment and (b) an industrial hall. We
obtained the ground truth camera position from a motion capture system
using reflective markers on (c) a hand-held and (d) a robot-mounted Kinect
sensor.

Our dataset consists of 39 sequences that we recorded in

two different indoor environments. Each sequence contains

the color and depth images, as well as the ground truth

trajectory from the motion capture system. We carefully cali-

brated and time-synchronized the Kinect sensor to the motion

capture system. After calibration, we measured the accuracy

of the motion capture system to validate the calibration.

All data is available online under the Creative Commons

Attribution license (CC-BY 3.0) at

http://vision.in.tum.de/data/datasets/

rgbd-dataset

The website contains—next to additional information about

the data formats, calibration data, and example code—videos

for simple visual inspection of the dataset.

II. RELATED WORK

The simultaneous localization and mapping (or structure-

from-motion) problem has a long history both in

robotics [6]–[12] and in computer vision [9], [13]–[16].

Different sensor modalities have been explored in the past,

including 2D laser scanners [17], [18], 3D scanners [19]–

[21], monocular cameras [9], [14]–[16], [22]–[24], stereo

systems [25], [26] and recently RGB-D sensors such as the

Microsoft Kinect [2]–[4].

http://vision.in.tum.de/data/datasets/rgbd-dataset
http://vision.in.tum.de/data/datasets/rgbd-dataset


1 1.5
0.2

0.4

0.6

0.8

1

x [m]

y
[m

]

(a) fr1/xyz

−1 0 1 2

−1

0

1

x [m]

y
[m

]

(b) fr1/room

−2 0 2 4

−2

0

x [m]

y
[m

]

(c) fr2/desk

−5 0 5

−2

0

2

x [m]

y
[m

]

(d) fr2/slam

Fig. 2. Four examples of sequences contained in our dataset. Whereas the top row shows an example image, the bottom row shows the ground truth
trajectory. The fr1/xyz sequence contains isolated motions along the coordinate axes, fr1/room and fr2/desk are sequences with several loop closures in
two different office scenes, and fr2/slam was recorded from a Kinect mounted on a Pioneer 3 robot in a search-and-rescue scenario.

For laser- and camera-based SLAM systems, there are

several well-known datasets such as the Freiburg, Intel,

Rawseeds and Newcollege datasets [27]–[29]. Geiger et

al. [30] recently presented a benchmark for visual odometry

from stereo images with ground truth poses. However the

depth maps are not provided so that an additional pre-

processing step is required. Pomerleau et al. [31] recorded

a dataset with untextured point clouds from a Kinect in a

motion capture studio. Also related is the work of Bao et

al. [32] who aimed at the evaluation of semantic mapping and

localization methods. However, in their dataset the camera

poses were estimated from the color images of the Kinect, so

that the ground truth is not accurate enough for our purpose.

To the best of our knowledge, our dataset is therefore the first

RGB-D dataset suitable for the evaluation of visual SLAM

(and visual odometry) systems, as it contains both color and

depth images and associated ground truth camera poses. An

earlier version of our benchmark was presented recently [33].

Inspired from the feedback we received, we extended the

original dataset with dynamic sequences, longer trajectories,

and sequences recorded from a Kinect mounted on a mobile

robot.

Next to the data itself, a suitable evaluation metric is

required for the benchmarking of SLAM solutions. One

common evaluation metric that does not even require a

ground truth is to measure the intrinsic errors after map opti-

mization, such as the re-projection errors or, more generally,

the χ2 error [12], [34]. However, obviously low χ2 errors

do not guarantee a good map or an accurate estimate of the

trajectory, as trivially not using any sensor data leads to zero

error. From a practical viewpoint, we therefore advocate—

similar to Olson et al. [34]—to evaluate the end-to-end

performance of the whole system by comparing its output

(map or trajectory) with the ground truth. The map can

for example be evaluated by overlaying it onto the floor

plan and searching for differences. Although, in principle,

difference images between the two maps can be computed

automatically [35], the performance is often only judged

visually by searching for thin structures, kinks or ghosts like

double walls.

The alternative to map comparison is to evaluate a SLAM

system by comparing the estimated camera motion against

the true trajectory. Two frequently employed methods are

the relative pose error (RPE) and the absolute trajectory

error (ATE). The RPE measures the difference between the

estimated motion and the true motion. It can either be used

to evaluate the drift of a visual odometry system [36] or

the accuracy at loop closures of SLAM systems [37], [38]

which is especially useful if only sparse, relative relations

are available as ground truth. Instead of evaluating relative

poses differences, the ATE first aligns the two trajectories

and then evaluates directly the absolute pose differences.

This method is well suited for the evaluation of visual

SLAM systems [34], [39] but requires that absolute ground

truth poses are available. As we provide dense and absolute

ground truth trajectories, both metrics are applicable. For

both measures, we provide a reference implementation that

computes the respective error given the estimated and the

ground truth trajectory.

In this paper, we present a novel benchmark for the evalua-

tion of visual SLAM and visual odometry systems on RGB-D

data. Inspired from successful benchmarks in computer vi-

sion such as the Middlebury optical flow dataset [40] and the

KITTI vision benchmark suite [30], we split out dataset into a

training and a testing part. While the training sequences are

fully available for offline evaluation, the testing sequences

can only be evaluated on the benchmark website [1] to avoid

over-fitting.

III. DATASET

The Kinect sensor consists of an near-infrared laser that

projects a refraction pattern on the scene, an infrared camera



that observes this pattern, and a color camera in between. As

the projected pattern is known, it is possible to compute the

disparity using block matching techniques. Note that image

rectification and block matching is implemented in hardware

and happens internally in the sensor.

We acquired a large set of data sequences containing

both RGB-D data from the Kinect and ground truth pose

estimates from the motion capture system. We recorded

these trajectories both in a typical office environment (“fr1”,

6 × 6m2) and in a large industrial hall (“fr2”, 10 × 12m2)

as depicted in Fig. 1. In most of these recordings, we used a

handheld Kinect to browse through the scene. Furthermore,

we recorded additional sequences with a Kinect mounted

on a wheeled robot. Table I summarizes statistics over the

19 training sequences, and Fig. 2 shows images of four of

them along with the corresponding camera trajectory. On

average, the camera speeds of the fr1 sequences are higher

than those of fr2. Except otherwise noted, we ensured that

each sequence contains several loop closures to allow SLAM

systems to recognize previously visited areas and use this

to reduce camera drift. We grouped the recorded sequences

into the categories “Calibration”, “Testing and Debugging”,

“Handheld SLAM”, and “Robot SLAM”.

In the following, we briefly summarize the recorded se-

quences according to these categories.

a) Calibration: For the calibration of intrinsic and

extrinsic parameters of the Kinect and the motion capture

system, we recorded for each Kinect

• one sequence with color and depth images of a handheld

8×6 checkerboard with 20 mm square size recorded by

a stationary Kinect,

• one sequence with infrared images of a handheld 8 ×
6 checkerboard with 20 mm square size recorded by a

stationary Kinect,

• one sequence with color and depth images of a sta-

tionary 8 × 7 checkerboard with 108 mm square size

recorded by a handheld Kinect.

b) Testing and Debugging: These sequences are in-

tended to facilitate the development of novel algorithms with

separated motions along and around the principal axes of the

Kinect. In the “xyz” sequences, the camera was moved ap-

proximately along the X-, Y- and Z-axis (left/right, up/down,

forward/backward) with little rotational components (see

also Fig. 2a). Similarly, in the two “rpy” (roll-pitch-yaw)

sequences, the camera was mostly only rotated around the

principal axes with little translational motions.

c) Handheld SLAM: We recorded 11 sequences with

a handheld Kinect, i.e., 6-DOF camera motions. For the

“fr1/360” sequence, we covered the whole office room by

panning the Kinect in the center of the room. The “fr1/floor”

sequence contains a camera sweep over the wooden floor.

The “fr1/desk”, “fr1/desk2” and “fr1/room” sequences cover

two tables, four tables, and the whole room, respectively

(see Fig. 2b). In the “fr2/360 hemisphere” sequence, we

rotated the Kinect on the spot and pointed it at the walls

and the ceiling of the industrial hall. In the “fr2/360 kidnap”

sequence, we briefly covered the sensor with the hand for a

(a) Motion capture system (b) Calibration procedure

Fig. 3. We use an external motion capture system from MotionAnalysis
to track the camera pose of the Kinect.

few seconds to test the ability of SLAM systems to recover

from sensor outages. For the “fr2/desk” sequence, we set up

an office environment in the middle of the motion capture

area consisting of two tables with various accessoires like

a monitor, a keyboard, books, see Fig. 2c. Additionally,

during the recording of the “fr2/desk with person” sequence

a person was sitting at one of the desks and continuously

moved several objects around.

Furthermore, we recorded two large tours through the

industrial hall, partially with poor illumination and few visual

features. In the “fr2/large no loop” sequence, special care

was taken that no visual overlap exists in the trajectory. Our

intention behind this was to provide a sequence for measur-

ing the long-term drift of (otherwise loop closing) SLAM

systems. In contrast, the “fr2/large with loop” sequence has

a large overlap between the beginning and the end of the

sequence, so that a large loop exists. It should be noted that

these tours were so large that we had to leave the motion

capture area in the middle of the industrial hall. As a result,

ground truth pose information only exists in the beginning

and in the end of the sequence.

d) Robot SLAM: We also recorded four sequences with

a Kinect that was mounted on an ActivMedia Pioneer 3 robot

(see Fig. 1d). With these sequences, it becomes possible to

demonstrate the applicability of SLAM systems to wheeled

robots. We aligned the Kinect horizontally, looking forward

into the driving direction of the robot, so that the horizon

was roughly located in the center of the image. Note that

the motion of the Kinect is not strictly restricted to a plane

because occasional tremors (as a result of bumps and wires

on the floor) deflected the orientation of the Kinect. During

recording, we joysticked the robot manually through the

scene.

In the “fr2/pioneer 360” sequence, we drove the robot

in a loop around the center of the (mostly) empty hall.

Due to the large dimensions of the hall, the Kinect could

not observe the depth of the distant walls for parts of

the sequence. Furthermore, we set up a search-and-rescue

scenario in the hall consisting of several office containers,

boxes, and other feature-poor objects, see Fig. 2d. As a

consequence, these sequences have depth, but are highly

challenging for methods that rely on distinctive keypoints.

In total, we recorded three sequences “fr2/pioneer slam”,



“fr2/pioneer slam2”, and “fr2/pioneer slam3” that differ in

the actual trajectories but all contain several loop closures.

IV. DATA ACQUISITION

All data was recorded at full resolution (640×480) and full

frame rate (30 Hz) of the Microsoft Xbox Kinect sensor on a

Linux laptop running Ubuntu 10.10 and ROS Diamondback.

For recording the RGB-D data, we used two different off-the-

shelf Microsoft Kinect sensors (one for the “fr1” sequences,

and a different sensor for the “fr2”). To access the color and

depth images, we used the openni camera package in ROS

which internally wraps PrimeSense’s OpenNI-driver [41]. As

the depth image and the color image are observed from two

different cameras, the observed (raw) images are initially

not aligned. To this aim, the OpenNI-driver has an option

to register the depth image to the color image using a

Z-buffer automatically. This is implemented by projecting

the depth image to 3D and subsequently back-projecting

it into the view of the color camera. The OpenNI-driver

uses for this registration the factory calibration stored on

the internal memory. Additionally, we used the kinect aux

driver to record the accelerometer data from the Kinect at

500 Hz.

To obtain the camera pose of the Kinect sensor, we used an

external motion capture system from MotionAnalysis [42].

Our setup consists of eight Raptor-E cameras with a camera

resolution of 1280×1024 pixels at up to 300 Hz (see Fig. 3a).

The motion capture system tracks the 3D position of passive

markers by triangulation. To enhance the contrast of these

markers, the motion capture cameras are equipped with

infrared LEDs to illuminate the scene. We verified that the

Kinect and the motion capture system do not interfere: The

motion capture LEDs appear as dim lamps in the Kinect

infrared image with no influence on the produced depth

maps, while the projector of the Kinect is not detected at

all by the motion capture cameras.

Finally, we also video-taped all experiments with an

external video camera to capture the camera motion and the

scene from a different view point. All sequences and movies

are available on our website [1].

V. FILE FORMATS, TOOLS AND SAMPLE CODE

Each sequence is provided as a single compressed TGZ

archive which consists of the following files and folders:

• “rgb/”: a folder containing all color images (PNG for-

mat, 3 channels, 8 bit per channel),

• “depth/”: same for the depth images (PNG format, 1

channel, 16 bit per channel, distance in meters scaled

by factor 5000),

• “rgb.txt”: a text file with a consecutive list of all color

images (format: timestamp filename),

• “depth.txt”: same for the depth images (format: times-

tamp filename),

• “imu.txt”: a text file containing the timestamped ac-

celerometer data (format: timestamp fx fy fz),

• “groundtruth.txt”: a text file containing the ground truth

trajectory stored as a timestamped translation vector and

Sequence Name Duration Avg. Trans. Avg. Rot.
[s] Vel. [m/s] Vel. [deg/s]

Testing and Debugging

fr1/xyz 30 0.24 8.92
fr1/rpy 28 0.06 50.15
fr2/xyz 123 0.06 1.72
fr2/rpy 110 0.01 5.77

Handheld SLAM

fr1/360 29 0.21 41.60
fr1/floor 50 0.26 15.07
fr1/desk 23 0.41 23.33
fr1/desk2 25 0.43 29.31
fr1/room 49 0.33 29.88
fr2/360 hemisphere 91 0.16 20.57
fr2/360 kidnap 48 0.30 13.43
fr2/desk 99 0.19 6.34
fr2/desk with person 142 0.12 5.34
fr2/large no loop 112 0.24 15.09
fr2/large with loop 173 0.23 17.21

Robot SLAM

fr2/pioneer 360 73 0.23 12.05
fr2/pioneer slam 156 0.26 13.38
fr2/pioneer slam2 116 0.19 12.21
fr2/pioneer slam3 112 0.16 12.34

TABLE I

LIST OF AVAILABLE RGB-D SEQUENCES

dataset camera fx fy cx cy

Freiburg 1 color 517.3 516.5 318.6 255.3
infrared 591.1 590.1 331.0 234.0
depth ds = 1.035

Freiburg 2 color 520.9 521.0 325.1 249.7
infrared 580.8 581.8 308.8 253.0
depth ds = 1.031

TABLE II

INTRINSIC PARAMETERS OF THE COLOR AND INFRARED CAMERAS FOR

THE TWO KINECTS USED IN OUR DATASET, INCLUDING THE FOCAL

LENGTH (FX/FY) AND THE OPTICAL CENTER (CX/CY). FURTHERMORE,

WE ESTIMATED A CORRECTION FACTOR FOR THE DEPTH VALUES (DS).

unit quaternion (format: timestamp tx ty tz qx qy qz

qw).

Furthermore, all sequences are also available in the ROS

bag format1 and the rawlog format of the mobile robot

programming toolkit (MRPT)2. Additionally, we provide a

set of useful tools and sample code on our website for data

association, evaluation and conversion [1].

VI. CALIBRATION AND SYNCHRONIZATION

All components of our setup, i.e., the color camera, depth

sensor, motion capture system require intrinsic and extrinsic

calibration. Furthermore, the time stamps of the sensor

messages need to be synchronized, due to time delays in

the pre-processing, buffering, and data transmission of the

individual sensors.

1http://www.ros.org
2http://www.mrpt.org/



A. Motion capture system calibration

We calibrated the motion capture system using the Cortex

software provided by MotionAnalysis [42]. The calibration

procedure requires waving a calibration stick with three

markers extensively through the motion capture area, as

illustrated in Fig. 3b. From these point correspondences, the

system computes the poses of the motion capture cameras. To

validate the result of this calibration procedure, we equipped

a metal rod of approximately 2 m length with two reflective

markers at both ends and checked whether its observed

length was constant at different locations in the motion

capture area. The idea behind this experiment is that if and

only if the length of the metal rod is constant in all parts of

the scene, then the whole motion capture area is Euclidean.

In our experiment, we measured a standard deviation of

1.96 mm in the length of the stick over the entire motion

capture area of 7× 7Ḟrom this and further experiments, we

conclude that the position estimates of the motion capture

system are highly accurate, Euclidean and stable over time.

B. Kinect calibration

Next, we estimated the intrinsic camera parameters of both

the color and the infrared camera using the OpenCV library

from the “rgb” and “ir” calibration sequences. As a result

of this calibration, we obtained the focal lengths (fx/fy),

the optical center (cx/cy) and distortion parameters of both

cameras. These parameters are summarized in Tab. II.

Secondly, we validated the depth measurements of the

Kinect by comparing the depth of four distinct points on the

checkerboard as seen in the RGB image. As can be seen in

Fig. 4a, the values of both Kinects do not exactly match the

real depth as computed by the checkerboard detector from

the calibrated RGB camera, but have slightly different scale.

The estimated correction factor for the depth images is given

in Tab. II. We applied this correction factor already to the

dataset, so that no further action from the users is required.

We evaluated the residual noise in the depth values as a

function of the distance to the checkerboard. The result of

this experiment is depicted in Fig. 4b. As can be seen from

this plot, the noise in the depth values is around 1 cm until

2 m distance and around 5 cm in 4 m distance. A detailed

analysis of Kinect calibration and the resulting accuracy has

been recently published by Smisek et al. [43].

C. Extrinsic calibration

For tracking a rigid body in the scene (like the Kinect sen-

sor or the checkerboard), the motion capture system requires

at least three reflective markers. In our experiments, we

attached four reflective markers on each Kinect sensor (see

Fig. 1c+1d) and five markers on the calibration checkerboard

(see Fig. 5a). We placed four of the markers as accurately

as possible on the outer corners of the checkerboard, such

that the transformation between the visual checkerboard and

the motion capture markers is known. Given these point

observations and the point model, we can compute its pose

with respect to the coordinate system of the motion capture

system.

0 2 4 6

2

4

6

measured distance [m]

ch
ec

k
er

b
o

ar
d

d
ep

th
[m

]

fr1

fr2

ideal

(a)

0 2 4 6

0.1

0.01

0.05

checkerboard distance [m]

er
ro

r
(s

td
)

[m
]

fr1

fr2

(b)

Fig. 4. (a) Validation of the depth values of the fr1 and fr2 sensor by
means of a checkerboard and (b) analysis of the noise in the depth values
with respect to the camera distance.

We measured the average error between the point obser-

vations and the model to 0.60 mm in the office (“fr1”) and

0.86 mm in the industrial hall (“fr2”). Given these noise

values, we expect an error in the estimated orientations

of around 0.34 deg and 0.49 deg, respectively. While this

error is rather low, the reader should keep in mind that this

means that reconstructed 3D models given the pose of the

motion capture system – assuming a noise-free depth image

for the moment – will have an error 30 mm and 43 mm,

respectively in 5 m distance from the camera. Therefore, we

emphasize that the pose estimates of the motion capture

system cannot directly be used to generate (or evaluate)

highly accurate 3D models of the scene. However, for

evaluating the trajectory accuracy of visual SLAM systems,

an absolute sub-millimeter and sub-degree accuracy is high

enough to evaluate current (and potentially future) state-of-

the-art methods.

As the next calibration step, we estimated the transfor-

mation between the pose from the motion capture system

and the optical frame of the Kinect using the calibration

checkerboard. We validated our calibration by measuring the

distance of the four corner points of the checkerboard as

observed in the RGB image and the corner points predicted

by the motion capture system. We measured an average error

of 3.25 mm for the “fr1” Kinect and of 4.03 mm for the

“fr2” Kinect. Note that these residuals contain both the noise

induced by the motion capture system and the noise induced

by the visual checkerboard detection. With respect to the

high accuracy of the motion capture system, we attribute

these errors mostly to (zero-mean) noise of the checkerboard

detector.

From our measurements obtained during calibration, we

conclude that the relative error on a frame-to-frame basis

in the ground truth data is lower than 1 mm and 0.5 deg

measured in the optical center of the Kinect. Furthermore, the

absolute error over the whole motion capture area is lower

than 10 mm and 0.5 deg. Therefore, we claim that our dataset

is valid to assess the performance of visual odometry and

visual SLAM systems as long as these systems have (RPE

and ATE) errors significantly above these values.



(a)

−100 −50 0 50 100
0

2

4

6

8

10

20

time offset [ms]

re
p

ro
j.

er
ro

r
[m

m
]

(b)

Fig. 5. (a) Checkerboard used for the calibration and the time synchro-
nization. (b) Analysis of the time delay between the motion capture system
and the color camera of the Kinect sensor.

D. Time synchronization

We determined the time delay between the motion capture

system and the color camera of the Kinect using the same

method, i.e., we evaluated the residuals for different time de-

lays to determine the delay (see Fig. 5b). In this experiment,

we found that the poses from the motion capture system

were approximately 20 ms earlier than the color images of

the Kinect. We corrected for this delay already in our dataset,

so no further action is required by the user.

There is also a small time delay between the color and

depth images as delivered by the Kinect. During the evalu-

ation of our own SLAM and visual odometry systems, we

found that the depth images arrive on average around 20 ms

later than the color images. However, we decided to keep

the unmodified time stamps of color and depth images in

the dataset. To simplify the association of color and depth

images for the user, we provide the “associate.py” script that

outputs pairs of color and depth images according to the

users preferences (such as time offset and maximum time

difference).

Another challenge in the image data that users should keep

in mind is that the Kinect uses a rolling shutter for the color

camera which can lead to image distortions when the camera

is moved quickly. As the Kinect automatically chooses the

exposure time depending on the scene illumination, the

strength of this effect can vary significantly in some of the

sequences in the dataset.

VII. EVALUATION METRICS

A SLAM system generally outputs the estimated camera

trajectory along with an estimate of the resulting map. While

it is in principle possible to evaluate the quality of the

resulting map, accurate ground truth maps are difficult to

obtain. Therefore, we propose to evaluate the quality of the

estimated trajectory from a given input sequence of RGB-

D images. This approach simplifies the evaluation process

greatly. Yet, it should be noted that a good trajectory does

not necessarily imply a good map, as for example even a

small error in the map could prevent the robot from working

in the environment (obstacle in a doorway).

For the evaluation, we assume that we are given a sequence

of poses from the estimated trajectory P1, . . . ,Pn ∈ SE(3)
and from the ground truth trajectory Q1, . . . ,Qn ∈ SE(3).
For simplicity of notation, we assume that the sequences are

0.00 5.00 10.00 15.00

0.02

0.04

0.06

0.08

0.10

time t [s]

er
ro

r
[m

]

RBM

GICP

Fig. 6. Evaluating the drift by means of the relative pose error (RPE) of
two visual odometry approaches on the fr1/desk sequence. As can be seen
from this plot, RBM is has lower drift and fewer outliers than GICP. For
more details, see [44].

time-synchronized, equally sampled, and both have length n.

In practice, these two sequences have typically different sam-

pling rates, lengths and potentially missing data, so that an

additional data association and interpolation step is required.

Both sequences consist of homogeneous transformation ma-

trices that express the pose of the RGB optical frame of the

Kinect from an (arbitrary) reference frame. This reference

frame does not have to be the same for both sequences,

i.e., the estimated sequence might start in the origin, while

the ground truth sequence is an absolute coordinate frame

which was defined during calibration. While, in principle, the

choice of the reference frame on the Kinect is also arbitrary,

we decided to use the RGB optical frame as the reference

because the depth images in our dataset have already been

registered to this frame. In the remainder of this section, we

define two common evaluation metrics for visual odometry

and visual SLAM evaluation. For both evaluation metrics, we

provide easy-to-use evaluation scripts for download on our

website as well as an online version of this script to simplify

and standardize the evaluation procedure for the users.

A. Relative pose error (RPE)

The relative pose error measures the local accuracy of the

trajectory over a fixed time interval ∆. Therefore, the relative

pose error corresponds to the drift of the trajectory which is

in particular useful for the evaluation of visual odometry

systems. We define the relative pose error at time step i as

Ei :=
(

Q−1
i Qi+∆

)

−1(

P−1
i Pi+∆

)

. (1)

From a sequence of n camera poses, we obtain in this

way m = n − ∆ individual relative pose errors along the

sequence. From these errors, we propose to compute the

root mean squared error (RMSE) over all time indicies of

the translational component as

RMSE(E1:n,∆) :=

(

1

m

m
∑

i=1

‖trans(Ei)‖
2

)1/2

, (2)

where trans(Ei) refers to the translational components of

the relative pose error Ei. It should be noted that some

researchers prefer to evaluate the mean error instead of

the root mean squared error which gives less influence to

outliers. Alternatively, it is also possible to compute the



median instead of the mean, which attributes even less

influence to outliers. If desired, additionally the rotational

error can be evaluated, but usually we found the comparison

by translational errors to be sufficient (as rotational errors

show up as translational errors when the camera is moved).

Furthermore, the time parameter ∆ needs to be chosen. For

visual odometry systems that match consecutive frames, ∆ =
1 is an intuitive choice; RMSE(E1:n) then gives the drift per

frame. For systems that use more than one previous frame,

larger values of ∆ can also be appropriate, for example, for

∆ = 30 gives the drift per second on a sequence recorded at

30 Hz. It should be noted that a common (but poor) choice

is to set ∆ = n which means that the start point is directly

compared to the end point. This metric can be misleading as

it penalizes rotational errors in the beginning of a trajectory

more than towards the end [37], [45]. For the evaluation of

SLAM systems, it therefore makes sense to average over all

possible time intervals ∆, i.e., to compute

RMSE(E1:n) :=
1

n

n
∑

∆=1

RMSE(E1:n,∆). (3)

Note that the computational complexity of this expression

is quadratic in the trajectory length. Therefore, we propose

to approximate it by computing it from a fixed number of

relative pose samples. Our automated evaluation script allows

both the exact evaluation as well as the approximation for a

given number of samples.

An example of the relative pose error is given in Fig. 6.

Here, the relative pose errors have been evaluated for two

visual odometry approaches [44]. As can be seen from this

figure, the RBM method has both lower drift and fewer

outliers compared to GICP.

B. Absolute trajectory error (ATE)

For visual SLAM systems, additionally the global consis-

tency of the estimated trajectory is an important quantity.

The global consistency can be evaluated by comparing the

absolute distances between the estimated and the ground

truth trajectory. As both trajectories can be specified in

arbitrary coordinate frames, they first need to be aligned.

This can be achieved in closed form using the method

of Horn [46], which finds the rigid-body transformation S

corresponding to the least-squares solution that maps the

estimated trajectory P1:n onto the ground truth trajectory

Q1:n. Given this transformation, the absolute trajectory error

at time step i can be computed as

Fi := Q−1
i SPi. (4)

Similar to the relative pose error, we propose to evaluate

the root mean squared error over all time indices of the

translational components, i.e.,

RMSE(F1:n) :=

(

1

n

n
∑

i=1

‖trans(Fi)‖
2

)1/2

. (5)

A visualization of the absolute trajectory error is given in

Fig. 7a. Here, RGB-D SLAM [47] was used to estimate the

camera trajectory from the “fr1/desk2” sequence.

−1 0 1

−1

0

1

2

x [m]

y
[m

]

true trajectory

estimated traj.

error

(a)

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

ATE [m]

R
P

E
[m

]

data

diag.

(b)

Fig. 7. (a) Visualization of the absolute trajectory error (ATE) on the
“fr1/desk2” sequence. (b) Comparison of ATE and RPE measures. Both
plots were generated from trajectories estimated by the RGB-D SLAM
system [47].

Alternatively, also the RPE can be used to evaluate the

global error of a trajectory by averaging over all possible

time intervals. Note that the RPE considers both translational

and rotational errors, while the ATE only considers the

translational errors. As a result, the RPE is always slightly

larger than the ATE (or equal if there is no rotational

error). This is also visualized in Fig. 7b, where both the

RPE and the ATE were computed on various estimated

trajectories from the RGB-D SLAM system. Therefore, the

RPE metric provides an elegant way to combine rotational

and translational errors into a single measure. However,

rotational errors typically also manifest themselves in wrong

translations and are thus indirectly also captured by the

ATE. From a practical perspective, the ATE has an intuitive

visualization which facilitates visual inspection. Nevertheless

the two metrics are strongly correlated: In all our experiments

we never encountered a substantial difference between the

situations in which RPE and ATE were used. In fact, often the

relative order remained the same independently from which

measure was actually used.

VIII. CONCLUSIONS

In this paper, we presented an benchmark for the evalua-

tion of RGB-D SLAM systems. The dataset contains color

images, depth maps, and associated ground-truth camera

pose information. Further, we proposed two evaluation met-

rics that can be used to assess the performance of a visual

odometry and visual SLAM system. Accurate calibration and

rigorous validation ensures the high quality of the resulting

dataset. We approved the validity of our dataset and the

corresponding evaluation metrics by the evaluation of our

own recent approaches [44], [47]. To conclude, we presented

a high-quality dataset with a suitable set of evaluation metrics

that constitutes a full benchmark for the evaluation of visual

SLAM systems.

ACKNOWLEDGEMENTS

The authors would like to thank Jörg Müller and Michael

Ruhnke for their help and support with the motion capture

system. Furthermore, we thank Frank Steinbrücker, Rainer

Kümmerle, Stéphane Magnenat, Françis Colas, and François



Pomerleau for the fruitful discussions. We also thank Jose

Luis Blanco for making our datasets available to users of the

Mobile Robot Programming Toolkit (MRPT) by converting

them to the RAWLOG format.

REFERENCES

[1] http://vision.in.tum.de/data/datasets/rgbd-dataset.
[2] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D

mapping: Using depth cameras for dense 3D modeling of indoor
environments,” in Intl. Symp. on Experimental Robotics (ISER), 2010.

[3] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard, “Real-
time 3D visual SLAM with a hand-held RGB-D camera,” in RGB-D

Workshop on 3D Perception in Robotics at the European Robotics

Forum, 2011.
[4] C. Audras, A. Comport, M. Meilland, and P. Rives, “Real-time

dense appearance-based SLAM for RGB-D sensors,” in Australasian

Conf. on Robotics and Automation, 2011.
[5] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davi-

son, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion:
Real-time dense surface mapping and tracking,” in Intl. Symposium on

Mixed and Augmented Reality (ISMAR), 2011.
[6] F. Lu and E. Milios, “Globally consistent range scan alignment for

environment mapping,” Autonomous Robots, vol. 4, no. 4, pp. 333–
349, 1997.

[7] F. Dellaert, “Square root SAM,” in Proc. of Robotics: Science and

Systems (RSS), Cambridge, MA, USA, 2005.
[8] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of pose

graphs with poor initial estimates,” in IEEE Intl. Conf. on Robotics

and Automation (ICRA), 2006.
[9] G. Klein and D. Murray, “Parallel tracking and mapping for small

AR workspaces,” in IEEE and ACM Intl. Symposium on Mixed and

Augmented Reality (ISMAR), 2007.
[10] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental

smoothing and mapping,” IEEE Trans. on Robotics, TRO, vol. 24,
no. 6, pp. 1365–1378, Dec 2008.

[11] G. Grisetti, C. Stachniss, and W. Burgard, “Non-linear constraint
network optimization for efficient map learning,” IEEE Transactions

on Intelligent Transportation systems, vol. 10, no. 3, pp. 428–439,
2009.

[12] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Bur-
gard, “g2o: A general framework for graph optimization,” in IEEE

Intl. Conf. on Robotics and Automation (ICRA), 2011.
[13] H. Jin, P. Favaro, and S. Soatto, “Real-time 3-D motion and structure

of point features: Front-end system for vision-based control and inter-
action,” in IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2000.
[14] M. Pollefeys and L. Van Gool, “From images to 3D models,” Commun.

ACM, vol. 45, pp. 50–55, July 2002.
[15] D. Nistér, “Preemptive ransac for live structure and motion estimation,”

Machine Vision and Applications, vol. 16, pp. 321–329, 2005.
[16] J. Stühmer, S. Gumhold, and D. Cremers, “Real-time dense geometry

from a handheld camera,” in DAGM Symposium on Pattern Recogni-

tion (DAGM), 2010.
[17] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM:

A factored solution to the simultaneous localization and mapping
problem,” in Prof. of the National Conf. on Artificial Intelligence

(AAAI), 2002.
[18] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for

grid mapping with rao-blackwellized particle filters,” IEEE Transac-

tions on Robotics (T-RO), vol. 23, pp. 34–46, 2007.
[19] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D SLAM

– 3D mapping outdoor environments: Research articles,” J. Field

Robot., vol. 24, pp. 699–722, August 2007.
[20] M. Magnusson, H. Andreasson, A. Nüchter, and A. Lilienthal, “Auto-

matic appearance-based loop detection from 3D laser data using the
normal distributions transform,” Journal of Field Robotics, vol. 26, no.
11–12, pp. 892–914, 2009.

[21] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp,” in Robotics:

Science and Systems (RSS), 2009.
[22] K. Koeser, B. Bartczak, and R. Koch, “An analysis-by-synthesis

camera tracking approach based on free-form surfaces,” in German

Conf. on Pattern Recognition (DAGM), 2007.

[23] K. Konolige and J. Bowman, “Towards lifelong visual maps,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2009.

[24] H. Strasdat, J. Montiel, and A. Davison, “Scale drift-aware large scale
monocular SLAM,” in Proc. of Robotics: Science and Systems (RSS),
2010.

[25] K. Konolige, M. Agrawal, R. Bolles, C. Cowan, M. Fischler, and
B. Gerkey, “Outdoor mapping and navigation using stereo vision,”
in Intl. Symp. on Experimental Robotics (ISER), 2007.

[26] A. Comport, E. Malis, and P. Rives, “Real-time quadrifocal visual
odometry,” Intl. Journal of Robotics Research (IJRR), vol. 29, pp.
245–266, 2010.

[27] C. Stachniss, P. Beeson, D. Hähnel, M. Bosse, J. Leonard,
B. Steder, R. Kümmerle, C. Dornhege, M. Ruhnke, G. Grisetti,
and A. Kleiner, “Laser-based SLAM datasets.” [Online]. Available:
http://OpenSLAM.org

[28] “The Rawseeds project,” http://www.rawseeds.org/rs/datasets/.
[29] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman, “The

new college vision and laser data set,” Intl. Journal of Robotics

Research (IJRR), vol. 28, no. 5, pp. 595–599, 2009.
[30] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous

driving? the KITTI vision benchmark suite,” in IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), Providence, USA,
June 2012.

[31] F. Pomerleau, S. Magnenat, F. Colas, M. Liu, and R. Siegwart,
“Tracking a depth camera: Parameter exploration for fast ICP,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2011.

[32] S. Bao and S. Savarese, “Semantic structure from motion,” in IEEE

Intl. Conf. on Computer Vision and Pattern Recognition (CVPR), 2011.
[33] J. Sturm, S. Magnenat, N. Engelhard, F. Pomerleau, F. Colas, W. Bur-

gard, D. Cremers, and R. Siegwart, “Towards a benchmark for RGB-D
SLAM evaluation,” in RGB-D Workshop on Advanced Reasoning with

Depth Cameras at RSS, June 2011.
[34] E. Olson and M. Kaess, “Evaluating the performance of map optimiza-

tion algorithms,” in RSS Workshop on Good Experimental Methodol-

ogy in Robotics, 2009.
[35] R. Vincent, B. Limketkai, M. Eriksen, and T. De Candia, “SLAM in

real applications,” in RSS Workshop on Automated SLAM Evaluation,
2011.

[36] K. Konolige, M. Agrawal, and J. Solà, “Large scale visual odometry
for rough terrain,” in Intl. Symposium on Robotics Research (ISER),
2007.

[37] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti,
C. Stachniss, and A. Kleiner, “On measuring the accuracy of SLAM
algorithms,” Autonomous Robots, vol. 27, pp. 387–407, 2009.

[38] W. Burgard, C. Stachniss, G. Grisetti, B. Steder, R. Kümmerle,
C. Dornhege, M. Ruhnke, A. Kleiner, and J. Tardós, “A comparison
of SLAM algorithms based on a graph of relations,” in IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), 2009.
[39] W. Wulf, A. Nüchter, J. Hertzberg, and B. Wagner, “Ground truth

evaluation of large urban 6D SLAM,” in IEEE/RSJ Intl. Conf. on

Intelligent Robots and Systems (IROS), 2007.
[40] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski,

“A database and evaluation methodology for optical flow,” Intl. Journal

of Computer Vision (IJCV), vol. 92, no. 1, 2011.
[41] PrimeSense, Willow Garage, SideKick and Asus, “Introducing

OpenNI,” http://http://www.openni.org.
[42] MotionAnalysis, “Raptor-E Digital RealTime System,”

http://www.motionanalysis.com/html/industrial/raptore.html.
[43] J. Smisek, M. Jancosek, and T. Pajdla, “3D with Kinect,” in ICCV

Workshop on Consumer Depth Cameras for Computer Vision, 2011.
[44] F. Steinbrücker, J. Sturm, and D. Cremers, “Real-time visual odometry

from dense RGB-D images,” in ICCV Workshop on Live Dense

Reconstruction with Moving Cameras, 2011.
[45] A. Kelly, “Linearized error propagation in odometry,” Intl. Journal of

Robotics Research (IJRR), vol. 23, no. 2, 2004.
[46] B. Horn, “Closed-form solution of absolute orientation using unit

quaternions,” Journal of the Optical Society of America A, vol. 4,
pp. 629–642, 1987.

[47] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and
W. Burgard, “An evaluation of the RGB-D SLAM system,” in IEEE

Intl. Conf. on Robotics and Automation (ICRA), 2012.

http://OpenSLAM.org

	Introduction
	Related Work
	Dataset
	Data acquisition
	File Formats, Tools and Sample Code
	Calibration and Synchronization
	Motion capture system calibration
	Kinect calibration
	Extrinsic calibration
	Time synchronization

	Evaluation metrics
	Relative pose error (RPE)
	Absolute trajectory error (ATE)

	Conclusions
	References

