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A benchmark study of the Wigner Monte Carlo method
Abstract: The Wigner equation is a promising full quantum model for the simulation of nanodevices. It is
also a challenging numerical problem. Two basic Monte Carlo approaches to this model exist exploiting, in
the time-dependent case, the so-called particle a�nity and, in the stationary case, integer particle signs.
In this paper we extend the second approach for time-dependent simulations and present a validation
against a well-known benchmark model, the Schrödinger equation. Excellent quantitative agreement is
demonstrated by the compared results despite the very di�erent numerical properties of the utilized stochas-
tic and deterministic approaches.
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1 Introduction
The Wigner equation represents a promising model for the simulation of nanodevices. It is a full quantum
model able to capture the relevant physics in next generation semiconductor devices. It is well known that
the pure state Wigner equation is an equivalent phase-space reformulation of the Schrödinger equation.
At the same time the Wigner equation can be augmented by a Boltzmann-like collision operator accounting
for the process of decoherence. Despite the initial enthusiasm around the Wigner model, the equation has
represented a numerically daunting task and it has raised more problems than solutions. Several decades
ago, some e�orts have been put in the aim to numerically solve this equation for technologically relevant
situations. The �rst works which appeared were all based on �nite di�erences discretization [8], which raises
problems in the treatment of the di�usion term ℏk

m∗ ⋅ ∇xfW in the Liouville operator representing the di�er-
ential part of the equation. Indeed the Wigner function fW(x, k, t) oscillates very rapidly in the phase-space,
which makes the numerical calculation of its �nite di�erence derivative a severe problem. This is thoroughly
documented, for example, in [2].

More recently, two new approaches have been developed based on particle Monte Carlo methods. These
approaches rely on the integral characteristics of the Liouville operator and thus avoid the problem of evalu-
ating the di�usion term. The �rst model [7], an ensemble Monte Carlo (MC) technique, has proved to be e�ec-
tive and applicable to realistic technological situations such as one-dimensional resonant tunneling diodes.
It is based on the concept of particles endowed with an a�nity, a real number, having the meaning of
a stochastic weight, employed in Monte Carlo methods for statistical enhancement of Boltzmann transport
simulations [3, 6]. This method involves the use of heavy computational resources due to the increase of
the number of particle states in the ensemble corresponding to the increasing quantum complexity of the
problem [7]. The second model, relevant for stationary conditions, relies on the ergodicity of the problem
determined by the boundary conditions, and, as such, has been developed within a single particle MC ap-
proach [4]. As compared to the a�nity approach, it is very di�erent and related to the generation of particles
endowed with a sign. Based on these concepts we develop a new model for general transport conditions.
It exploits the concepts of momentum quantization and indistinguishable particles. These concepts, intrin-
sic to quantum mechanics and entangled with the notions of classical trajectories, particle ensemble, and
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particle-with-sign generation, give rise to a time-dependent, full quantum transport model which naturally
includes both open and closed boundary conditions along with general initial conditions. In particular, this
new method does not have an analog among the Boltzmann equation approaches.

In this paper we focus on the stochastic aspects of the particle sign model and present a thorough val-
idation by comparing the Wigner MC results with the Schrödinger equation solution, an already traditional
benchmark experiment [7, 11]. An excellent quantitative agreement is demonstrated despite the very di�erent
numerical aspects of the two approaches.

The paper is organized in the following way. We �rst introduce the particle sign Wigner MC algorithm
from amathematical perspective and describe some details needed to make the method able to deal with the
process of particles creation and annihilation. The numerical procedure used to derive themodel is described
in detail in the next section. In the last section we describe the benchmark test for the comparisons between
the Schrödinger and Wigner equations. We �nally report the results of our simulations and discuss them.

2 Quantum dynamics in phase-space
The Wigner formulation of quantum mechanics [12] o�ers a description of the electron state in terms of
a phase-space function fw(x, k, t), where x is the position and k is the wave number (ℏk momentum) vari-
able. The pure state Wigner function is related to the solution of the Schrödinger equation ×(x, t) via the
Wigner–Weyl transform:

fw(x, k, t) =
1

iℏ2ð
∫ dx�e−ikx

�
×(x +

x�

2
, t)×∗(x −

x�

2
, t). (2.1)

The Wigner equation is obtained from the Schrödinger equation and its adjoint [5] as follows:

àfW
àt
+

1
ℏ
∇kå(k)∇xfW = Q[fW], (2.2)

where the functional Q[f] acts over a pseudo-distribution function (in the Wigner formalism distribution
functions can have negative values):

Q[fW](x, k, t) = ∫ dk�VW(x, k − k�, t)fW(x, k�, t)

and the function VW = VW(x, k, t), de�ned over the phase-space and known as the Wigner potential, reads

VW(x, k, t) =
1

iℏ2ð
∫ dx�e−ikx

�
(V(x +

x�

2
, t) − V(x −

x�

2
, t)).

The functionV = V(x, t) is the potential over the spatial domain, which in this general case may vary in time.
Physically, it can represent, e.g., a force applied over a particle, a potential barrier, etc. The transport problem
consists, at this point, of (2.2) along with a de�ned simulation domain containing the initial and boundary
conditions.

The fact that particle energy in this regime is a discrete quantity suggests that the corresponding phase-
space should be discretized to be in accordance with the principles of quantum mechanics. Thus, one can
reformulate the Wigner equation in a semi-discrete phase-space with a continuous spatial variable x and a
discretized wave-vector k described in terms of a step

Δk =
ð
LC

(LC is the so-called coherence length). By discretizing the phase-space, the Wigner equation now reads

àfW
àt
+

ℏ
m∗mΔk∇xfW =

+∞

∑
m�=−∞VW(x, m�)fW(x, m −m�). (2.3)
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3 Wigner Monte Carlo method
The purpose of this section is to present themain ideas behind theWignerMCmethod based onparticles sign.
The aim of this method is the evaluation of the expectation value ⟨A⟩(t) of some generic physical quantity,
given in the Wigner picture by a phase-space function A = A(x, k) at a given evolution time t. The computa-
tional problem is to calculate the inner product (A, fW) with the solution of (2.2). It can be shown that this
task can be reformulated in a way which involves the solution of the adjoint equation. Doing this, we �rst
obtain an integral form of (2.2), and then the adjoint equation.

3.1 Integral formulation

In this section, we rewrite equation (2.2) in an integral form. First, let us de�ne a function ã as

ã(x) =
∞

∑
m=−∞

V+w (x, m) =
∞

∑
m=−∞

V−w (x, m), (3.1)

where V+w takes the values of Vw if Vw > 0 and 0 otherwise, and V−w takes the values of −Vw if Vw < 0
and 0 otherwise. In the stationary case, theWigner potential is antisymmetric. It is clear that ifV+w (x,−m) = 0,
thenV−w (x,−m) ̸= 0 and,moreover,V−w (x,−m) = V+w (x, m). Thus, equation (2.2) can be rewritten by adding and
subtracting the term ã(x(t�)).

Let us, now, denote by Ã the following expression:

Ã(x(t�), m,m�) = (V+w (x(t
�), m −m�) − V+w (x(t

�),−(m −m�)) + ã(x(t�))äm,m�). (3.2)

For the sake of simplicity, we assume the evolution of an initial condition fi(x, m) starts at time 0.
A common inclusion of both boundary and initial conditions, which formally resembles the free term of
the Boltzmann integral equation, is performed and by integration over the interval (0, t), one recovers the
following equation:

fw(x, m, t) − e−∫
t0 ã(x(y))dyfi(x(0), m) =

t

∫
0

dt�
∞

∑
m�=−∞fw(x(t

�), m�, t�)Ã(x(t�), m,m�)e−∫
tt� ã(x(y))dy

=
∞

∫
0

dt�
∞

∑
m� ∫ dx�fw(x

�, m�, t�)Ã(x�, m, m�)

× e−∫
tt� ã(x(y))dyè(t − t�)ä(x� − x(t�))èD(x

�). (3.3)

To ensure the explicit appearance of the variables Q = (x, m, t) and Q� = (x�, m�, t�), the kernel has been aug-
mented by the è and ä functions which retain the value of the integral unchanged. In particular èD keeps
the integration within the simulation domain (if any). In the same way, the expectation value of the physical
quantity A at moment ó is augmented and reads

⟨A⟩(ó) = ∫ dt∫ dx
∞

∑
m=−∞

f(x,m, t)A(x, m)ä(t − ó) = ∫ dQf(Q)Aó(Q). (3.4)

3.2 Adjoint equation

The expectation value (3.4) can be rewritten by introducing an adjoint equation, having a solution g and
a free term g0 determined below. If we formally write (3.3) and its adjoint equation as

f(Q) = ∫ dQ�K(Q, Q�)f(Q�) + fi(Q),

g(Q�) = ∫ dQK(Q, Q�)g(Q) + g0(Q
�)
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and
(i) the �rst equation is multiplied by g(Q),
(ii) integrated on Q,
(iii) the second one is multiplied by f(Q�), integrated on Q�,
(iv) the two equations are subtracted,
one obtains

∫ dQfi(Q)g(Q) = ∫ dQ�g0(Q
�)f(Q�) ↔ ∫ dQ�fi(Q

�)g(Q�) = ∫ dQg0(Q)f(Q),

where the dummy variables have been exchanged for a more convenient comparison with (3.4). This shows
that

g0(Q) = Aó(Q), ⟨A⟩ =
∞

∫
0

dt� ∫ dx�
∞

∑
m�=−∞fi(x

�, m�)e−∫
t�0 ã(x�(y))dyg(x�, m�, t�), (3.5)

where x�(y) is the trajectory initialized by x�, m�, t�, x(0) = x�. Thus, the adjoint equation is obtained by inte-
gration on the unprimed variables:

g(x�, m�, t�) = Aó(x
�, m�, t�) +

∞

∫
0

dt
∞

∑
m=−∞

∫ dxg(x, m, t)Ã(x�, m, m�)e−∫
tt� ã(x(y))dyè(t − t�)ä(x� − x(t�))èD(x

�). (3.6)

This equationwill be reformulatedby reverting theparametrizationof the�eld-less trajectory.Nowx(t�) = x��,
m and t� initialize the trajectory and x becomes the variable changing with time t. The position argument of g
becomes x�(t) and one obtains

g(x�, m�, t�) = Aó(x
�, m�, t�) +

∞

∫
t� dt

∞

∑
m=−∞

g(x�(t), m, t)Ã(x�, m, m�)e−∫
tt� ã(x�(y))dyèD(x�). (3.7)

Equation (3.5) is reformulated in the same way, by reverting the parametrization of the �eld-less trajec-
tory. In this particular case the initialization is changed from x�, m�, t� to xi = x

�(0), m�, 0 so that

x�(y) = xi(y) = xi +
ℏm�Δk
m∗ y, x� = x�(t�) = xi(t

�), dx� = dxi,

⟨A⟩ =
∞

∫
0

dt� ∫ dxi

∞

∑
m�=−∞fi(xi, m

�)e−∫
t�0 ã(xi(y))dyg(xi(t

�), m�, t�). (3.8)

3.3 Quantum particle method

Now, a particle method can be devised by considering the consecutive iterations of (3.6) into (3.8). The zeroth
order term

⟨A⟩0(ó) =
∞

∫
0

dt� ∫ dxi

∞

∑
m�=−∞fi(xi, m

�)e−∫
t�0 ã(xi(y))dyA(xi(t

�), m�)ä(t� − ó)

has the following interpretation. According to theMonte Carlo theory for solving integrals, we consider a part
of the integrand as a product of conditional probabilities. Assuming thatfi is normalized to unity,we generate
random points xi, m

� at time 0. These initialize particle trajectories xi(y). The exponent gives the probability
for the particle to remain over the trajectory provided that the scattering rate is ã. This probability �lters
out these particles, such that the randomly generated scattering time is less than ó. If not scattered until
time ó, the particle contributes to ⟨A⟩0(ó) with the value of the rest of the integrand: fi(xi, m

�)A(xi(ó), m
�).

Otherwise, scattered particles do not contribute. The term ⟨A⟩0(ó) is estimated by the mean value obtained
fromN initialized particles.

The �rst iteration term is obtained by a replacement of g(xi(t
�), m�, t�) in (3.8) by the kernel of (3.7) writ-

ten for this term (i.e. in (3.7) we replace x� by x1 = xi(t
�)). Note that the trajectory in the exponent becomes



J. M. Sellier, M. Nedjalkov, I. Dimov and S. Selberherr, Wigner Monte Carlo method | 47

initialized by x1, m, t�. We have

⟨A⟩1(ó) =
∞

∫
0

dt� ∫ dxi

∞

∑
m�=−∞fi(xi, m

�)e−∫
t�0 ã(xi(y))dy ∞

∫
t� dt

∞

∑
m=−∞

g((x1(t), m, t)Ã(x1, m, m�)e−∫
tt� ã(x1(y))dyèD(x1).

Then, g((x1(t), m, t) is replaced with the free term of (3.7) in the corresponding point: A((x1(t), m, t)ä(t − ó).
Moreover, we augment the equation by completing some probabilities enclosed in curly brackets and reorder
other terms:

⟨A⟩1(ó) =
∞

∫
0

dt� ∫ dxi

∞

∑
m�=−∞fi(xi, m

�){ã(xi(t
�))e−∫

t�0 ã(xi(y))dy}
× èD(x1)

∞

∫
t� dt

∞

∑
m=−∞

{
Ã(x1, m, m�)
ã(xi(t�))

}{e−∫
tt� ã(x1(y))dy}A((x1(t), m, t)ä(t − ó).

Now, a particle is initialized at xi, m
�, 0. It follows the trajectory until time t� which is the time of scattering

given by the probability density in the �rst curly brackets. Indeed, the enclosed term, if integrated over
time between 0 and ∞, gives unity. Moreover, the exponent is the probability not to scatter until time t�,
while ã(xi(t

�))dt� is the probability to scatter in the interval dt� after t�. The phase-space position now
is x1 = xi(t

�), m�t� and the evolution continues if the particle is still in the simulation domain (otherwise
the contribution is zero). The term in the next curly bracket is analyzed below for interpretation as a source
of scattering from m� to m (locally in space at point x1 and at the time of scattering t�). Thus, at moment t�

the particle initializes the trajectory x1, m and, with the probability given by the exponent in the last curly
brackets, remains over the trajectory until time ó: t is set to ó by the ä function provided that t� < ó, other-
wise the contribution is zero. We note however that in this case the particle has a contribution to the zeroth
iteration term. The �rst three iterations show how to continue with higher order terms:
3

∑
s=1

⟨A⟩s(ó) =
ó

∫
0

dti ∫ dxi

∞

∑
mi=−∞fi(xi, mi)e

−∫
ti0 ã(xi(y))dy
⇑xi , mi , 0

× [A(x1, mi)
⇑x1=xi(ti) ä(ti − ó) +

ó

∫
ti dt1

∞

∑
m1=−∞ èD(x1)Ã(x1, m1, mi)e

−∫
t1ti ã(x1(y))dy
⇑x1 , m1 , ti

× [A(x2, m1)
⇑x2=x1(t1) ä(t1 − ó) +

ó

∫
t1 dt2

∞

∑
m2=−∞ èD(x2)Ã(x2, m2, m1)e

−∫
t2t1 ã(x2(y))dy
⇑x2 , m2 , t1 A(x3, m2)

⇑x3=x2(t2) ä(t2 − ó)]].
The initialization coordinates of the novel trajectories are also given, beginning with the symbol ⇑.

One observes that the iteration expansion of ⟨A⟩ actually branches, and the total value is given by the
sumof all branches. Thus instead of scattering, three trajectory pieces or, equivalently three particles, appear:

Ã(x1, m, m�)
ã(x1)

= {
V+w (x1, m −m

�)
ã(x1)

} − {
V−w (x1, m −m

�)
ã(x1)

} + {äm,m� }. (3.9)

According to the last term, the genuine particle survives and two more particles are generated with the �rst
two probabilities. In other words, we generate the �rst statem −m� = l with probability

V+w (x1, l)
ã(x1)

.

Then, with the same probability (using just another random number) we generate another value, say l�, for
the second state m� −m = l�. These values can be combined into a single choice of l by reordering the sum
over m for the second term so that V−w (x1, m −m

�) to appear in the place of V+w . Indeed, we recall that if V+w (l)
is not zero, then V+w (−l) = 0, and that V−w (−l) = V

+
w (l). In this way the two states

m −m� = l, m −m� = −l, ↔ m = m� + l, m = m� − l,

with the second one having a �ipped sign, have the same probability to appear.
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To summarize: by applying the kernel of (3.7) in the form (3.9), one can order the terms in the resolvent
expansion of (3.8). This is used to construct the transition probability of the numerical Monte Carlo trajec-
tories which consist of pieces of Newton trajectories linked by a change of the momentum number from m
tom� according toÃ. These numerical trajectories are interpreted asmoving particles under scattering events.
The exponent gives the probability that a particle remains on its �eld-less Newton trajectory with a scatter-
ing rate equal to ã. If the particle does not scatter until time ó, then particles contribute to ⟨A⟩0(ó) with the
value fi(xi, m

�)g(xi(ó), m
�), otherwise they contribute to a next term of the expansion. It can be proved that

a particle contributes to one and only one term of this expansion. Thus, the macroscopic value ⟨A⟩(t) is esti-
mated by averaging overN particles.

By exploiting the special appearance of the term Ã, it is possible to depict a Monte Carlo algorithm for
the integration of the ballistic semi-discrete Wigner equation (2.3). After any free �ight the initial particle
creates two new particles with opposite signs and wave-vector o�set (around the initial wave-vector) equal
to +l and −lwhere l = m −m�. The initial particle and the two created ones represent three contributive terms
to the series. We, thus, have an MC algorithm for our model.
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Figure 1. Total number of particles with (dots) and without (stars) applying the annihilation of particles. This technique keeps
the total number of particles during the simulation under control.

It can be demonstrated that the process of creation of new couples is exponential by nature [4], as it is
clearly shown in Figure 1 (stars). By exploiting the fact that particles are indistinguishable and annihilate,
when they belong to the same phase-space cell with opposite signs, it is possible to remove a signi�cant
number of particles during the simulation. The technique works as follows: one �xes a recording time step at
which one checks if particles are annihilating in some region of the phase-space. In the positive case, they are
simply removed. All non-annihilating particles are kept in the simulation, since they contribute to the con-
struction of the time-dependent solution. This technique is very e�cient as one can see from Figure 1 (dots),
especially for realistic simulations which typically involve several millions of initial particles. Without this
technique, the time-dependent MC simulation of the ballistic Wigner equation would simply be a numerical
daunting task.

4 Benchmark problem and results
The benchmark test we choose for the validation of our Wigner MC method consists of the interaction of
a Gaussian wave packet with a potential barrier. We compare the results obtained with the solution of the
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Schrödinger equation. This model is very well known and trusted by the nanodevice simulations community.
It is clear that a good agreement between the presented Wigner MC technique and the Schrödinger equation
represents a way to gain trust in this new method.

It is not the �rst time that a Wigner simulation is compared to the solution of the Schrödinger equation.
During the early developments of the Wigner MC a�nity method, some comparisons have been performed,
but only a qualitative agreement has been reached between these two models, see, e.g., [7] and [11]. Here,
we show that a satisfactory quantitative agreement can be reached with our Wigner MC method based on
particle signs.

The length of the domain for our numerical experiment is 200nm and a potential barrier of width 6nm
and energy 0.3 eV is placed in the center. We evolve this initial wave-packet until time 40 fs. This is a long
enough time to see an actual interaction with the potential barrier. Thus, it is possible to observe in this
numerical experiment both quantum re�ection and quantum tunneling [1].

Concerning the initial conditions of our experiment, in the continuous case, they would be

fW(x, k, t) = N�e−
(x−x0)2ò2 e−(k−k0)2ò2

, (4.1)

where N� is a normalization constant, x0 the initial position of the peak and ò the width of the packet [7, 11]
(obtained from the continuous Wigner–Weyl transform). In our case, these conditions are not valid. Indeed
the semi-discrete Wigner-Weyl transform must be applied:

fW(x, k, t) =
1

2LC

+LC
∫
−LC dx�e−ikx

�
ñ(x +

x�

2
, x −

x�

2
, t), (4.2)

where the function ñ = ñ(x, y, t) is the density matrix (obtained from the wave-function×(x, t)). The applica-
tion of the semi-discrete transform gives the following initial conditions:

f0
W(x, k) = A�e−

(x−x0)2ò2 +
LC2
∫

− LC2
dx�e−

x�2ò2 −i2(k−k0)x�
(4.3)

with A� a normalization constant. Note that the semi-discrete initial conditions are in integral form. In this
paper, we perform a numerical integration by means of a Gaussian quadrature technique.

Concerning the discretization scheme for the time-dependent Schrödinger equation

iℏ
à×
àt
= −

ℏ2

2m∗
à2×
àx2 − qV(x)×(x) (4.4)

an explicit �nite di�erence discretization technique would involve instabilities and create spurious oscilla-
tions [1]. Thus, we solve it by using an implicit discretization technique [1], i.e.

×n+1
j = ×

n
j +

iΔt
Δx2 (×

n+1
j+1 − 2×

n+1
j + ×

n+1
j−1 + qΔx

2Vj×
n+1
j ), (4.5)

with j = 1, . . . , Nx (Nx is the number of cells in space) and n the time step index. This technique is proven to
be numerically stable.

The numerical experiment is performed for the time-dependent Schrödinger equation (4.4), using the
implicit discretization technique (4.5), and the Wigner equation, using the Monte Carlo technique based
on particles sign. We then compare the square of the modulus of the wave functions obtained with the two
di�erent models. This corresponds to compare the probabilities of �nding a particle inside the domain.
The solutions of both methods are reported in Figures 2–4 at times, respectively, 0, 10, 20, 30 and 40 fs. The
continuous (red) line shows the solution obtained from the time-dependent Schrödinger equation, while the
dashed (blue) line shows the solution obtained from theWigner MCmethod. One sees a very good agreement
between the two models even for long times such as 40 fs, especially, if compared to previous MC techniques
based on the particles a�nity, where only qualitative agreement could be achieved [7, 11]. This represents
a step ahead towards the simulation of time-dependent quantum systems which eventually also include the
e�ects of phonon scattering. Furthermore, one should stress the fact that whilemodels based on Schrödinger
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equation have intrinsic di�culties in implementing general boundary conditions, our model can implement
all kind of boundaries such as open, close or even imposed distribution functions at the contacts. This
represents a big advantage in the simulation of realistic devices.
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Figure 2. Evolution of a Gaussian wave packet at 0fs and 10fs respectively. continuous (red) line = Schrödinger, dashed (blue)
line = Wigner.
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Figure 3. Evolution of a Gaussian wave packet at 20fs and 30fs respectively. continuous (red) line = Schrödinger, dashed (blue)
line = Wigner.

The results presented have been obtained using the HPC cluster deployed at the Institute of Informa-
tion and Communication Technologies (IICT) of the Bulgarian Academy of Sciences. This cluster consists of
two racks with HP Cluster Platform Express 7000 enclosures with 36 blades BL 280c with dual Intel Xeon
X5560@2.8Ghz (total 576 cores), 24 GB RAM per blade. There are eight storage and management controlling
nodes 8 HP DL 380 G6 with dual Intel X5560@2.8Ghz and 32GB RAM. All these servers are interconnected
via non-blocking DDR In�niband interconnect at 20Gbps line speed. The theoretical peak performance
is 3.23 T�ops.

The simulator used to obtain the results presented in this paper is a modi�ed version of Archimedes,
the GNU package for the simulation of carrier transport in semiconductor devices [10]. This code was �rst
released in 2005 and, since then, users have been able to download the source code under the GNU Pub-
lic License (GPL). Many features have been introduced in this package. In this particular project, our aim is
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Figure 4. Evolution of a Gaussian wave packet at 40fs. continuous (red) line = Schrödinger, dashed (blue) line = Wigner.

to develop a full quantum, time-dependent and multi-dimensional simulator for nanotechnology devices.
The code is entirely developed in C and optimized to get the best performance from the hardware. The results
of the new version are periodically posted on the nano-archimedes website, dedicated to the simulation of
nanodevices and chemical systems, see [9].
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