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Abstract In the real world, it is not uncommon to face

an optimization problem with more than three objectives.

Such problems, called many-objective optimization prob-

lems (MaOPs), pose great challenges to the area of evo-

lutionary computation. The failure of conventional Pareto-

based multi-objective evolutionary algorithms in dealing

with MaOPs motivates various new approaches. However, in

contrast to the rapid development of algorithm design, per-

formance investigation and comparison of algorithms have
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received little attention. Several test problem suites which

were designed for multi-objective optimization have still

been dominantly used in many-objective optimization. In this

paper, we carefully select (or modify) 15 test problems with

diverse properties to construct a benchmark test suite, aim-

ing to promote the research of evolutionary many-objective

optimization (EMaO) via suggesting a set of test problems

with a good representation of various real-world scenarios.

Also, an open-source software platform with a user-friendly

GUI is provided to facilitate the experimental execution and

data observation.

Keywords Many-objective optimization · Benchmark test

suite · Test functions · Software platform

Introduction

The field of evolutionary multi-objective optimization has

developed rapidly over the last two decades, but the design

of effective algorithms for addressing problems with more

than three objectives (called many-objective optimization

problems, MaOPs) remains a great challenge. First, the inef-

fectiveness of the Pareto dominance relation, which is the

most important criterion in multi-objective optimization,

results in the underperformance of traditional Pareto-based

algorithms. Also, the aggravation of the conflict between

convergence and diversity, along with increasing time or

space requirement as well as parameter sensitivity, has

become key barriers to the design of effective many-objective

optimization algorithms. Furthermore, the infeasibility of

solutions’ direct observation can lead to serious difficulties

in algorithms’ performance investigation and comparison.

All of these suggest the pressing need of new methodologies

designed for dealing with MaOPs, new performance metrics
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and benchmark functions tailored for experimental and com-

parative studies of evolutionary many-objective optimization

(EMaO) algorithms.

In recent years, a number of new algorithms have been pro-

posed for dealing with MaOPs [1], including the convergence

enhancement based algorithms such as the grid-dominance-

based evolutionary algorithm (GrEA) [2], the knee point-

driven evolutionary algorithm (KnEA) [3], the two-archive

algorithm (Two_Arch2) [4]; the decomposition-based algo-

rithms such as the NSGA-III [5], and the evolutionary

algorithms based on both dominance and decomposition

(MOEA/DD) [6], and the reference vector-guided evolution-

ary algorithm (RVEA) [7]; the performance indicator-based

algorithms such as the fast hypervolume-based evolution-

ary algorithm (HypE) [8]. In spite of the various algorithms

proposed for dealing with MaOPs, the literature still lacks a

benchmark test suite for evolutionary many-objective opti-

mization.

Benchmark functions play an important role in under-

standing the strengths and weaknesses of evolutionary algo-

rithms. In many-objective optimization, several scalable

continuous benchmark function suites, such as DTLZ [9] and

WFG [10], have been commonly used. Recently, researchers

have also designed/presented some problem suites specially

for many-objective optimization [11–16]. However, all of

these problem suites only represent one or several aspects

of real-world scenarios. A set of benchmark functions with

diverse properties for a systematic study of EMaO algorithms

are not available in the area. On the other hand, existing

benchmark functions typically have a “regular” Pareto front,

overemphasize one specific property in a problem suite, or

have some properties that appear rarely in real-world prob-

lems [17]. For example, the Pareto front of most of the DTLZ

and WFG functions is similar to a simplex. This may be

preferred by decomposition-based algorithms which often

use a set of uniformly distributed weight vectors in a sim-

plex to guide the search [7,18]. This simplex-like shape

of Pareto front also causes an unusual property that any

subset of all objectives of the problem can reach optimal-

ity [17,19]. This property can be very problematic in the

context of objective reduction, since the Pareto front degen-

erates into only one point when omitting one objective [19].

Also for the DTLZ and WFG functions, there is no func-

tion having a convex Pareto front; however, a convex Pareto

front may bring more difficulty (than a concave Pareto front)

for decomposition-based algorithms in terms of solutions’

uniformity maintenance [20]. In addition, the DTLZ and

WFG functions which are used as MaOPs with a degen-

erate Pareto front (i.e., DTLZ5, DTLZ6 and WFG3) have

a nondegenerate part of the Pareto front when the number

of objectives is larger than four [10,21,22]. This naturally

affects the performance investigation of evolutionary algo-

rithms on degenerate MaOPs.

This paper carefully selects/designs 15 test problems to

construct a benchmark test suite for evolutionary many-

objective optimization. The 15 benchmark problems are

with diverse properties which cover a good representation

of various real-world scenarios, such as being multimodal,

Table 1 Main properties of the

15 test functions
Problem Properties Note

MaF1 Linear No single optimal solution in any subset of objectives

MaF2 Concave No single optimal solution in any subset of objectives

MaF3 Convex, multimodal

MaF4 Concave, multimodal Badly scaled and no single optimal solution in any

subset of objectives

MaF5 Convex, biased Badly scaled

MaF6 Concave, degenerate

MaF7 Mixed, disconnected, Multimodal

MaF8 Linear, degenerate

MaF9 Linear, degenerate Pareto optimal solutions are similar to their image in

the objective space

MaF10 Mixed, biased

MaF11 Convex, disconnected, nonseparable

MaF12 Concave, nonseparable, biased deceptive

MaF13 Concave, unimodal, nonseparable,

degenerate

Complex Pareto set

MaF14 Linear, partially separable, large scale Non-uniform correlations between decision variables

and objective functions

MaF15 Convex, partially separable, large scale Non-uniform correlations between decision variables

and objective functions
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Fig. 1 The Pareto front of MaF1 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively
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Fig. 2 The Pareto front of MaF2 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

disconnected, degenerate, and/or nonseparable, and having

an irregular Pareto front shape, a complex Pareto set or

a large number of decision variables (as summarized in

Table 1). Our aim is to promote the research of evolu-

tionary many-objective optimization via suggesting a set of

benchmark functions with a good representation of various

real-world scenarios. Also, an open-source software plat-

form with a user-friendly GUI is provided to facilitate the

experimental execution and data observation. In the fol-

lowing, Sect. “Function definitions” details the definitions

of the 15 benchmark functions, and Sect. “Experimental

setup” presents the experimental setup for benchmark stud-

ies, including general settings, performance indicators, and

software platform.

Function definitions

• D: number of decision variables

• M : number of objectives

• x = (x1, x2, . . . , xD): decision vector

• fi : i th objective function

MaF1 (modified inverted DTLZ1 [23])

min

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

f1(x) = (1 − x1 . . . xM−1)(1 + g(xM ))

f2(x) = (1 − x1 . . . (1 − xM−1))(1 + g(xM ))

. . .

fM−1(x) = (1 − x1(1 − x2))(1 + g(xM ))

fM (x) = x1(1 + g(xM ))

(1)

with

g(xM ) =
|x|
∑

i=M

(xi − 0.5)2 (2)

where the number of decision variable is D = M + K −
1, and K denotes the size of xM , namely K = |xM |, with

xM = (xM , . . . , xD). As shown in Fig. 1, this test problem

has an inverted PF, while the PS is relatively simple. This

test problem is used to assess whether EMaO algorithms are
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Fig. 3 The Pareto front of MaF3 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

capable of dealing with inverted PFs. Parameter settings of

this test problem are: x ∈ [0, 1]D and K = 10 (Fig. 2).

MaF2 (DTLZ2BZ [19])

min

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

f1(x) = cos(θ1) . . . cos(θ2) cos(θM−1)(1 + g1(xM ))

f2(x) = cos(θ1) . . . cos(θM−2) sin(θM−1)(1+g2(xM ))

. . .

fM−1(x) = cos(θ1) sin(θ2)(1 + gM−1(xM ))

fM (x) = sin(θ1)(1 + gM (xM ))

(3)

with

gi (xM ) =
M+i ·⌊ D−M+1

M
⌋−1

∑

j=M+(i−1)·⌊ D−M+1
M

⌋

((

x j

2
+

1

4

)

− 0.5

)2

for i =1, . . . , M−1

gM (xM ) =
n

∑

j=M+(i−1)·⌊ D−M+1
M

⌋

((

x j

2
+

1

4

)

− 0.5

)2

θi =
π

2
·
(

xi

2
+

1

4

)

for i = 1, . . . , M − 1 (4)

where the number of decision variable is D = M + K − 1,

and K denotes the size of xM , namely K = |xM |, with xM =
(xM , . . . , xD). This test problem is modified from DTLZ2

to increase the difficulty of convergence. In original DTLZ2,

it is very likely that the convergence can be achieved once

the g(xM ) = 0 is satisfied; by contrast, for this modified

version, all the objective have to be optimized simultaneously

to reach the true PF. Therefore, this test problem is used to

assess the whether and MOEA is able to perform concurrent

convergence on different objectives. Parameter settings are:

x ∈ [0, 1]D and K = 10.

MaF3 (convex DTLZ3 [5])

min

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

f1(x)=
[

cos( π
2

x1) . . . cos( π
2

xM−2) cos( π
2

xM−1)(1+g(xM ))
]4

f2(x)=
[

cos( π
2

x1) . . . cos( π
2

xM−2) sin( π
2

xM−1)(1+g(xM ))
]4

. . .

fM−1(x)=
[

cos( π
2

x1) sin( π
2

x2)(1+g(xM ))
]4

fM (x)=
[

sin( π
2

x1)(1+g(xM ))
]2

(5)

with

g(xM )=100

⎡

⎣|xM |+
|x|
∑

i=M

(xi −0.5)2−cos(20π(xi −0.5))

⎤

⎦

(6)

where the number of decision variable is D = M + K − 1,

and K denotes the size of xM , namely K = |xM |, with xM =
(xM , . . . , xD). As shown in Fig. 3, this test problem has a

convex PF, and there a large number of local fronts. This test

problem is mainly used to assess whether EMaO algorithms

are capable of dealing with convex PFs. Parameter settings

of this test problem are: x ∈ [0, 1]D , K = 10 (Fig. 4).

MaF4 (inverted badly scaled DTLZ3)

min

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

f1(x) = a ×
(

1− cos
(

π
2

x1

)

. . . cos
(

π
2

xM−2

)

cos
(

π
2

xM−1

))

(1+g(xM ))

f2(x) = a2 ×
(

1− cos
(

π
2

x1

)

. . . cos
(

π
2

xM−2

)

sin
(

π
2

xM−1

))

(1+g(xM ))

. . .

fM−1(x) = aM−1 ×
(

1 − cos
(

π
2

x1

)

sin
(

π
2

x2

))

(1 + g(xM ))

fM (x) = aM ×
(

1 − sin
(

π
2

x1

))

× (1 + g(xM ))

(7)

with

g(xM )=100

⎡

⎣|xM |+
|x|
∑

i=M

(xi−0.5)2 − cos(20π(xi−0.5))

⎤

⎦

(8)
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Fig. 4 The Pareto front of MaF4 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively
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Fig. 5 The Pareto front of MaF5 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

where the number of decision variable is D = M + K − 1,

and K denotes the size of xM , namely K = |xM |, with xM =
(xM , . . . , xD). Parameter settings are a = 2. Besides, the

fitness landscape of this test problem is highly multimodal,

containing a number of (3k − 1) local Pareto-optimal fronts.

This test problem is used to assess whether EMaO algorithms

are capable of dealing with badly scaled PFs, especially when

the fitness landscape is highly multimodal. Parameter settings

of this test problem are: x ∈ [0, 1]n , K = 10 and a = 2.

MaF5 (convex badly scaled DTLZ4)

min

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

f1(x) = aM ×
[

cos
(

π
2

x1
α
)

. . . cos
(

π
2

xα
M−2

)

cos
(

π
2

xα
M−1

)

(1+g(xM ))
]4

f2(x) = aM−1×
[

cos
(

π
2

x1
α
)

. . . cos
(

π
2

xα
M−2

)

sin
(

π
2

xα
M−1

)

(1+g(xM ))
]4

. . .

fM−1(x) = a2 ×
[

cos( π
2

xα
1 ) sin( π

2
xα

2 )(1 + g(xM ))
]4

fM (x) = a ×
[

sin( π
2

x1
α)(1 + g(xM ))

]4

(9)

with

g(xM ) =
|x|
∑

i=M

(xi − 0.5)2 (10)

where the number of decision variable is D = M + K − 1,

and K denotes the size of xM , namely K = |xM |, with

xM = (xM , . . . , xD). As shown in Fig. 5, this test problem

has a badly scaled PF, where each objective function is scaled

to a substantially different range. Besides, the PS of this test

problem has a highly biased distribution, where the majority

of Pareto optimal solutions are crowded in a small subregion.

This test problem is used to assess whether EMaO algorithms

are capable of dealing with badly scaled PFs/PSs. Parameter

settings of this test problem are: x ∈ [0, 1]D , α = 100 and

a = 2.

MaF6 (DTLZ5(I,M) [24])

min

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

f1(x) = cos(θ1) . . . cos(θM−2) cos(θM−1)(1 + 100g(xM ))

f2(x) = cos(θ1) . . . cos(θM−2) sin(θM−1)(1 + 100g(xM ))

. . .

fM−1(x) = cos(θ1) sin(θ2)(1 + 100g(xM ))

fM (x) = sin(θ1)(1 + 100g(xM ))

(11)
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Fig. 6 The Pareto front of MaF6 with three and tenobjectives shown by Cartesian coordinates and parallel coordinates, respectively
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Fig. 7 The Pareto front of MaF7 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

with

θi =

{

π
2

xi for i = 1, 2, . . . , I − 1
1

4(1+g(xM ))
(1 + 2g(xM )xi ) for i = I, . . . , M−1

(12)

g(xM ) =
|x|
∑

i=M

(xi − 0.5)2 (13)

where the number of decision variable is D = M + K −
1, and K denotes the size of xM , namely K = |xM |, with

xM = (xM , . . . , xD). As shown in Fig. 6, this test problem

has a degenerate PF whose dimensionality is defined using

parameter I . In other words, the PF of this test problem is

always an I -dimensional manifold regardless of the specific

number of decision variables. This test problem is used to

assess whether EMaO algorithms are capable of dealing with

degenerate PFs. Parameter settings are: x ∈ [0, 1]D , I = 2

and K = 10.

MaF7 (DTLZ7 [9])

min

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

f1(x) = x1

f2(x) = x2

. . .

fM−1(x) = xM−1

fM (x) = h( f1, f2, . . . , fM−1, g) × (1 + g(xM ))

(14)

with

{

g(xM ) = 1 + 9
|xM |

∑|x|
i=M xi

h( f1, f2, . . . , fM−1, g)= M−
∑M−1

i=1

[

fi

1+g
(1+ sin(3π fi ))

]

(15)

where the number of decision variable is D = M + K −
1, and K denotes the size of xM , namely K = |xM |, with

xM = (xM , . . . , xD). As shown in Fig. 7, this test problem

has a disconnected PF where the number of disconnected

segments is 2M−1. This test problem is used to assess whether
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Fig. 8 The Pareto front of MaF8 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

EMaO algorithms are capable of dealing with disconnected

PFs, especially when the number of disconnected segments is

large in high-dimensional objective space. Parameter settings

are: x ∈ [0, 1]n and K = 20.

MaF8 (multi-point distance minimization problem

[11,12])

This function considers a two-dimensional decision space.

As its name suggests, for any point x = (x1, x2) MaF8 cal-

culates the Euclidean distance from x to a set of M target

points (A1, A2, . . . , AM ) of a given polygon. The goal of

the problem is to optimize these M distance values simulta-

neously. It can be formulated as

min

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f1(x) = d(x, A1)

f2(x) = d(x, A2)

. . .

fM (x) = d(x, AM )

(16)

where d(x, Ai ) denotes the Euclidean distance from point x

to point Ai .

One important characteristic of MaF8 is its Pareto opti-

mal region in the decision space is typically a 2D manifold

(regardless of the dimensionality of its objective vectors).

This naturally allows a direct observation of the search

behavior of EMaO algorithms, e.g., the convergence of their

population to the Pareto optimal solutions and the coverage

of the population over the optimal region.

In this test suite, the regular polygon is used (to unify

with MaF9). The center coordinates of the regular polygon

(i.e., Pareto optimal region) are (0, 0) and the radius of the

polygon (i.e., the distance of the vertexes to the center) is 1.0.

Parameter settings are: x ∈ [−10,000, 10,000]2. Figure 8

shows the Pareto optimal regions of the three-objective and

ten-objective MaF8.

MaF9 (multi-line distance minimization problem [25])

This function considers a two-dimensional decision space.

For any point x = (x1, x2), MaF9 calculates the Euclidean

distance from x to a set of M target straight lines, each of

which passes through an edge of the given regular polygon

with M vertexes (A1, A2, . . . , AM ), where M ≥ 3. The goal

of MaF9 is to optimize these M distance values simultane-

ously. It can be formulated as

min

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

f1(x) = d(x,
←−→
A1 A2)

f2(x) = d(x,
←−→
A2 A3)

. . .

fM (x) = d(x,
←−−→
AM A1)

(17)

where
←−→
Ai A j is the target line passing through vertexes Ai

and A j of the regular polygon, and d(x,
←−→
Ai A j ) denotes the

Euclidean distance from point x to line
←−→
Ai A j .

One key characteristic of MaF9 is that the points in the reg-

ular polygon (including the boundaries) and their objective

images are similar in the sense of Euclidean geometry [25]. In

other words, the ratio of the distance between any two points

in the polygon to the distance between their corresponding

objective vectors is a constant. This allows a straightforward

understanding of the distribution of the objective vector set

(e.g., its uniformity and coverage over the Pareto front) via

observing the solution set in the two-dimensional decision

space. In addition, for MaF9 with an even number of objec-

tives (M = 2k where k ≥ 2), there exist k pairs of parallel

target lines. Any point (outside the regular polygon) resid-

ing between a pair of parallel target lines is dominated by

only a line segment parallel to these two lines. This property

can pose a great challenge for EMaO algorithms which use

Pareto dominance as the sole selection criterion in terms of
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Fig. 9 The Pareto front of MaF9 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

convergence, typically leading to their populations trapped

between these parallel lines [14].

For MaF9, all points inside the polygon are the Pareto

optimal solutions. However, these points may not be the

sole Pareto optimal solutions of the problem. If two tar-

get lines intersect outside the regular polygon, there exist

some areas whose points are nondominated with the inte-

rior points of the polygon. Apparently, such areas exist in

the problem with five or more objectives in view of the con-

vexity of the considered polygon. However, the geometric

similarity holds only for the points inside the regular poly-

gon. The Pareto optimal solutions that are located outside

the polygon will affect this similarity property. So, we set

some regions infeasible in the search space of the problem.

Formally, consider an M-objective MaF9 with a regular poly-

gon of vertexes (A1, A2, . . . , AM ). For any two target lines
←−−→
Ai−1 Ai and

←−−−→
An An+1 (without loss of generality, assuming

i < n) that intersect one point (O) outside the considered

regular polygon, we can construct a polygon (denoted as

�Ai−1 Ai An An+1 ) bounded by a set of 2(n−i)+2 line segments:

Ai A′
n, A′

n A′
n−1, . . . , A′

i+1 A′
i , A′

i An, An An−1, . . . , Ai+1 Ai ,

where points A′
i , A′

i+1, . . . , A′
n−1, A′

n are symmetric points

of Ai , Ai+1, . . . An−1, An with respect to central point O .

We constrain the search space of the problem outside such

polygons (but not including the boundary). Now the points

inside the regular polygon are the sole Pareto optimal solu-

tions of the problem. In the implementation of the test

problem, for newly produced individuals which are located

in the constrained areas of the problem, we simply repro-

duce them within the given search space until they are

feasible.

In this test suite, the center coordinates of the regular poly-

gon (i.e., Pareto optimal region) are (0, 0) and the radius of

the polygon (i.e., the distance of the vertexes to the center)

is 1.0. Parameter settings are: x ∈ [−10,000, 10,000]2. Fig-

ure 9 shows the Pareto optimal regions of the three-objective

and ten-objective MaF9.

MaF10 (WFG1 [10])

min

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

f1(x) = yM +2
(

1− cos
(

π
2

y1

))

. . .
(

1− cos
(

π
2

yM−2

)) (

1− cos
(

π
2

yM−1

))

f2(x) = yM +4
(

1− cos
(

π
2

y1

))

. . .
(

1− cos
(

π
2

yM−2

)) (

1− sin
(

π
2

yM−1

))

. . .

fM−1(x) = yM + 2(M − 1)
(

1 − cos
(

π
2

y1

)) (

1 − sin
(

π
2

y2

))

fM (x) = yM + 2M
(

1 − y1 − cos(10πy1+π/2)
10π

)

(18)

with

zi =
xi

2i
for i = 1, . . . , D (19)

t1
i =

⎧

⎨

⎩

zi , if i = 1, . . . , K

|zi − 0.35|
|⌊0.35 − zi⌋| + 0.35

, if i = K + 1, . . . , D
(20)

t2
i =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

t1
i , if i = 1, . . . , K

0.8 + 0.8(0.75−t1
i ) min(0,⌊t1

i −0.75⌋)
0.75

− (1−0.8)(t1
i −0.85) min(0,⌊0.85−t1

i ⌋)
1−0.85

, if i = K + 1, . . . , D

(21)

t3
i = t2

i

0.02
for i = 1, . . . , D (22)

t4
i =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑i K/(M−1)

j=(i−1)K/(M−1)+1 2 j t3
j

∑i K/(M−1)

j=(i−1)K/(M−1)+1 2 j
, if i = 1, . . . , M − 1

∑D
j=K+1 2 j t3

j
∑D

j=K+1 2 j
, if i = M

(23)
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Fig. 10 The Pareto front of MaF10 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

yi =

⎧

⎨

⎩

(t4
i − 0.5) max(1, t4

M ) + 0.5, if i = 1, . . . , M−1

t4
M , if i = M

(24)

where the number of decision variable is D = K + L , with

K denoting the number of position variables and L denoting

the number of distance variables. As shown in Fig. 10, this

test problem has a scaled PF containing both convex and

concave segments. Besides, there are a lot of transformation

functions correlating the decision variables and the objective

functions. This test problem is used to assess whether EMaO

algorithms are capable of dealing with PFs of complicated

mixed geometries. Parameter settings are: x ∈
∏D

i=1[0, 2i],
K = M − 1, and L = 10.

MaF11 (WFG2 [10])

min

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f1(x)=yM +2
(

1− cos
(

π
2

y1

))

. . .
(

1− cos
(

π
2

yM−2

)) (

1− cos
(

π
2

yM−1

))

f2(x) = yM +4
(

1− cos
(

π
2

y1

))

. . .
(

1− cos
(

π
2

yM−2

)) (

1− sin
(

π
2

yM−1

))

. . .

fM−1(x) = yM + 2(M − 1)
(

1 − cos
(

π
2

y1

)) (

1 − sin
(

π
2

y2

))

fM (x) = yM + 2M(1 − y1 cos2(5πy1))

(25)

with

zi =
xi

2i
for i = 1, . . . , D (26)

t1
i =

⎧

⎨

⎩

zi , if i = 1, . . . , K

|zi −0.35|
|⌊0.35−zi ⌋|+0.35

, if i = K + 1, . . . , D
(27)

t2
i =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

t1
i
, if i = 1, . . . , K

t1
K+2(i−K )−1

+ t1
K+2(i−K )

+2|t1
K+2(i−K )−1

− t1
K+2(i−K )

|, if i = K+1, . . . , (D+K )/2

(28)

t3
i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑i K/(M−1)

j=(i−1)K/(M−1)+1
t2

j

K/(M−1)
, if i = 1, . . . , M − 1

∑(D+K )/2
j=K+1 t2

j

(D−K )/2
, if i = M

(29)

yi =

⎧

⎨

⎩

(t3
i − 0.5) max(1, t3

M ) + 0.5, if i=1, . . . , M−1

t3
M , if i = M

(30)

where the number of decision variable is n = K + L , with

K denoting the number of position variables and L denoting

the number of distance variables. As shown in Fig. 11, this

test problem has a scaled disconnected PF. This test problem

is used to assess whether EMaO algorithms are capable of

dealing with scaled disconnected PFs. Parameter settings are:

x ∈
∏D

i=1[0, 2i], K = M − 1, and L = 10.

MaF12 (WFG9 [10])

min

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f1(x) = yM + 2 sin
(

π
2 y1

)

. . . sin
(

π
2 yM−2

)

sin
(

π
2 yM−1

)

f2(x) = yM + 4 sin
(

π
2 y1

)

. . . sin
(

π
2 yM−2

)

cos
(

π
2 yM−1

)

. . .

fM−1(x) = yM + 2(M − 1) sin
(

π
2 y1

)

cos
(

π
2 y2

)

fM (x) = yM + 2M cos
(

π
2 y1

)

(31)

with

zi =
xi

2i
for i = 1, . . . , D (32)
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Fig. 11 The Pareto front of MaF11 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

t1
i =

⎧

⎪

⎨

⎪

⎩

z

0.02+(50−0.02)

(

0.98/49.98−
(

1−2

∑n
j=i+1

z j

D−i

)

|⌊0.5−
∑D

j=i+1
z j

D−i
⌋+0.98/49.98|

)

i , if i = 1, . . . , D − 1

zi , if i = D

(33)

t2
i =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 +
(

|t1
i − 0.35| − 0.001

)

(

349.95⌊t1
i −0.349⌋

0.349
+ 649.95⌊0.351−t1

i ⌋
0.649

+ 1000

)

, if i = 1, . . . , K

1
97

(

1 + cos[122π(0.5 − |t1
i −0.35|

2(⌊0.35−t1
i ⌋+0.35)

)] + 380

(

|t1
i −0.35|

2(⌊0.35−t1
i ⌋+0.35)

)2
)

, if i = K + 1, . . . , D

(34)

t3
i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑i K/(M−1)

j=(i−1)K/(M−1)+1

(

t2
j +

∑K/(M−1)−2
k=0 |t2

j −t2
p |

)

⌈K/(M−1)/2⌉(1+2K/(M−1)−2⌈K/(M−1)/2⌉) , if i = 1, . . . , M − 1

∑D
j=K+1

(

t2
j +

∑D−K−2
k=0 |t2

j −t2
q |

)

⌈(D−K )/2⌉(1+2(D−K )−2⌈(D−K )/2⌉) , if i = M

(35)

yi =

{

(t3
i − 0.5) max(1, t3

M )+0.5, if i = 1, . . . , M − 1

t3
M , if i = M

(36)

⎧

⎪

⎨

⎪

⎩

p = (i − 1)K/(M − 1) + 1 + ( j − (i − 1)K/

(M − 1) + k)mod(K/(M − 1))

q = K + 1 + ( j − K + k)mod(n − K )

(37)

where the number of decision variable is D = K + L , with

K denoting the number of position variable and L denoting

the number of distance variable. As shown in Fig. 12, this test

problem has a scaled concave PF. Although the PF of this test

problem is simple, its decision variables are nonseparably

reduced, and its fitness landscape is highly multimodal. This

test problem is used to assess whether EMaO algorithms are

capable of dealing with scaled concave PFs together with

complicated fitness landscapes. Parameter settings are: x ∈
∏D

i=1[0, 2i], K = M − 1, and L = 10.

MaF13 (PF7 [13])

min

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f1(x) = sin
(

π
2

x1

)

+ 2
|J1|

∑

j∈J1

y2
j

f2(x) = cos(π
2

x1) sin
(

π
2

x2

)

+ 2
|J2|

∑

j∈J2

y2
j

f3(x) = cos
(

π
2

x1

)

cos
(

π
2

x2

)

+ 2
|J3|

∑

j∈J3

y2
j

f4,...,M (x)= f1(x)2 + f2(x)10+ f3(x)10+ 2
|J4|

∑

j∈J4

y2
j

(38)
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Fig. 12 The Pareto front of MaF12 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively
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Fig. 13 The Pareto front of MaF13 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

with

yi = xi − 2x2 sin

(

2πx1 +
iπ

n

)

for i = 1, . . . , D (39)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

J1 = { j |3 ≤ j ≤ D, and j mod 3 = 1}
J2 = { j |3 ≤ j ≤ D, and j mod 3 = 2}
J3 = { j |3 ≤ j ≤ D, and j mod 3 = 0}
J4 = { j |4 ≤ j ≤ D}

(40)

where the number of decision variable is D = 5. As shown

in Fig. 13, this test problem has a concave PF; in fact, the

PF of this problem is always a unit sphere regardless of the

number of objectives. Although this test problem has a simple

PF, its decision variables are nonlinearly linked with the first

and second decision variables, thus leading to difficulty in

convergence. This test problem is used to assess whether

EMaO algorithms are capable of dealing with degenerate

PFs and complicated variable linkages. Parameter setting is:

x ∈ [0, 1]2 × [−2, 2]D−2.

MaF14 (LSMOP3 [16])

min

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f1(x) = x
f

1 . . . x
f

M−1

(

1 +
∑M

j=1 c1, j × ḡ1(x
s
j )

)

f2(x) = x
f

1 . . . (1 − x
f
M−1)

(

1+
∑M

j=1 c2, j × ḡ2(x
s
j )

)

. . .

fM−1(x)= x
f

1 (1−x
f

2 )

(

1+
∑M

j=1 cM−1, j × ḡM−1(x
s
j )

)

fM (x) = (1−x
f

1 )

(

1+
∑M

j=1 cM, j×ḡM (xs
j )

)

x ∈ [0, 10]|x|

(41)

with

ci, j =

{

1, if i = j

0, otherwise
(42)
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Fig. 14 The Pareto front of MaF14 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively
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Fig. 15 The Pareto front of MaF15 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ḡ2k−1(x
s
i ) = 1

Nk

∑Nk

j=1

η1(x
s
i, j )

|xs
i, j |

ḡ2k(x
s
i ) = 1

Nk

∑Nk

j=1

η2(x
s
i, j )

|xs
i, j |

k = 1, . . . ,
⌈

M
2

⌉

(43)

{

η1(x) =
∑|x|

i=1(x2
i − 10 cos(2πxi ) + 10)

η2(x) =
∑|x|−1

i=1

[

100(x2
i − xi+1)

2 + (xi − 1)2
]

(44)

⎧

⎨

⎩

xs ←
(

1 + i
|xs |

)

× (xs
i − li ) − x

f
1 × (ui − li )

i = 1, . . . , |xs |
(45)

where Nk denotes the number of variable subcomponent

in each variable group xs
i with i = 1, . . . , M , and ui and

li are the upper and lower boundaries of the i th decision

variable in xs . Although this test problem has a simple

linear PF, its fitness landscape is complicated. First, the deci-

sion variables are non-uniformly correlated with different

objectives; second, the decision variables have mixed sep-

arability, i.e., some of them are separable while others are

not. This test problem is mainly used to assess whether

EMaO algorithms are capable of dealing with complicated

fitness landscape with mixed variable separability, especially

in large-scale cases. Parameter settings are: Nk = 2 and

D = 20 × M .

123



Complex Intell. Syst. (2017) 3:67–81 79

MaF15 (inverted LSMOP8 [16])

min

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f1(x) =
(

1 − cos
(

π
2

x
f

1

)

. . . cos
(

π
2

x
f
M−2

)

cos
(

π
2

x
f
M−1

))

×
(

1 +
∑M

j=1 c1, j × ḡ1(x
s
j )

)

f2(x) =
(

1 − cos
(

π
2

x
f

1

)

. . . cos
(

π
2

x
f
M−2

)

sin
(

π
2

x
f
M−1

))

×
(

1 +
∑M

j=1 c2, j × ḡ2(x
s
j )

)

. . .

fM−1(x) =
(

1 − cos
(

π
2

x
f

1

)

sin
(

π
2

x
f

2

))

×
(

1 +
∑M

j=1 cM−1, j × ḡM−1(x
s
j )

)

fM (x) =
(

1 − sin
(

π
2

x
f

1

))

×
(

1 +
∑M

j=1 cM, j ḡM (xs
j )

)

x ∈ [0, 1]|x|

(46)

with

ci, j =

{

1, if j = i or j = i + 1

0, otherwise
(47)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ḡ2k−1(x
s
i ) = 1

Nk

∑Nk

j=1

η1(x
s
i, j )

|xs
i, j |

ḡ2k(x
s
i ) = 1

Nk

∑Nk

j=1

η2(x
s
i, j )

|xs
i, j |

k = 1, . . . ,
⌈

M
2

⌉

(48)

⎧

⎪

⎨

⎪

⎩

η1(x) =
∑|x|

i=1

x2
i

4000
−

|x|
∏

i=1

cos
(

xi√
i

)

+ 1

η2(x) =
∑|x|

i=1(xi )
2.

(49)

{

xs ←
(

1+ cos
(

0.5π i
|xs |

))

× (xs
i − li )−x

f
1 × (ui−li )

i = 1, . . . , |xs |
(50)

where Nk denotes the number of variable subcomponent in

each variable group xs
i with i = 1, . . . , M , and ui and li are

the upper and lower boundaries of the i th decision variable

in xs . Although this test problem has a simple convex PF,

its fitness landscape is complicated. First, the decision vari-

ables are non-uniformly correlated with different objectives;

second, the decision variables have mixed separability, i.e.,

some of them are separable while others are not. Different

from MaF14, this test problem has non-linear (instead of lin-

ear) variable linkages on the PS, which further increases the

difficulty. This test problem is mainly used to assess whether

EMaO algorithms are capable of dealing with complicated

fitness landscape with mixed variable separability, especially

in large-scale cases. Parameter settings are: Nk = 2 and

D = 20 × M in Figs. 14 and 15.

Experimental setup

To conduct benchmark experiments using the proposed test

suite, users may follow the experimental setup as given

below.

General settings

• Number of objectives (M) 5, 10, 15

• Maximum population size1 25 × M

• Maximum number of fitness evaluations (FEs)2

max{100000, 10000 × D}
• Number of independent runs 31

Performance metrics

• Inverted generational distance (IGD) Let P∗ be a set

of uniformly distributed points on the Pareto front. Let

P be an approximation to the Pareto front. The inverted

generational distance between P∗ and P can be defined

as:

IGD(P∗, P) =
∑

v∈P∗ d(v, P)

|P∗|
, (51)

where d(v, P) is the minimum Euclidean distance from

point v to set P . The IGD metric is able to measure both

diversity and convergence of P if |P∗| is large enough,

and a smaller IGD value indicates a better performance.

In this test suite, we suggest a number of 10,000 uni-

formly distributed reference points sampled on the true

Pareto front3 for each test instance.

• Hypervolume (HV) Let y∗ = (y∗
1 , . . . , y∗

m) be a refer-

ence point in the objective space that is dominated by

all Pareto optimal solutions. Let P be the approximation

to the Pareto front. The HV value of P (with regard to

y∗) is the volume of the region which is dominated by P

1 The size of final population/archive must be smaller the given max-

imum population size, otherwise, a compulsory truncation will be

operated in final statistics for fair comparisons.

2 Regardless of the number of objectives, every evaluation of the whole

objective set is counted as one FE.

3 The specific number of reference points for IGD calculations can vary

a bit due to the different geometries of the Pareto fronts. All reference

point sets can be automatically generated using the software platform

introduced in Sect. “Software platform”.
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Fig. 16 The GUI in PlatEMO for this test suite

and dominates y∗. In this test suite, the objective vectors

in P are normalized using f
j

i = f
j

i

1.1×ynadir
i

, where f
j

i is

the i th dimension of j th objective vector, and ynadir
i is

the i th dimension of nadir point of the true Pareto front.4

Then we use y* = (1,…,1) as the reference point for the

normalized objective vectors in the HV calculation.

Software platform

All the benchmark functions have been implemented in

MATLAB code and embedded in a recently developed soft-

ware platform—PlatEMO.5 PlatEMO is an open source

MATLAB-based platform for evolutionary multi- and many-

objective optimization, which currently includes more than

50 representative algorithms and more than 100 benchmark

functions, along with a variety of widely used performance

indicators. Moreover, PlatEMO provides a user-friendly

graphical user interface (GUI), which enables users to easily

perform experimental settings and algorithmic configura-

tions, and obtain statistical experimental results by one-click

operation.

4 The nadir points can be automatically generated using the software

platform introduced in Sect. “Software platform”.

5 PlatEMO can be downloaded at http://bimk.ahu.edu.cn/index.php?

s=/Index/Software/index.html.

In particular, as shown in Fig. 16, we have tailored a new

GUI in PlatEMO for this test suite, such that participants

are able to directly obtain tables and figures comprising the

statistical experimental results for the test suite. To conduct

the experiments, the only thing to be done by participants is

to write the candidate algorithms in MATLAB and embed

them into PlatEMO. The detailed introduction to PlatEMO

regarding how to embed new algorithms can be referred to

the users manual attached in the source code of PlatEMO

[26]. Once a new algorithm is embedded in PlatEMO, the

user will be able to select the new algorithm and execute it

on the GUI shown in Fig. 16. Then the statistical results will

be displayed in the figures and tables on the GUI, and the

corresponding experimental result (i.e., final population and

its performance indicator values) of each run will be saved

to a .mat file.
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