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Abstract. In smart environments, developers can choose from a large variety of 

sensors supporting their use case that have specific advantages or disad-

vantages. In this work we present a benchmarking model that allows estimating 

the utility of a sensor technology for a use case by calculating a single score, 

based on a weighting factor for applications and a set of sensor features. This 

set takes into account the complexity of smart environment systems that are 

comprised of multiple subsystems and applied in non-static environments. We 

show how the model can be used to find a suitable sensor for a use case and the 

inverse option to find suitable use cases for a given set of sensors. Additionally, 

extensions are presented that normalize differently rated systems and compen-

sate for central tendency bias. The model is verified by estimating technology 

popularity using a frequency analysis of associated search terms in two scien-

tific databases.  

Keywords: Benchmark, smart environments, modeling, sensor technology 

1 Introduction 

When designing a new application or system for a specific purpose, the parties in-

volved have to make a number of decisions regarding the different components, pro-

cesses and methods that are to be used. Benchmarking is a method mostly used in 

business practice to compare the performance of processes, products and market enti-

ties against one another. A single or a set of different indicators are used to act as 

metric or calculate an overarching metric of performance that can be compared to 

other entities [1]. This tool is widely used for supporting decisions in different do-

mains. Looking at smart environments, a common challenge is to select a specific 

sensor technology for any given application. While the majority of systems are fol-

lowing a structured approach in the design process, e.g. by ranking available systems 

or performing an iterative trial & error routine, so far there has been no generic model 

that would allow to evaluate the expected performance of a system based on a specific 

sensor technology. This is particular in complex domains, such as Ambient Assisted 

Living (AAL) that involve constant interaction of actors within the environment, third 

parties that exchange information with the smart environment, and a variety of differ-



ent sensor systems measuring certain aspects of the environment. In this work we 

introduce a formal benchmarking model that allows estimating the performance of 

applications in smart environments based on a specific sensor technology. Using a set 

of common features and an adaptive weighting model we are able to cover a high 

number of different applications in a specific domain and thus support the decision 

process at an early stage of the application design. We are presenting related works 

ranging from technology benchmarking to selection of specific metrics before dis-

cussing features that are relevant for smart environments. After introducing the model 

formalism we evaluate the method by performing a popularity analysis within scien-

tific works. For this we use a set of search terms on two scientific databases. Further-

more, we discuss several normalization and compensation techniques that cope with 

specific effects we observed in the benchmarking process.  

2 Related Works 

Benchmarking is a tool that is widely used in computing technology [2]. Hardware 

benchmarks compare the performance of different single systems, often seen for 

GPUs or CPUs to evaluate both theoretical and real-life performance. Some metrics 

that are used for theoretical comparison in CPUs are FLOPS (floating point opera-

tions per second), e.g. measured by Linpack [3], or MIPS (million instructions per 

second), e.g. measured by Dhrystone [4]. Regarding GPUs the benchmarks include 

Texel rate (how many triangles can be processed per second) and Pixel rate (how 

many pixels are processed per second. Real-life benchmarks for CPUs typically in-

cluded timing specific tasks on applications that are demanding for certain aspects of 

the CPU, such as video processing, image processing or audio encoding. For GPUs 

many PC games provide benchmarking tools that allow evaluating the real-life per-

formance of different graphics cards at different settings, e.g. resolution or detail lev-

el. The typical metric here are FPS (frames per second) that denote how often the 

screen content can be rendered in a second. 

System benchmarks are a step up from single component benchmarks and combine 

the performance measurements of various components in different scenarios to evalu-

ate the estimated behavior in numerous real-life situations. There are several standard-

ized test suites that provide this functionality, such as SPEC [5]. A common single 

index that is available for all newer Windows machines (Vista and beyond) is the 

Windows System Assessment tool that calculates the WEI (Windows Experience 

Index), a combined score of CPU performance, 2D and 3D graphics performance, 

memory performance and disk performance. For determining the lowest score of all 

single metrics is chosen to determine a lower bound for expected real-life perfor-

mance.  

If different systems of the same category are compared, technology reviewers often 

use a single index that is calculated based on various aspects of the system. Smith 

introduced different potential combined metrics that can be used for this purpose [7]. 

Three different approaches are mentioned, geometric mean, arithmetic mean and 

harmonic mean. Additionally varieties with a specific weighting are mentioned.  



There has been considerable work in the domain of identifying suitable metrics for 

a given benchmark. Crolotte argued that the only valid benchmark for decision sup-

port systems is the arithmetic mean of different single benchmark streams, as it is 

valid for normalized and time-relevant benchmarks [8].  Jain and Raj dedicate several 

chapters of their book to introduce methods and considerations for metric selection in 

benchmarking computer systems [9]. 

In smart environments a number of different benchmarks have been proposed that 

cover aspects similar to our approach. Ranganathan et al. introduced benchmarking 

methods and a set for pervasive computing systems [10]. They distinguish system 

metrics, configurability and programmability metrics and human usability metrics. 

Another example for benchmarking whole systems is the EvAAL competition that 

aims at evaluating different technologies that are applicable in Ambient Assisted Liv-

ing [11]. There are various tracks, including indoor localization and activity recogni-

tion. Apart from technical metrics, such as precision, a focus of this competition is on 

a more holistic approach and thus includes metrics like installation time, user ac-

ceptance and interoperability of the solution. Santos et al. presented a model to evalu-

ate human-computer interaction in ubiquitous computing applications, based on trust-

ability, resource-limitedness, usability and ubiquity [12]. In order to assess how well 

ubiquitous computing applications cover privacy aspects, Jafari et al. propose a set of 

five abstracted metrics that are applied to whole systems [13]. While these are all 

benchmarking models within smart environments, they are either aiming at evaluating 

whole systems or singular aspects not directly related towards sensor technology. 

3 Sensor Features 

One of the most challenging aspects of benchmarking is selecting the appropriate 

metrics to be included. In order to identify relevant sensor features for technologies to 

be applied in smart environments we take inspiration from sensor technology over-

views [14] and the pervasive model presented by Ranganathan et al. [10].  According-

ly, we can identify three different groups of sensor features: sensor performance char-

acteristics, pervasive metrics and environmental characteristics. These different 

groups are detailed in the following sections. We are giving an overview of different 

potential members of the groups, discuss their relevancy for the benchmarking model 

and create a feature matrix, as a basis for the feature scoring model. 

3.1 Sensor Performance Characteristics 

This group of sensor features is related to specific technical properties of the given 

sensing device, as they would be typically put into the datasheet. A first important 

characteristic is the sensitivity or resolution of a sensor, which is the smallest change 

of a measured quantity that is still detectable. For example an accelerometer might be 

able to only detect changes that are above 0.1g. Another important characteristic is the 

update rate of a sensor. This denotes the number of samples the sensor is able to 

measure in a certain timeframe. Typically, the number of samples in a second is noted 



as frequency, thus a sensor may have an update rate of 20 Hz, generating 20 samples 

in a second. Another factor that is particularly important for embedded systems or 

wearables is the power consumption of the sensor that may limit the time it can oper-

ate on battery, independent of a power source. A last example is the detection range, 

denoting the maximum distance between the measured object and the sensing device. 

This can be a significant distance for cameras (e.g. satellite images), whereas we are 

primarily looking at smaller smart environments, where it is rare that distances of 20 

meters are exceed. Other technologies such as capacitive proximity sensors may not 

work at this distance [15]. 

3.2 Pervasive Metrics 

Pervasive metrics can be identified as features that specify how well a given sensor 

system will perform in collaboration with smart environments, when networked with 

other devices and when placed into existing surroundings. An example for the latter is 

the obtrusiveness of a sensor device. If it is clearly visible when applied, if there are 

disturbing signals generated, or if certain privacy concerns are associated to the sensor 

device, the acceptance by the user and thus the applicability is reduced. If the sensor 

is operating in a larger network of other devices, the bandwidth required to submit 

signal to an analyzing node should be kept low. Equally, if the processing capabilities 

are limited, less complex data processing is preferable. The overall system cost is 

increasing if single sensors are particularly expensive, thus limiting the potential ap-

plications. The system and attached sensors should be robust, both in terms of physi-

cal design and quality of service. Finally, the sensors are more readily applicable if 

the systems are interoperable to each other. 

3.3 Environmental Characteristics 

The third group is the environmental characteristics of a sensor system. Any sensor 

is affected by a certain disturbance caused by factors in the environment that are simi-

lar to the measured quantity, also called noise. For example an optical sensor is influ-

enced by ambient light sources. In this context it is relevant how frequent those influ-

ences are in a certain environment and how robust the sensor is against noise. In many 

cases the presence of noise can be detected and counteracted with a calibration to-

wards the changed environmental factors. The complexity of this calibration is anoth-

er interesting factor in this regard. Finally, all sensors have some unique limitations, 

e.g. specific materials that absorb certain wavelengths of the electromagnetic field are 

difficult to detect for sensors that work in this specific frequency range. 

3.4 Discussion of Feature Selection 

We want to select the three most relevant features of each category. This allows a 

more manageable overall model, however, requires a selection of the presented fea-

tures. In this work the selection is based on the authors’ analysis of the related works. 
In future it is advisable to use more sophisticated methods, such as surveying AmI 



experts and calculating inter-rater reliability [16]. Of the sensor performance charac-

teristics group we will select resolution, update rate and detection range. Resolution is 

a critical feature in any application, determining precise any detection is and if partic-

ular objects may be detected at all. Update rate is equally important if fast objects are 

to be detected and if we want to have reactive systems that respond in real-time. The 

importance of detection range correlates with the size of the environment and may 

lead to a reduction of required sensors. Of the mentioned features we omit power 

consumption. The actual power consumption of a whole system is a more interesting 

metric but very difficult to predict from the energy usage of a single sensor [17]. Of 

the pervasive metrics group we select unobtrusiveness, processing complexity and 

robustness. Unobtrusiveness of the sensor device is a desired feature in many different 

scenarios, where it should not impede the environment.  

Table 1. Feature matrix denoting capabilities required for a certain rating 

Feature -- - o + ++ 

Resolution (res) very coarse coarse normal fine very fine 

Update Rate (upd) 
<  once per 

second 

slower real-

time 
real-time 

faster real-

time 

> 100 times 

per second 

Detection Range 

(det) 
touch 

less than 

one meter 

less than 5 

meters 

less than 20 

meters 

more than 

20 meters 

Unobtrusiveness 

(unob) 

open large 

system 

open small 

system 

hidden, 

large expo-

sure 

hidden, 

noticeable 

exposure 

invisible 

Processing Com-

plexity (proc) 

single sen-

sor CPU 

10+ sensors 

CPU 

single sen-

sor embed-

ded chip 

10+ sensors 

by single 

chip 

no further 

processing 

Robustness (robu) 
single point 

of failure 

error detec-

tion 

quality of 

service 

self-

recovery 

fully re-

dundant 

Disturbance Fre-

quency (disfr) 

very fre-

quent 
frequent average unlikely 

highly 

unlikely 

Calibration Com-

plexity (calco) 
very hard hard normal easy very easy 

Unique Limita-

tions (uniql) 

very criti-

cal 
critical average not critical  none 



While microprocessors are becoming ever faster processing complexity is still cru-

cial if the number of sensors is increasing. A dedicated chip will require a more com-

plex architecture and lead to more cost, higher energy usage and more potential points 

of failure, leading to the final chosen feature of robustness, both against physical 

abuse, but also in terms of system design, where it should be resilient towards failure 

of single components. We omitted the required bandwidth, as this metric is not im-

portant for many sensors, as they have low bandwidth requirements in general, but 

also the available bandwidth in wired and wireless systems is increasing continuously. 

In the last group of environmental characteristics we choose frequency of the disturb-

ing factor, calibration complexity and unique limitations. If the disturbing factor oc-

curs only rarely it is not critical and therefore should be part of the benchmark. Cali-

bration complexity combines both the processing complexity and time that is required 

to recalibrate the system. This is highly important in real-time systems that have to 

monitor the environment continuously. Finally, unique limitations are a rather broad 

metric that is difficult to quantify. However, in many scenarios it is obvious that a 

specific limitation might arise, e.g. if the smart environment is in an area with a lot of 

human noise, microphones could be regularly disturbed. Including this metric allows 

modeling those applications into the benchmark with a strong weight penalizing un-

suited sensors.  

3.5 Feature Matrix 

From the selected metrics we want to create a feature matrix that allows us to asso-

ciate specific capabilities to a specific rating that is used later in the scoring process of 

the benchmark model. Each feature is mapped to five different ratings on an ordinal 

rating scale comprised of the items “least favorable” (--), “not favorable” (-), “aver-

age” (o), “favorable” (+) and “very favorable” (++). This leads to the feature matrix 
shown in Table 1, which will be discussed briefly. 

 Resolution is ranging from “very coarse” to “very fine”. We are using this unspe-

cific rating, as the range may vary strongly between different sensor types. A map-

ping to actual should depend on the application and object that has to be detected. 

If the object is large a sensor that would be ranked “coarse” for smaller objects can 
be ranked as “fine”. 

 Update Rate is rated around real-time performance that is often rated at around 20 

samples per second. Slower sensors might miss various events, while faster sensors 

allow detecting highly dynamic events. It should be noted that for certain sensor 

categories that measure fast events can require considerably faster update rates. 

 Detection Range is rated around the 5m distance mark, that is typically enough to 

cover the entirety of a single apartment room. For larger rooms sensors with a 

higher detection distance are favorable, many sensors only react to touch. 

 Unobtrusiveness is ranging from exposed systems placed in the environment (one 

example would be the Microsoft Kinect) to invisible systems that integrate seam-

lessly into the environment. 



 Processing Complexity has a range from dedicated CPUs that are required to pro-

cess the data of a single sensor to smart sensors that require no further processing, 

which allows to apply numerous sensors without adding additional processing ca-

pabilities to the environment. 

 Robustness is following criteria for quality of service. The least favorable system 

fails, if only a single node is present and failing. The preferred system is fully re-

dundant. 

 Disturbance Frequency is ranging from frequently occurring disturbing signals, to 

highly unlikely disturbing signals, resulting in a better rating. 

 Calibration Complexity is a combined metric including the calibration time, the 

required processing capabilities and if external aid is required in the calibration 

process, leading to a rating from “very hard” to “very easy”. 
 Unique Limitations should be ranked according to their criticality, as previously 

explained they may be suitable to penalize certain sensors or emphasize the preva-

lence of a disturbing factor in a noisy environment. 

Now that the feature matrix is complete, the next step is presenting the formalized 

benchmarking model and how we can use the presented features and their rating to 

calculate a benchmark score that allows us to compare different sensor categories 

with regard to different applications.
 

4 Benchmarking Model 

 

Figure 1. Benchmarking process 

In this section we will describe a formal model that will allow us to determine a 

benchmark score for a given application and a given sensor technology. As previously 

explained the different applications are distinguished by applying a different set of 

weights to the known features. We will begin by discussing the process of this feature 

weighting and giving some examples about proper application. Afterwards, we will 

introduce a formal model that deduces a single score benchmark for any sensor tech-

nology and any application. The overall process is shown in Figure 1 and will be de-

tailed in the following sections, including an example. 



4.1 Feature Score and Weighting 

The presented feature matrix has some ratings that need detailing in order to be 

quantifiable in the specific application. The ordinal measurements of the feature ma-

trix should be assigned a quantifiable measure. Taking “Unobtrusiveness” the open 
system can be detailed as “visible by users” and “large system” as size larger than 100 
x 100 x 100 mm. Similar levels of detail can be applied to the other features, leading 

to the application-specific detailed feature matrix that is used in the scoring process. 

The different ratings are assigned different numeric values, namely 0.00 (--), 0.25 (-), 

0.5 (o), 0.75 (+) and 1.00 (++). The weight of the features for the specific application 

is also rated on a 5-point ordinal scale, denoted as “not important” (numeric value 
0.0), “less important” (0.25), “moderately important” (0.5), “important” (0.75) and 
“very important” (1.00). Thus for each application we have a distinct detailed feature 

matrix and a vector of associated weights that can be applied to a set of sensor tech-

nologies in order to calculate the benchmark score. We will now introduce the formal 

modeling that allows us to determine the calculation for this scoring process. 

4.2 Modeling 

The model is supposed to formalize a benchmark for any application and any sen-

sor technology in any domain. We will start with the following definitions: 

 Set of n domains                    
 Set of m applications                   
 Set of o features                   
 Set of p sensor technologies                   

In any domain di we have a set of potential applications       and a set of rele-

vant features      . For each feature       there is the associated feature score      
as explained in the previous section. Each sensor technology    has a specific feature 

score              . The combined feature scores result in the following vector. 

        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   (                   ) (1) 

The weights           associated to a specific application    in a domain    have 

the same cardinality | | as the vector of feature scores |       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  |.  
    ⃑⃑ ⃑⃑ ⃑⃑   (             ) (2) 

The feature scores and associated weights allow us to determine a benchmark score     for a specific sensor technology    for any application    by using the scalar prod-



uct of feature score and respective weight and apply normalization with regard to the 

weight. 

            ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑      ⃑⃑ ⃑⃑ ⃑⃑  ∑            (3) 

We can now compare different sensor technologies by calculating and comparing 

the different benchmark scores for a given set of sensor technologies      and re-

ceive a set     with   |  |. 
                     (4) 

Thus in order to determine the optimal (chosen) sensor technology    for an appli-

cation    and given the prerequisites regarding non-negativity of weights and feature 

scores, we can evaluate the set for the maximum element. 

              (5) 

4.3 Feature Score Normalization 

With regards to actual benchmarking the problem of bias towards a specific tech-

nology may occur. If the average features ratings are different between two technolo-

gies the calculated benchmark score will increase. In many instances this might be 

beneficial, yet if comparing numerous technologies to a set of different applications a 

trend might be more important than absolute scores. Thus, we provide an optional 

step of calculating the normalized feature vector             with regard to the average 

associated value of 0.5, using the following equation. 

             ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑  (                   )       ∑               (6) 

The feature-normalized benchmark score is accordingly determined with the fol-

lowing equation. 

                      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑     ⃑⃑ ⃑⃑ ⃑⃑  ∑            (7) 

4.4 Benchmark Scoring 

Now with the formal model and the available set of feature matrix and weights we 

are able to calculate the benchmarking score for a set of sensor technologies. As an 

example we are choosing the application indoor localization in a public shopping area 

to monitor customer behavior. As a first step the feature matrix has to be detailed 



according to the specific requirements of the application. These include a tracking 

accuracy of 50 cm, with a large area to cover and potentially fast moving persons. 

Thus the importance ratings for performance characteristics are moderately important 

for resolution, important for update rate and very important for detection range. The 

system can also be used for security purposes, thus unobtrusiveness is less important. 

There can be dedicated servers, so processing complexity is not important, but the 

system should be difficult to disturb, thus robustness is important. Disturbance fre-

quency is moderately important, as a large number of persons is monitored, leading to 

statistically significant results, even if single measurements are disturbed. The envi-

ronment is fairly static, thus calibration complexity is less important. It is possible that 

a crowded shop produces a lot of acoustic noise, therefore no unique limitations to-

wards acoustic disturbances should be present and this is moderately important. The 

resulting vector of weights is: 

   ⃑⃑⃑⃑  ⃑                                                  (8) 

This vector of weights is static for the benchmarking of this specific application. 

As a next step it is necessary to determine the feature scores for a sensor technology. 

In this case, we assume a selection based on previous experiences and best practice 

for this application and choose a system based on numerous stationary cameras. The 

system has high resolution cameras, with an update rate of 30 samples per second and 

a high detection range of more than 20 meters. The cameras are external, not hidden 

from view but attached on the ceiling. The processing complexity is very high, requir-

ing a dedicated CPU per camera. Since they are out of reach they are robust towards 

human intervention and independent from each other. In the given setting visual dis-

turbance is unlikely, calibration is difficult but not required regularly and the system 

is not disturbed by acoustic noise. This results in the following rating vector: 

     ⃑⃑ ⃑⃑  ⃑                                                  (9) 

Using those two vectors we can calculate the final scoring for this sensor system 

using the equations of the previous section, leading to         and a feature-

normalized score of             . Determining the feature rating vector for other 

technologies is possible in a similar fashion, whereas the optimal technology has the 

highest score bs or bs,norm.  

5 Evaluation 

In order to evaluate the method we propose a discussion based on previous suc-

cessful works in the domain of smart environments. We will select three different 

application areas and for each benchmark three different sensor technologies. In order 

to estimate how popular a certain technology is for a given application we will be 

using the ACM Digital Library
1
 (from now on referred to as ACM DL) to query sci-

entific publications with respective author keywords. This method is limited, as the 

                                                           
1 http://dl.acm.org 



chosen keywords may not catch all relevant publications. Therefor we will slightly 

increase the focus by using multiple associated search terms for each application and 

technology. Additionally we will also perform respective searches using the Google 

Scholar
2
 (referred to as GS) database that has a much broader scope-The advantages 

of the latter are the huge collection of scientific resources and no strong selection bias. 

However, there are various associated issues that may affect the method. The search 

results vary on the search term, additionally there will be results that mention the 

search term but do not necessarily rely on the technology for their respective system. 

Therefore, the results should be considered as an indicator for popularity in the re-

search community. Similar to the ACM DL search we are also looking for synonyms 

and calculate an average between the search results. 

As applications we choose hand gesture interaction, a marker-based identification 

system and obstacle avoidance for an autonomous system. The technologies are cam-

era systems, radio-based systems, depth or stereo cameras and ultrasound devices. 

5.1 Scoring 

Table 2. The importance weighting of different applications, based on the features.   

 res upd det unob proc robu disfr calco uniql 

Hand Gesture ++ ++ - + o o + + - 

Identification -- - ++ ++ o ++ + - + 

Obstacle Avoidance - + - o + + ++ ++ + 

 

At first we determine the weights of the different applications with regards to the 

features. The results are shown in Table 2. For the tables in this section we are using 

short notation of the features in order of appearance in Section 3.4. 

Table 3. Feature rating of the different sensor technologies 

 res upd det unob proc robu disfr calco uniql 

Camera ++ o + - o o o - o 

Radio - + ++ + o o o o - 

Depth camera + o o - - o - o o 

Ultrasound - + o o + o + o o 

 

The rating of the different technologies and the resulting score is shown in Table 3. 

Here it is possible to follow different strategies regarding the rating. In terms of unbi-

ased comparison looking at the equations it would be necessary that all technologies 

have the same average feature rating. The second strategy is to apply an absolute 

ranking to all technologies, independent of the given application. This might lead to 

certain technologies being unsuited for a given task, or technologies that have the best 

benchmark score regardless of application. In this specific case the average rating 

                                                           
2 http://scholar.google.com 



according to equation (iii) is 0.53 for cameras, 0.58 for radio, 0.44 for depth cameras 

and 0.56 for ultrasound devices. The importance weights and feature ratings are trans-

lated to numerical values, as shown in equations (ix) and (x). Table 4 displays the 

different calculated benchmark scores for the combinations between applications and 

technologies. As we are comparing numerous technologies and applications the fea-

ture-normalized benchmark score (equation (viii)) is also included. 

Table 4. Regular and normalized benchmark score matrix of different applications and technol-

ogies 

  Camera Radio Depth Camera Ultrasound 

Hand Gesture 
    0.53 0.57 0.46 0.55          0.50 0.48 0.51 0.50 

Identification 
    0.49 0.64 0.40 0.57          0.46 0.55 0.45 0.51 

Obstacle Avoidance 
    0.47 0.56 0.42 0.59          0.44 0.48 0.47 0.53 

 

The effect of the normalization is easily visible. Particularly radio has a high fea-

ture rating and is negatively affected by the normalization. The only example with a 

negative average feature rating is the depth camera. After applying the normalization 

it becomes competitive in some applications. 

Finally, Table 5 shows the search results regarding the different technologies and 

applications. Particularly the ACM DL keyword search can generate empty results if 

the search terms are too specific. Thus, the search terms we were using are “gesture“, 
“identification and “obstacle” in this regard and add synonyms for the different tech-

nologies. For each sensor category we allowed the following synonyms. “Camera” 
and “video” for the first technology, “radio”, “rf” and “wifi” for the second, “depth 
camera”, “stereo camera” and “Kinect” for the third and “ultrasound” as well as “ul-

trasonic” for the last one. All search results were averaged according to the number of 

synonyms used For the Google Scholar search we used more specific terms, “hand 

gesture”, “user identification” and “obstacle avoidance” with the same synonyms to 
prevent an excessive number of search results and prevented inclusion of patents and 

citations. All searches were performed on January 30
th

, 2014. 

Table 5. Search result frequency given specific applications, sensor technologies and synonyms 

for ACM Digital Library (DL) and Google Scholar (GS) 

 
Camera Radio 

Depth Cam-

era 
Ultrasound 

 DL GS DL GS DL GS DL GS 

Hand Gesture 66 14100 27 7350 32 6850 3 1660 

Identification 81 5590 162 4920 10 3957 5 599 

Obstacle Avoidance 8 24000 1 13017 17 12278 8 14500 



5.2 Discussion of Benchmarking Strategy 

In this evaluation we included both benchmark score types to outline their differ-

ences. “Camera”, “radio” and “ultrasound” have a feature rating above average, 

whereas “depth cameras” had a lower than average rating. The feature-normalized 

benchmark score is thus adapted accordingly. Regarding the application of “hand-

gesture recognition” this leads to “depth cameras” being considered the optimal tech-

nology as opposed to “cameras” that had a higher score before normalization. For the 
other applications there is no change in optimal technology. The preferred strategy for 

applying feature-normalized or non-feature-normalized benchmark scoring should 

depend on the specific benchmarking. If we are comparing numerous technologies 

and applications at once, the feature-normalization might be helpful to get a tendency 

regarding the optimal system. However, if the application is very specific it might be 

preferred to get a clear ranking and penalize unsuited technologies, regardless of their 

average feature weight. Accordingly, it is possible to refrain from normalization. 

5.3 Discussion of Search Results 

Looking at the search results we can draw several conclusions. The prevalence is 

unequally distributed between the different technologies. Both in keywords and gen-

eral occurrence cameras are the most commonly occurring sensor device, with radio 

and depth camera ranked behind. Ultrasound on the other hand is less frequently oc-

curring. This may be explained by the higher versatility of the other options. Regard-

ing the “hand gesture” application, cameras have both the highest benchmark scores 
and most results in the database searches. The benchmark score for “user identifica-

tion” and “radio” are matched for the ACM DL. However, there are more GS results 
for “camera”. As already mentioned cameras are more commonly used, yet, the dif-
ference in keyword search results is significant. “Obstacle avoidance” is least com-

mon in the ACM DL, however quite popular in GS. Accordingly, “ultrasound” sen-

sors are significantly more common in both searches, as opposed to the previous ap-

plications. Nonetheless, “stereo cameras” are the most common sensor device for this 
application. They are commonly used in automotive scenarios, where the detection 

range of ultrasound is insufficient, as the objects are moving fast [18]. Therefore, the 

application scenario might have to be redefined for fast-moving object detection in 

open areas as opposed to obstacle avoidance for robots in home scenarios. 

5.4 Querying Scientific Databases 

We additionally have to discuss the method of using database searches for verify-

ing the benchmarking method, as opposed to expert opinion. Surveys of a specific 

application or certain technologies are common in scientific literature. However, 

while they might be comprehensive and cite several hundred different applications, 

the ACM DL database covers more than 2.2 million entries and GS searches can lead 

to more than 9.7 million results. Therefore, the index searches are preferable in terms 

of broadness. The search for keywords in ACM DL results in few hits compared to 



the database size. As they are chosen by the authors there is a large variety in word 

choice, spelling or number of keywords. While extending the number of different 

searches might lead to more results overall, it may also lead to additional overshoot, 

including work that does not cover the desired topics. The GS searches are very prone 

to overshooting, and should be preferably used to discover trends in data, as opposed 

to narrowly clustered results. The presented approach is just a first attempt on using 

these databases to evaluate the popularity of different research topics. Potential exten-

sions to the presented approach could use automated querying of similar search terms, 

a specific weighting of keyword or creating yearly queries to discover more recent 

trends. Additionally, one could consider preferring frequently cited articles, thus in-

cluding the scientific impact of certain works into the results. While the ACM DL is 

more focused on computer science and has a well-defined database, GS provides an 

open and fast search that can be more easily fed using scripts. Therefore, it is suited 

for more complex searches. 

5.5 Central Tendency Bias 

We want to briefly discuss the tendency of the benchmark scores to crowd around 

0.5. While the benchmark score has a range between 0 and 1 the two normalization 

processes the average is close to 0.5. Thus, even smaller differences close to this av-

erage may have a higher significance. This effect is called central tendency bias and is 

a common occurrence on Likert-scale questionnaires and rating systems [19]. Experts 

scoring technologies, just like survey respondents have a tendency to avoid extreme 

responses to a question. While experience of the person executing the benchmarking 

process might avoid this problem, it is also possible to use a corrective term in the 

calculation of the final benchmarking score. The primary purpose of this corrective 

term is to make the comparison between different scores easier to the reader. The 

following equations can be used to fix either regular or normalized benchmarking 

scores, resulting in the modified benchmarking score   , respectively        : 

                                              (10) 

The exponent a should be a value higher 1 and chosen according to the level of ad-

justment that is desired. As an example, Table 6 shows adaptations of     and          

for cameras and ultrasound from Table 4. The different values for a are 1, 5 and 10. 

Table 6. Central tendency bias correction for different exponents a 

  Camera Ultrasound 

  a=1 a=5 a=10 a=1 a=5 a=10 

Hand Gesture 
   1.03 1.16 1.34 1.05 1.28 1.63         1.00 1.00 1.00 1.00 1.00 1.00 

Identification 
   0.99 0.95 0.90 1.07 1.40 1.97         0.96 0.82 0.66 1.01 1.05 1.10 

Obstacle Avoidance 
   0.97 0.86 0.74 1.09 1.54 2.37         0.94 0.73 0.54 1.03 1.16 1.34 



6 Conclusion and Future Work 

On the previous pages we have introduced the benchmarking model that calculates 

a benchmark score as an indicator for the suitability of a sensor technology for a cer-

tain application. Additionally, it is possible to use the inverse option and benchmark a 

single sensor technology for a number of applications. The model was derived based 

on a set of common features for sensor technologies and a weighting factor determin-

ing their importance for smart environment systems. It was tested using a frequency 

analysis of related search terms in the ACM DL and GS scientific databases. Fur-

thermore, we have discussed the effects of different normalization and bias compen-

sation techniques on the benchmarking score. 

As future work we want to improve our verification by using survey data to deter-

mine a more definite set of sensor features. We are planning to use the benchmarking 

model for actual validation of different sensor technologies within smart environ-

ments. Using this on a large set of potential application domains lets us verify existing 

applications or identify novel use cases, if a good score is calculated for a domain 

where the sensor technology has not been used yet. A good candidate is capacitive 

proximity sensing that our group worked with extensively in the past. 
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