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Greenhouse crop production is growing throughout the world and early pest detection is of particular importance in terms
of productivity and reduction of the use of pesticides. Conventional eye observation methods are none	cient for large crops.
Computer vision and recent advances in deep learning can play an important role in increasing the reliability and productivity.
�is paper presents the development and comparison of two di
erent approaches for vision based automated pest detection and
identi�cation, using learning strategies. A solution that combines computer vision andmachine learning is compared against a deep
learning solution. �e main focus of our work is on the selection of the best approach based on pest detection and identi�cation
accuracy. �e inspection is focused on the most harmful pests on greenhouse tomato and pepper crops, Bemisia tabaci and
Trialeurodes vaporariorum. A dataset with a huge number of infected tomato plants images was created to generate and evaluate
machine learning and deep learningmodels.�e results showed that the deep learning technique provides a better solution because
(a) it achieves the disease detection and classi�cation in one step, (b) gets better accuracy, (c) can distinguish better between Bemisia
tabaci and Trialeurodes vaporariorum, and (d) allows balancing between speed and accuracy by choosing di
erent models.

1. Introduction

European agriculture is facing numerous challenges such
as population growth, climate change, resource shortages,
or increased competition. Today’s challenge is to produce
“more with less.” Greenhouse crop production is grow-
ing throughout the world, generating 46,377€/ha across
Europe. Greenhouses protect crops from adverse weather
conditions allowing year-round production. Integrated crop
management approaches provide better control over pests
and diseases. However, the intensi�cation of greenhouse
crop production creates favourable conditions for devastating
infestation that can cost a 25% of the potential income.

A pest in agriculture is de�ned as a population of
animals that feed from crop plant tissue (Phytophagous),
producing economic damage. Most pests are insects or mites.
�e development of a pest depends mainly on the local

weather, external insect’s pressure, greenhouses design, and
crop management practices. Pests can severely damage crops
causing important losses: economic (loss of productivity,
income, and investments), social (rural areas depopulation),
and psychological (commotion and panic). Not only does the
presence of pests and diseases represent a risk for the farmer
that owns the exploitation, but also it represents a threat
for adjacent and sometimes distant holdings. According to
the FAO, one of the most important pests in greenhouse
or protected cultivation is white�y, the greenhouse white�y
being predominant (Trialeurodes vaporariorum). In addition,
Bemisia tabaci is the most common pest since 1989, when
it was detected for the �rst time in pepper in the Mediter-
ranean region. Also, the Tuta absoluta is one of the most
devastating pests in Solanaceae crops. It is a pest coming
from South America and it can cause production losses of 80-
90%.
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Early pest identi�cation is of paramount importance in
terms of productivity and reduction of the use of pesticides.
Eye observation methods have been used in recent years, but
they are not e	cient in large crops. �e automation of this
repetitive inspection task can be done by computer vision
system in order to increase the reliability and productivity.
Furthermore, endowing robotic systems with pest detection
capabilities will allow developing innovative and e	cient
solutions for Integrated Pest Management (IPM) in crops,
with robots that have the ability to navigate inside green-
houses while performing early pest detection and control
tasks in an autonomous way.

�e requirements for computer vision based pest detec-
tion vary from species: their location in the plants and the
features at the di
erent stages in their development cycle.
�ere are di
erent aspects and visual characteristics of the
di
erent pests during their development from egg stage to
adult stage. In the case of the white�y, normally, the pest is
located in the under part of leaves. In contrast, Tuta absoluta
is detected by the symptoms present in the plants. Some
symptoms caused by viruses in tomato are defoliation, silver
and bronze leaves, reduced leaf area, curl leaves, etc.

In addition, the integration of an automated pest detec-
tion system in a robotic platform implies limits on com-
putation hardware. �e inspection solution needs to work
in real time in order to modify, if it is necessary, the
autonomous robot inspection route on the greenhouse. Algo-
rithms response time is critical in order to inspect more
plants due to the robot’s batteries duration. Pest detection
and identi�cation techniques with faster response time will
be executed in real time on the robot hardware. Other
algorithms with higher accuracy and higher response time
will be executed on external servers, but the results will not
be used in real time.

�e work presented on this paper is focused on the
most harmful pests on greenhouse tomato and pepper crops,
the polyphagous. �e main polyphagous pests are the sweet
potato white�y, Bemisia tabaci (Gennadius), the greenhouse
white�y Trialeurodes vaporariorum (Westwood), and leaf
miner Tuta absoluta.

�is paper presents the work performed to develop and
compare two di
erent approaches for vision based automated
pest detection and identi�cation, using learning strategies.
�e paper shows the work performed to select the best
approach based on pest detection and identi�cation accuracy.
�e �rst approach uses computer vision techniques for pest
detection and machine learning for pest classi�cation, while
deep learning technique is used for both pest detection
and classi�cation. �e comparison of both approaches is
performed using a large number of pictures that are generated
and labelled using realistic setups.

From a qualitative point of view, both approaches present
advantages and disadvantages. Solutions based on deep
learning algorithms are demonstrated to be very e
ective
in image processing, showing high performance and good
results in di
erent research and industrial applications. �e
main disadvantage of the deep learning approach is its “black
box” nature, making it di	cult to understand the reason why
a deep learning based algorithm makes a speci�c prediction.

On the other hand, computer vision and machine learning
algorithms need fewer amounts of data and less time to train
them. Deep learning model creation process needs also more
amount of computational power. �e objective of this paper
is to provide objective and quantitative evaluation of the
performance of both approaches.

�e paper starts with describing the current state of
the art of the automatic pest detection and identi�cation
in agriculture using computer vision, machine learning,
and deep learning strategies in Section 2. It also describes
some pest detection approaches using the PlantVillage [1]
dataset, a public leaf disease images dataset. Due to the
fact that the PlantVillage dataset does not contain images
of the diseases that are of interest in this work, an internal
dataset has been created which is explained in Sections 3.1
and 3.2. It is composed of pictures that are taken both in
manual and automatic way. Once the dataset is generated
and labelled, the computer vision approach for pest detection,
themachine learning approach for pest classi�cation, and the
deep learning approach for pest detection and identi�cation
are explained in detail in Sections 3.3 and 3.4. In addition, the
experimentation performed is explained in Section 4. Both
techniques are compared based on the results, and the main
conclusions are extracted in Section 5. Finally, some future
work is envisioned in Section 6.

2. Related Work

Automatic pest identi�cation is an active research topic in
the last years. In most cases, computer vision, machine
learning, or deep learning technologies are selected and used
to detect plant diseases, but the comparison of the di
erent
possible techniques in the same work is not usually found;
instead, normally a single approach is selected. Many works
on automatic pest detection and identi�cation are focused on
a speci�c selected technological approach [2, 3], but di
erent
technological solutions are not tested.

Computer vision and object recognition made huge
advances in last years. Large Scale Visual Recognition Chal-
lenge (ILSVRC) [4] based on the ImageNet public dataset has
been used as benchmark for di
erent visualization-related
problems in computer vision, including object classi�cation
and object identi�cation. Previously, the traditional approach
for image classi�cation tasks has been based on features
detection algorithms, such as DoG, Salient Regions, SURF,
SIFT, MSER, etc. [5]. When features are extracted, some
learning algorithms are used with these features. �e per-
formance of the approaches depends on prede�ned features.
Feature engineering itself is a hard process which needs to
be revisited when the problem and the dataset change. �is
problem happens in all attempts to detect plant diseases
using computer vision as they trust in hand-engineered
features and image enhancement algorithms. Manual feature
extraction issue can be solved using deep learning techniques,
since feature extraction process is done automatically.

Latest developments in machine learning and deep
learning allow drastically improving the accuracy of object
recognition and detection. On the one hand, machine
learning methods have been applied as solution for disease
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detection [6]. Many of these methods have been applied in
agricultural research projects, for example, Arti�cial Neural
Networks (ANNs), Decision Trees, K-means, and K-nearest
neighbours. Support Vector Machines (SVMs) is one of
these approaches that have been used extensively in disease
detection �eld. On the other hand, deep learning is a new
trend in machine learning and it improves the state of the
art in di
erent �elds, such as the ability to deal directly with
images without using manual extracted features. Both deep
learning and machine learning can improve computer vision
accuracy as it has been demonstrated in several applications.
While machine learning makes informed decision due to
what it has learned from input data, deep learning can learn
and make intelligent decision using structures algorithms in
layers. In 2012, deep learning networks achieved a top-5 error
of 16.4% for the classi�cation of images into one thousand
di
erent categories [7]. Advances in deep convolutional
neural networks reduced the error to 3.57% [8–10].

Di
erent approaches to disease detection and classi�-
cation via machine learning in tomato crops have been
analysed. First, using RGB images and di
erent machine
learning algorithms (SVM, linear kernel, quadratic kernel
(QK), radial basis function (RBF), multilayer perceptron
(MLP), and polynomial kernel), tomato yellow leaf curl
disease (TYLCD) is detected [11]. �is approach obtained
accuracy of 90 % in average. Second, using both RGB images
and spectral re�ectance to detect and quantify tomato leaf
miner, SVM (support vector machine) algorithms are used
[12]. �ird, using also SVM algorithms and thermal and
stereo visible light, tomato powdery mildew fungus Oidium
neolycopersici is detected [13]. Fourth, powdery mildew on
tomato crops is identi�ed using self-organizing map (SOM)
and Bayesian classi�ers and RGB images [14]. �ey only use
138 pictures in this work, a small number of pictures to get
variability in the dataset.

Most of the classi�ers in disease detection and clas-
si�cation via machine learning were trained with small
datasets, focusing on the extraction of image features to
classify the leaves. A large, labelled, and veri�ed dataset of
images of diseased and healthy plants is necessary in order
to develop an accurate image classi�er. Until very recently, it
was not available any dataset with these features. To solve this
problem, the PlantVillage project has begun collecting and
labelling tens of thousands of images of healthy and diseased
crop plants. PlantVillage dataset is used as the approach
of training deep learning models for di
erent crop disease
diagnosis. It is used in most of the latest research projects
related with pest detection and deep learning. It contains
18,160 tomato pictures of bacterial spot, early blight, late
blight, leaf mold, septoria leaf spot, spider mites, two-spotted
spider mite, target spot, tomato yellow leaf curl virus, and
healthy leaves.

Unfortunately, it is not possible to use PlantVillage
dataset on this work because it does not contain images
corresponding to the three diseases this work is targeting.
To overcome this gap, the project will generate its own
dataset of Trialeurodes vaporarium, Bemisia tabaci, and Tuta
absolutapictures on an automatic andmanualway.Generated
pictures will be labelled using an image annotation tool. �e

time and e
ort needed to create and label these datasets is
one of the bottlenecks for using deep learning technique.
PlantVillage dataset is composed of cropped pictures of leaves
with di
erent diseases. �e dataset can be used for pest
classi�cation, but it cannot be used for pest detection as an
insect or egg level. �e dataset constructed for this work is
labelled at insect and egg level, it is composed of original
pictures of plants (not cropped pictures), and it can be used
for object detection using deep learning. It also contains
pictures with tomato diseases that are not available in the
PlantVillage dataset.

Related to deep learning for tomato diseases classi�cation
and symptoms visualization, [15] presents a convolutional
neural network (CNN) as a learning algorithm that uses
images directly.�ey use deep learning as amethod for classi-
fying plant diseases, focusing on images of leaves. �e model
is using visualization methods to understand and localize
regions in the leaf.�emodel is reaching a 99.18%of accuracy.
�is work is using the PlantVillage dataset, and it is using
cropped pictures of leaves. Disease is detected at leaf level, but
not at insect or egg level. In [16], deep learning Convolutional
Neural Networks (CNNs) have been used to detect crop leaf
disease where the classi�cation of 26 diseases in 14 crop
species in 54,306 images of PlantVillage dataset occurs, using
two popular CNN architectures (AlexNet and GoogLeNet).
�e deep learning approach proposed in this work is focused
on the detection and identi�cation of the disease using an
object detection framework. Other deep learning models are
based on Faster RCNN (Region-Based Convolutional Neural
Network) and SSD (Single Shot Detector).

3. Approach

�e work described in this paper is focused on the com-
parison of two pest detection and identi�cation techniques.
Selected technique will be implemented on a pest detection
autonomous scouting robot. As the selected approach for pest
detection and identi�cation is based on learning algorithms,
it is necessary to generate and label a dataset with infected
leaves with Bemisia tabaci and Trialeurodes vaporariorum
insect and eggs. Due to the di	culty to generate Tuta
Absoluta pests at egg stage and insect level, this �rst approach
is focused on Bemisia tabaci and Trialeurodes vaporariorum
pictures. �e generated dataset is composed of manually and
automatically obtained pictures. Each technological solution
contains di
erent steps and algorithms in order to detect
any pest on a plant and to classify the detected pest that are
explained in the following subsections.

3.1. Dataset Generation. As it has been explained in Section 2,
a dataset of infected tomato plants is needed in order to
generate machine learning and deep learning models.

�e quality of the dataset and its labelling will impact
on the accuracy of the generated models. On the one hand,
manual pictures are taken in order to have pictures with
de�ned features inside the cultivation chamber. Figure 1 on
the le� side shows the cultivation chamber that is used to
generate controlled tomato pests. Manual pictures are taken
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Figure 1: Cultivation chamber and the automatic dataset generator system.

Figure 2: Automatic dataset generator system components.

in the cultivation chamber. On the other hand, automatic
pictures are taken to increase the dataset size and variability
inside the greenhouse. Figure 1 on the right side shows the
automatic dataset generator system that is installed on the
greenhouse. Pictures are taken on an automatic way using a
microcontroller and a pan-tilt structure.

3.1.1. Manual Dataset Generator. Completely enclosed boxes
have been used for the tomato cultivation on the cultivation
chamber. �ese cultivation chambers allow eliminating both
external and internal factors such as the contamination
by other pathogens. Chambers have been infected with
di
erent selected diseases. Plants cultivated in Mendelu’s [17]
cultivation chamber are used to take pictures of di
erent pests
in a manual way.�ere are �ve cultivation boxes with tomato
plants planted at di
erent developmental stages and diverse
magnitude of infestation pests.

Images are taken using the colour camera AP-3200t-
PGE and monochrome camera DataCam 2016R using a
standard display system connected to a PC. �e selection of
the captured area is performed by the worker based on his
knowledge and instructions of the leader of the experiment.
Di
erent types of lenses and lighting systems are used when
necessary. �e focus and the shutter speed are manual,
and the settings values are determined by the operator's
experience. 13,047 pictures were taken in a manual way, 6,016
using monochrome camera DataCam 2016R and 7,031 using
the colour camera AP-3200t-PGE.

3.1.2. Automatic Dataset Generator. �e following section
contains the description of the automatic dataset generator
system that is installed on the greenhouse. A huge number
of images are needed in order to generate models for pest
detection and identi�cation.�e variability between di
erent

images is crucial when the objective is to create an accurate
model for pest detection and identi�cation in pictures. �e
automatic dataset generator system will complete the dataset
that is generated manually by the previous approach. �e
proposed solution is to take pictures every minute on the
greenhouse. As a result, there are pictureswith distinct angles,
directions, illumination, and localization.

Automatic dataset generator is composed of two micro-
controller, two cameras, two tripods, two USB �ash drives,
two arti�cial illumination systems, one pan-and-tilt struc-
ture, one tilt structure, one power source, one IP65 box, and
one portable Wi-Fi 4G router (Figure 2). Both the camera
and the movement structure are controlled by the micro-
controller. �e GigE UI-5240CP colour camera is selected as
the automatic dataset generator camera. �e Raspberry Pi 3
was selected to be the microcontroller due to its functionality
and the price. �e microcontroller is programmed to take
pictures both with and without arti�cial lighting in di
erent
directions and angles. �e interval of time between two
pictures can be easily modi�ed in the con�guration �le of the
microcontroller. Due to the cost of sending every picture to
an external server, pictures are stored on a local USB storage.
Using a portableWi-Fi 4G router with a SIM card, a localWi-
Fi network is available in order to control that the system is
working correctly.�erefore, themicrocontroller is accessible
from other computers to update any script remotely in case it
is needed.

�e generated dataset contains pictures of di
erent
phases of the plant growth. It also contains pictures of both
healthy and infected leaves. Distinct phases of infected leaves
are in the dataset. Pictures need to be labelled with its speci�c
disease in order to use this dataset to generate machine
learning and deep learning models. Initially, the automatic
dataset generator system is placed in a random location of the
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Table 1: Labels summary.

DISEASE TAGS

Trialeurodes vaporariorum eggs 25,313

Bemisia tabaci eggs 9,559

Trialeurodes vaporariorum insect 13,405

Bemisia tabaci insect 6,466

TOTAL 54,743

greenhouse. �en, the system is moved near the place where
a disease is located.

�e �rst phase of the generation of the dataset started the

13th of April 2018 and �nished the 6th of July 2018, once all
the tomato plants were removed from the greenhouse. �e

second phase of the generation of the dataset started the 19th
of September 2018 and �nished at the end of 2018.

�ere were di
erent issues on the �rst phase of the
dataset generation that are already solved in the second phase.
Pictureswithout a correct illumination, not correctly focused,
with some type of obstacle and not representative were
removed from the dataset. 100,593 pictures were collected
using the �rst microcontroller and 75,741 pictures were
collected using the second microcontroller.�ere were many
invalid pictures on this set of pictures, and �nally 18,050 valid
pictures were obtained from the �rst microcontroller and
19,692 from the second microcontroller.

3.2. Dataset Labelling. �e quality of the labelling will a
ect
the accuracy of the generatedmodel.�ere are di
erent open
source and commercial solutions in order to label pictures
in a faster and semiautomatic way. LabelImg [18], an open
source project released under the MIT license, is currently
used as the image labelling tool. It is a graphical image
annotation tool developed in Python and uses QT as the
graphical interface. Generated annotations are saved as XML
in Pascal VOC or YOLO format.

Image labeling is a manual and time-consuming work.
Due to the necessary time to label all the pictures by
experts (Mendel University), a semiautomatic algorithm was
developed to sort all the pictures. Pictures were labelled
considering the order of the generated list. �e order was
established measuring the image quality, the variability,
and a random selection. Image Quality Assessment (IQA)
algorithm was developed to obtain the image quality score
between 0 and 100. Generated dataset was divided by pictures
of every day.�e variability of the order of the list for labeling
was obtained selecting both pictures with the higher quality
score and some other pictures randomly every week. Every
week the order of the list was updated with new pictures and
list changes.

4,331 pictures have been labelled using image labelling
tool (Figure 3), but each image contains a di
erent number
of insects and/or eggs. Table 1 shows the number of cropped
images per disease. Cropped pictures for each insect and egg
are used in order to generatemachine learningmodels. 54,743
di
erent cropped pictures are generated from the original
4,331 labelled pictures.

Figure 3: Image labelling tool.

3.3. Computer Vision and Machine Learning Approach (1).
A well-known computer vision library used in di
erent
industrial projects is selected as the computer vision and
machine learning so�ware (HALCON) [19] in order to detect
and classify pest on pictures.

Figure 4 represents the computer vision and machine
learning approach step by step. On the one hand, computer
vision algorithms aim at detecting possible pests on pictures.
�ey are working together withmachine learning algorithms.
Computer vision output is used as machine learning input
for pest classi�cation. On the other hand, machine learning
algorithms objective is pest classi�cation.�ey get all possible
detected diseases regions and decide whether there is a
disease or not in the speci�c region. If a disease is detected,
machine learning algorithms classify it.

3.3.1. Computer Vision for Pest Detection. �e pest detection
�ow using computer vision can be divided into three di
erent
steps (Figure 5). Depending on the image peculiarities and
features, di
erent functions are executed at di
erent steps.
�e �rst step is image preprocessing. If the image quality
level is not good enough, a new image will be demanded.
�e second step is background subtraction. Finally, feature
extraction algorithms are applied to select di
erent regions
with possible pests. Machine learning algorithms will decide
whether it is a pest or not.

Table 2 describes the di
erent developed functions for
each step.

3.3.2. Machine Learning for Pest Classi�cation. Two machine
learning algorithms are tested in order to select the one with
best accuracy: K-nearest neighbour (KNN) and Multilayer
Perceptron (MLP).

One of the main di
erences between machine learning
and deep learning approach to be considered during the
system implementation is that machine learning algorithms
require complex feature engineering work while, in deep
learning, features between di
erent categories are extracted
in an automatic way.

Table 3 describes the features that have been selected
and extracted for each object (insects and eggs) in order to
generate the �rst version of the machine learning model.

Figure 6 describes machine learning model creation �ow.
Previously labelled pictures using image annotation tool and
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Table 2: Computer vision functions for pest detection.

IMAGE PREPROCESSING FUNCTIONS

Check image quality
Checks the image quality level in order to determine whether the image is processed or a new one is requested.

Di
erent functions or �lters are applied depending on the image quality level.

Emphasize image Enhances the contrast of the image.

Gauss �lter Smoothens an image using discrete Gauss functions.

Illuminate Very dark parts of the image are illuminated more strongly, and very light ones are darkened.

Image enhancement
Modi�es the image to improve its visual appearance. Sharpening and magnifying algorithms will accentuate

pictures features.

Image restoration Removes blur and noises from images.

BACKGROUND SUBSTRACTION FUNCTIONS

Decompose RGB Converts a three-channel image into three one-channel images with the same de�nition domain.

RGB to HSV
Transforms an image from the RGB colour space to an HSV (Hue, Saturation, and Value). HSV is de�ned in a

way that is similar to how humans perceive colours.

Reduce image domain
Reduces the de�nition domain of the given image to the indicated region. It subtracts a region to a speci�c

image.

Region segmentation Segments images into regions of the same intensity.

�reshold image
Segments an image using a local threshold. It selects those regions in which the pixels ful�ll a threshold

condition.

Automatic threshold Segments an image using thresholds determined from its histogram.

Edge detection Detects edges using �lters such as Deriche, Lanser, Shen, Canny, and Sobel.

FEATURE EXTRACTION FUNCTIONS

Get region features Gets di
erent features related to colour, texture, and shape.

Connected regions Determines the connected components of the input regions.

Select speci�c shape Chooses regions according to shape feature values such as area, width, and circularity.

Count and crop
regions

Counts and crops the possible regions with pests. It generates the input for the machine learning algorithm for
pest classi�cation.

Table 3: Machine learning model features.

FEATURE DEFINITION

Area Area of the object.

Circularity Shape factor for the circularity of an object. It calculates the similarity of the object with a circle.

Compactness Compactness of the object.

Content Length Total length of the object.

Convexity
Shape factor for the convexity of an object. �e shape factor is one if the object is convex. If there

are holes, the shape factor is smaller than one.

Rectangularity It is considered as the shape factor for the rectangularity of an object.

Elliptic axis Calculates the main and the secondary radius of the equivalent ellipse.

Phi orientation �e orientation of the equivalent ellipse.

Anisometry �e relationship between the main and the secondary radius of the equivalent ellipse.

Bulkiness �e relationship between the anisometry and the area of the object.

Structure factor �e relationship between the anisometry and the bulkiness.

Smallest circle
Determines the smallest surrounding circle of an object. It is the circle with the smallest area of all

circles containing the object.

Inner circle Calculates the largest inner circle of an object.

Inner rectangle Determines the largest rectangle that �ts into an object.

Roundness Calculates the distance between the contour and the centre of the area.

Sides �e number of polygon sides.

Diameter �e maximum distance between two points of the object.

Orientation Determines the orientation of the object.

Smallest rectangle Calculates the rectangle with the smallest area of all rectangles containing the object.
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their labels in XML format are used as input. Images are
cropped as an insect and egg level because each picture
can contain more than one element. As it is represented
in Table 1, labelled 4,331 pictures are converted into 54,743
pictures of di
erent insects and eggs of Trialeurodes vapo-
rariorum and Bemisia tabaci. �en, image background is
subtracted, and di
erent features are extracted from each
insect or egg. Some of the extracted features are described
in Table 3. Each feature generates a value and this number is
added to the feature vector of the model. Generated vector
of features and its category are added to the model. �e
model is considered trained when all the features of all the
pictures of the training dataset are added to the model. Four
di
erent types of machine learning classi�cation algorithms
are generated.

3.4. Deep Learning Based Approach (2). TensorFlow [20]
library is selected for pest detection and classi�cation using
deep learning. It is considered as the �rst stable framework
and one of the most popular ones focused on deep learning.
In particular, TensorFlow object detection library is used for
the deep learning based approach [21].�is section focuses on
how the data (images and annotations) is adapted for the deep
learning library and the deep learning model creation �ow.
Figure 7 shows the deep learning �ow composed of the data
manipulation and model creation. First, input data is cleaned
to remove not useful content, and the dataset is augmented
in order to increase the variability. A�er that, deep learning
model creation is explained in four di
erent steps.

3.4.1. Data Manipulation. Several data manipulation steps
need to be performed. First, images and annotations need
to be cleaned up. Not useful pictures and annotations are
removed. Second, data augmentation techniques are applied
to the dataset. Minor alterations to the dataset by generating
modi�ed images can improve model accuracy. Finally, modi-
�ed annotation �les and real and modi�ed images need to be
converted to a speci�c format.

Data cleaning is the �rst step on data manipulation task.
Data cleaning task needs to remove all unnecessary pictures
and annotations from the dataset. A proper data cleaning
work will improve generated model quality. It is usually a
manual work, but some steps can be processed automatically.
Images without annotations, annotations without images,
and duplicate or irrelevant images will be removed.

Data augmentation is important to be able to detect
objects at di
erent scales [22]. Minor alterations such as
rotations, viewpoint, or size to the dataset can improvemodel
accuracy. Synthetically modi�ed images will be new images
for the neural network. Both the greenhouse's pictures and
the cultivation chamber's pictures are taken in a limited set of
conditions. However, the inspection task will have di
erent
conditions such as scale, brightness, illumination, and orien-
tation. Training this type of situation can be achieved using
synthetically modi�ed images.

Data augmentation techniques can be divided into two
types depending on the execution time. �e �rst option is to
execute desired transformations beforehand.�is is known as
o�ine augmentation. Using o�ine augmentation, the dataset
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Figure 7: Deep learning based approach �ow.

will be increased before training the model, by a factor equal
to the number of transformations. O�ine augmentation
is normally used in small datasets. �e second option is
called online augmentation. Transformations are performed
at the time of training the model. Some basic augmentation
techniques such as crop, rotation, Gaussian noise, scale, and
�ip are applied.

3.4.2. Model Creation. TensorFlow pipeline con�guration
can be divided into four di
erent steps (Figure 7). Firstly,
the model is con�gured. �ere are di
erent parameters
de�ned on this step such as the number of the classes
of the model, feature extractor characteristics, the meta-
architecture, and the loss function characteristics. �e best
parameter selection will depend on the application. SSD [23]
and Faster RCNN [24] are two object detection architectures
in TensorFlow library. On the one hand,�e SSD architecture
was released by Google in 2016. It is an object detec-
tion model using a single deep neural network combining
regional proposals and feature extraction. A group of boxes
with distinct scales and ratios are used and applied to the
feature maps. One step is only necessary to extract the
feature extraction for the bounding box because the feature
maps are �gured out passing an image through an image
classi�cation network. Each object category got a score in
every default bounding box. Boxes adjustment o
sets are
calculated for each box, trying to �nd the correct ground
truth.

On the other hand, Faster RCNN deep learning archi-
tecture was developed by Microso� based on RCNN. It uses
Selective Search in order to extract di
erent region proposals.
Extracted proposals are sent to a classi�cation network in
order to use SVM to classify each region in any of the
categories. According to [21] , Faster RCNN architecture
accuracy is better if the speed is not a problem. Faster RCNN
requires at least 100 ms to analyse each picture. �e correct
choice of the feature extractors on Faster RCNN has a big
impact on the accuracy. �e feature extractor choice is not
critical in SSD. SSD has the best accuracy trade-o
 within
the fastest detectors, but it works worse for small objects
compared with Faster RCNN.

�en, the con�guration of the trainer step is de�ned. It
decides the elements and parameters that should be used to
train themodel.�emodel parameter initialisation, the input
preprocessing, and the SGD (Stochastic Gradient Descent)
parameters are con�gured in this section. �e learning rate
and the batch size con�guration are the most important
con�guration values in this step. Setting the learning rates

and the batch size is important to reduce over�tting. Training
an object detector model from scratch takes too much
time. Generated pest detection models use the weights from
another model checkpoint in order to speed up the training
process. �e path to another object detection checkpoint is
de�ned also in this step.

A�er that, the input train con�guration step is de�ned.
�is step de�nes what dataset the model should be trained
on. TensorFlow o
ers a set of detectionmodels pretrained on
di
erent datasets such as the COCOdataset, the Kitti dataset,
the Open Images dataset, and the AVA v2.1 dataset. It is also
necessary to de�ne the path where the label map is de�ned.
Label map contains the information between all the de�ned
categories and its unique identi�er.

�e �nal step is focused on con�guring the evaluator.
It is necessary to de�ne the metrics that will be used for
evaluation. �e number of batches used for an evaluation
cycle, the size of the evaluation dataset, and the selected
metric to run during evaluation are de�ned.

It is possible to train the model both in a local PC and
on the cloud. �e training process will be faster if the model
is trained using GPU rather than CPU. It is possible to use
a computer on the cloud with a faster GPU to decrease the
training time. It is mandatory to have the TensorFlow library
installed and its dependencies; a set of pictures with its labels
and the object detection pipeline needs to be generated in
order to be able to train the model. While the model is
training, it is continuously generating di
erent checkpoints.
When the training process is �nished, it is necessary to select
the checkpoint number in order to export and generate the
model. It is common to select the biggest checkpoint number
because it is the latest one. When a new model is exported,
a frozen graph, the model checkpoint, the checkpoint �les,
the pipeline con�guration �le, and the exported model are
generated

4. Experiments

�e main purpose of this experiment is to analyse the
results of pest detection and identi�cation on plants using
the combination of computer vision and machine learning,
versus the deep learning technique. First, the combination
of computer vision and machine learning approach will be
validated using k-fold cross validation technique. Second,
the deep learning approach will be validated using Average
Precision (AP) which is based on the Intersection over
Union (IoU) technique. Finally, the comparation between
both techniques will be validated using custom metrics.
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Pictures of unhealthy plants are available on the generated
dataset. As it has been explained in Section 3.1, manual
pictures were taken in lab conditions, and automatic pictures
were taken in the greenhouse, with di
erent perspectives
and ambient light, including at night. 4331 original labelled
pictures are converted into 54743 pictures of di
erent insect
and eggs of Trialeurodes vaporariorum and Bemisia tabaci.

4.1. Computer Vision and Machine Learning Approach Evalu-
ation. �e computer vision and machine learning approach
evaluation is divided into two di
erent experiments. On the
one hand, the computer vision experiment will be focused
on the extraction of the regions with possible pests. On the
other hand, the machine learning experiment will be focused
on the evaluation and the comparation of the obtained results
between the di
erent classi�cation models.

First, computer vision experiment and results are
described. �e 4,331 labelled pictures are going to be used to
test the computer vision algorithm. �e objective of the test
is to measure the number of possible regions with pests that
the algorithms will extract. Due to the image labelling work,
we know that from 4,331 original pictures, 54,743 pictures
of di
erent insect and eggs are extracted. �e computer
vision algorithm in the experiment has extracted 667,299
di
erent pictures with possible insects and eggs. It is 12
more times than the exact number of tags. �e machine
learning model will classify all the cropped pictures, but it
will need more time than expected for this work due to the
big number of cropped pictures. On average, 154 pictures
are extracted by the computer vision algorithm, when they
were 12 on the generated dataset. It is possible to reduce
this number of pictures, but the objective is to ensure that
every possible pest on the image is going to be classi�ed
by the machine learning algorithm. If the computer vision
algorithm is adjusted to reduce the number of possible
pictures with pests, some insects or eggs will not be selected
to inspect. As the early pest detection is very important
in order to reduce the damage of any disease, we prefer
more pictures to analyse and try to detect any pest on early
stages.

Figure 8 shows the computer vision pest detection �ow
in two di
erent pictures.�e pipeline is based on the descrip-
tion shown in Figure 5.�e �ow is divided into three di
erent
steps.�e�rst step is focused on the image preprocessing.�e
second step is focused on background removal. As last step,
feature extraction algorithms are executed. Computer vision
output is a set of pictures with possible pests and is used as
the machine learning algorithm input.

Second, machine learning experiment and results are
described. k-fold cross validation is used to compare the
performance of the four di
erent machine learning models
on our generated dataset. �e performances of K-nearest
neighbour (KNN) and Multilayer Perceptron (MLP) models
are measured using k-fold cross validation.

�e following steps are performed to evaluate each
machine learning model:

(1) �e original training dataset is divided into ten
di
erent folds or subsets. Each fold contains around
4,331 images.

(2) For each k value:

(a) One fold is kept as the validation set, and the rest
of the folds are kept as the training set.

(b) �emachine learningmodel is trained using the
training set, and the accuracy is calculated using
the validation set.

(3) �e accuracy of the machine learning model is calcu-
lated by averaging the accuracies in all the cases of the
cross validation.

�e training dataset is divided into ten di
erent folds. Each
column represents one validation test as shown in Table 4.
Every validation test is using the 10% of the images for
evaluation. Each row represents onemachine learningmodel.
�e accuracy of each machine learning model on each fold is
measured generating an array of real categories and predicted
categories. Using both arrays the confusion matrix can be
generated. �e average of the accuracies will be used to
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Table 4: Machine learning accuracy results.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 AVR

KNN 66.11% 66.16% 66.25% 66.45% 66.83% 65.94% 66.92% 67.23% 66.36% 66.50% 66.47%

MLP 80.35% 81.12% 80.40% 80.35% 82.34% 80.93% 81.62% 81.71% 81.18% 81.27% 81.12%

choose the best machine learning model for pest detection
and identi�cation.

MLP is the machine learning pest classi�cation model
with the best accuracy. Figure 9 shows an example image
using the machine learning MLP model classi�cation to
classify it inside the Bemisia Tabaci insect category. All the
insects on the original image actually correspond to Bemisia
Tabaci category, but not all of them are classi�ed correctly.
�ere are also some cropped images without an insect that
are categorized into this category.

4.2. Deep Learning Approach Evaluation. 4,331 pictures are
labelled using image labelling tool. 90% of labelled pictures
are used for training purposes and the 10% are used for
evaluating the model accuracy. �e disease detection model
is developed with this 90% of the pictures. We use the rest of
the pictures (10%) to get the real accuracy of the pest detection
and identi�cation approach.

Determining if a disease exists in the image and the
location of the insect or egg are the two di
erent tasks to eval-
uate in the deep learning object detection and identi�cation
approach.�is approach combines both the object classi�ca-
tion and the localization tasks. For the object classi�cation
task, the Average Precision (AP) metric is commonly used to
measure the deep learning model accuracy. �e AP metric is
based on the precision and the recall metrics [25]. Precision
metric measures how accurate the deep learning object
detection predictions are and the recall metric measures how
good all the true positives are. It can be de�ned as the average
of the maximum precisions at di
erent recall values.
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On the other hand, for object localization task, the Intersec-
tion over Union (IoU) metric is used. �e IoU metric will
determine the accuracy of the predicted location of the object
on the image.�is metric is used in di
erent object detection
challenges such as the Pascal VOC [25]. It can be de�ned
as how good the deep learning object detection prediction

is against the ground truth. Object detections results can
be considered or discarded depending on an IoU threshold.
An IoU value greater than 0.5 is usually considered a good
prediction [25].

Table 5 describes di
erent deep learning models that
have been trained for pest detection and identi�cation.
Six di
erent models have been trained, and each model is
identi�ed with a unique name. Each row contains the model
architecture, the aspect ratio or size that the network is going
to apply to the input image, the model that is reused to train
the pest detection and identi�cationmodel instead of starting
from scratch, a variable explaining if any data augmentation
technique is applied, and the number of steps on the training
process.

Table 6 includes pest detection and identi�cation results
of each model (Table 5) that was previously trained. �e
Average Precision (AP) evaluation metric, which is based
on the Intersection over Union (IoU), is used to evaluate
the performance of the disease detection and identi�cation
algorithm using deep learning. �e evaluation of the model
is using a 0.5 IoU threshold [25] and a 0.65 con�dence
threshold.

Figure 10 shows the application of the six di
erent deep
learning pest detection and identi�cation models for two
di
erent images.�e �rst picture is full of eggs ofTrialeurodes
vaporariorum. Each model detects a di
erent number of eggs
on the �rst picture. Some models also classify incorrectly
some eggs as Bemisia tabaci (blue colour labels). �e second
picture contains few insects, and they are detected by deep
learning models.

4.3. Computer Vision andMachine Learning vs. Deep Learning
Approach. Once computer vision, machine learning, and
deep learning experiments have been presented and mea-
suredwith theirmost commonmetrics, this section describes
an experiment to check and compare the accuracy and the
speed of the generated pest detection and identi�cation
models. �e �nal goal of the work is to build a global
positioning system guided autonomous robot for pest control
in greenhouses. Since the robot is composed of limited
batteries, the speed is another critical factor. �e robot needs
to inspect the largest amount of plants. Pictures will be
analysed both in real time and o�ine (on the server side),
but real-time information will be crucial in making decisions
about the robot routes.�e inspection solution needs to know
if a disease is present in an image. If a disease is detected, the
algorithm also needs to determine which type of disease is. It
is not so important to detect all existing insects and eggs on a
tomato leaf, but to determine if a disease is present or not in
a picture.

Considering the �nal goal of the project, an experiment
has been developed in order to determine which technique
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Figure 10: Deep learning for pest detection and identi�cation.

Table 5: Tested deep learning models.

Id Architecture
Aspect ratio

resizer
Fine tune model

Data
augmentation

Number of steps

M1 Faster RCNN 600x1,024
FASTER RCNN

RESNET101 COCO
YES 335,736

M2 SSD 300X300
SSDLITE

MOBILENET V2
COCO

YES 200,000

M3 Faster RCNN 600x1,024
FASTER RCNN
INCEPTION V2

COCO
NO 177,184

M4 Faster RCNN 600x1,024
FASTER RCNN
INCEPTION V2

COCO
YES 200,000

M5 Faster RCNN 600x1,024
FASTER RCNN

INCEPTION RESNET
V2 ATROUS COCO

YES 110,295

M6 SSD 300x300
SSD INCEPTION V2

COCO
NO 200,000

Table 6: Deep learning experiment results.

Metric M1 M2 M3 M4 M5 M6

Precision Egg Trialeurodes vaporariorum@0.5IOU 0.54 0.63 0.58 0.71 0.56 0.59

Precision Egg Bemisia tabaci@0.5IOU 0.16 0.13 0.15 0.12 0.16 0.13

Precision Insect Trialeurodes vaporariorum@0.5IOU 0.72 0.63 0.65 0.74 0.69 0.69

Precision Insect Bemisia tabaci@0.5IOU 0.34 0.35 0.30 0.27 0.32 0.33

Recall Insect Bemisia tabaci@0.5IOU 0.20 0.16 0.32 0.27 0.34 0.16

mailto:vaporariorum@0.5IOU
mailto:tabaci@0.5IOU
mailto:vaporariorum@0.5IOU
mailto:tabaci@0.5IOU
mailto:tabaci@0.5IOU
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shows better performance according to the requirements.�e
criteria for inspection technique selection will be based on
accuracy and speed.

For the experiment, the following points were considered:

(i) Machine learning KNN model T6, machine learning
MLP model T4, deep learning model M4 Faster
RCNN, and deep learning model M6 SSD were used.

(ii) 100 images with possible pest of the generated 4,331
images dataset were used. �e set of images was not
previously used to train any model.

(iii) 50 images with healthy tomato leaves were used.

(iv) �e algorithms’ input is a picture and the output is
whether the image has or not any disease. If a disease
is detected, it needs to classify the disease.

(v) For this experiment, if there is more than one disease,
the disease with the largest number of insects or eggs
will be the disease of the picture.

(vi) �e selected diseases are Trialeurodes vaporario-
rum eggs, Trialeurodes vaporariorum insect, Bemisia
tabaci eggs, and Bemisia tabaci insect.

�e experiment pipeline is the following:

(i) 100 images with possible pests and 50 images without
pest were selected randomly.

(ii) Each of the images in the set of pictures with pests
contains an XML �le with its insects and/or eggs
annotation. Using this �le and a script, every insect
and egg was cropped and saved. All the numbers
of insects and eggs per disease were also stored in
a database. Cropped pictures and the database are
considered the ground truth of the experiment.

(iii) Computer vision pest detection algorithm loads the
150 pictures and generates a set of regions to inspect
by the machine learning algorithm. �e number
of generated pictures and the processing time were
measured.

(iv) Machine learning KNN model T6 and MLP model
T4 pest classi�cation model classi�es the generated
cropped pictures on di
erent categories. All this
information was stored in a database. �e processing
time was measured.

(v) Deep learning pest detections M4 Faster RCNN and
M6 SSD models load the 150 pictures. �e number
of detected pests per categories was stored in a
database. All the detected insects and eggs images
were cropped. �e processing time was measured.

(vi) Generated data on the database was analysed, and
conclusions were extracted.

First, the computer vision experiment was performed. �e
computer vision test selected 27,976 di
erent regions with
possible pest from 150 images. �ere are 186 cropped images
on average per original picture to classify by the machine
learning model. �e test took 430 seconds to generate all

the cropped pictures, that being 2.86 seconds on average per
image.

Second, the machine learning experiment was per-
formed. �e machine learning experiment used the output
of the computer vision experiment. Two di
erent machine
learning models were tested, using two di
erent factors of
con�dence in order to categorize an image inside a category.
In machine learning KNN and MKP models, 0.5 and 0.75
con�dence thresholds were used.�eKNNmachine learning
model took 324 seconds and theMLPmodel took 251 seconds
to classify all the cropped pictures. On average, the KNN
model took 2.16 seconds to classify all the cropped pictures
per image, and the MLP took 1.67 seconds.

�ird, the deep learning experiment was done. Two
di
erent deep learningmodels were tested. Bothmodels were
tested with 0.5 and 0.75 con�dence thresholds. �e Faster
RCNN took 571 seconds and the SSD took 431 seconds to
detect and classify all the pests. On average, the Faster RCNN
took 3.8 seconds and the SSD took 3.54 seconds to analyse
each image. It is important to note that the use of a GPU on
the robot to classify the pictures will reduce drastically the
inspection time.

All the information obtained for the machine learning
and deep learningmodels was stored in a database in order to
perform metrics later. �e image name, the method used to
extract the disease (ground truth,MLP-0.5, MLP-0.75, KNN-
0.5, KNN-0.75, SSD-0.5, SSD-0.75, RCNN-0.5, and RCNN-
0.75), number of insects Bemisia tabaci and Trialeurodes
vaporariorum, number of eggs, themain disease of the image,
or whether the plant is healthy were stored on the database.
Executing SQL queries gives us extra information of each
model results in order to update and improve it.

Table 7 shows the experiment results for each model in
order to classify an image as healthy or unhealthy. Every
tested model contains the percentage and the number of
samples on brackets. �e results are compared with the
ground truth that is obtained from the labelled pictures
using the image labelling tool. �e best unhealthy plant
disease detection is obtained with the MLP-0.5/MLP-0.75
machine learning model and the best healthy plant detection
is achieved with the Faster RCNN-0.75 deep learning model.
In general, the best healthy and unhealthy pest detection
average rate is also obtained with the Faster RCNN-0.75 deep
learning model with a success rate of 82.51%. Both machine
learning MLP and KNN disease detection algorithms are
getting very good unhealthy success rate result because they
tend to classify many pictures as unhealthy. �ey o�en �nd
eggs or insects in images in which there exist any diseases.
As consequence, their healthy success rate is very low.Models
like this that generatemany false disease alarms are not useful
for the purpose of theGreenPatrol project, as theywill suggest
the use of insecticides to stop the disease, when the disease
actually does not exist, causing an overapplying of pesticides.
�e use of a model with a high accuracy and good balance
between the healthy and unhealthy plant detection is crucial.

Table 8 describes the pest identi�cation experiment.
Some pictures contain more than one disease (e.g., eggs and
one type of insect), because of that the disease with the largest
number of insects or eggs is considered as the real disease
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Table 7: Disease detection comparation rate.

MLP
0.5

MLP
0.75

KNN
0.5

KNN
0.75

SSD
0.5

SSD
0.75

RCNN
0.5

RCNN
0.75

GROUND
TRUTH

Unhealthy
success rate

94,32%
(83)

94,32%
(83)

92,05%
(81)

92,05%
(81)

77,27%
(68)

72,73%
(64)

85,23%
(75)

79,55%
(70)

100% (88)

Healthy
success rate

33,87%
(21)

35,48%
(22)

35,48%
(22)

35,48%
(22)

61,29%
(38)

66,13%
(41)

54,84%
(34)

85,48%
(53)

100% (62)

Success
average

64,09% 64,90% 63,76% 63,76% 69,28% 69,43% 70,03% 82,51%
100%

Table 8: Disease identi�cation rate.

MLP
0.5

MLP
0.75

KNN
0.5

KNN
0.75

SSD
0.5

SSD
0.75

RCNN
0.5

RCNN
0.75

GROUND
TRUTH

Bemisia
tabaci insect
success rate

0,00%
(0)

0,00%
(0)

6,90%
(2)

6,90%
(2)

55,17%
(16)

51,72%
(15)

75,86%
(22)

65,52%
(19)

100% (29)

Egg success
rate

100,00%
(13)

100,00%
(13)

100,00%
(13)

100,00%
(13)

15,38%
(2)

15,38%
(2)

7,69%
(1)

7,69%
(1)

100% (13)

Trialeurodes
vaporariorum
success rate

0,00%
(0)

0,00%
(0)

0,00%
(0)

0,00%
(0)

52,17%
(24)

45,65%
(21)

41,30%
(19)

41,30%
(19)

100% (46)

Healthy
success rate

33,87%
(21)

35,48%
(22)

35,48%
(22)

35,48%
(22)

61,29%
(38)

66,13%
(41)

54,84%
(34)

85,48%
(53)

100% (62)

of the image. �e success rate on the machine learning MLP
and KNN is perfect, but the result is misleading because the
models classify many pictures as eggs. �erefore, the insect
detection rate is very low in machine learning models. �e
experiment shows that the egg detection and identi�cation
task is very challenging. Eggs are di	cult to detect and
classify. �e Faster RCNN-0.75 gets the best results, but the
eggs identi�cation needs to be improved.

5. Conclusions

Once computer vision, machine learning, and deep learning
experiments have been explained, measured, and compared,
di
erent conclusions are extracted.

Computer vision for pest detection selects too many
regions with possible disease on each image. For example,
pictures with few insects or eggs also generate a big number of
regions to analyse by the machine learning pest classi�cation
model. It is very slow to classify a big number of regions by the
machine learning model, because of that, the combination of
computer vision andmachine learning approach cannotwork
in real time to inspect the greenhouse’s plants. �e balance
between inspection speed and accuracy is critical for the real
time inspection. Images are going to be analysed both in real
time and later on the server side, but real time information
is needed in order to modify if the autonomous robot
inspection route is necessary. Computer vision algorithms
will be a
ected by the illumination changes in order to
segment plants from the background and to select regions
with possible insects or eggs.

Using MLP machine learning pest classi�cation model,
the project is getting an accuracy of 82.34% on average on

the machine learning k-cross validation test. Bemisia tabaci
and Trialeurodes vaporariorum insects are quite similar, but
the machine learning model can distinguish between them.
Selected manual features in Section 3.3.2 are working to
discriminate between both categories, but these features are
not working to distinguish between them as an egg level.
Bemisia tabaci eggs and Trialeurodes vaporariorum eggs are
very similar in colour and shape in the early stages. �e �rst
machine learning models contained both Bemisia tabaci egg
and Trialeurodes vaporariorum egg category, but the results
were poor. A�er di
erent feature selection changes and tests,
we decided to join both categories. Deep learning for pest
detection and identi�cation gets better results to di
erentiate
both categories as an egg level.

Pictures that are categorized with a low con�dence by the
machine learning classi�cation algorithm are removed for the
selection. Computer vision algorithm will generate di
erent
regions with possible pest that will not have any insect or egg.
Due to the machine learning classi�cation con�dence factor,
these regions will not be categorized as a disease. A 0.5 and
0.75 con�dence factor is set on this �rst approach.

Deep learning technique is a better solution than the
combination between computer vision andmachine learning.
Unlike the computer vision and machine learning approach,
the deep learning technique is developing the disease detec-
tion and classi�cation in one step. It gets better accuracy,
and it can distinguish between Bemisia tabaci egg and
Trialeurodes vaporariorum egg category. �e fastest deep
learning model (SSD) and the use of a computer with a GPU
can help the autonomous robot to change inspection route,
while another deep learning model with higher accuracy
inspects the pictures on the server side. For example, deep
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learning models generated with Faster RCNN architecture
can be used on server side because they have better results,
but they are slower in processing time.

We also realize that all insects and/or eggs are not always
discovered by the computer vision or the deep learning
approach. �e �nal goal of the inspection approach is to
determine whether a plant is infected. When a plant is
infected, the inspection approach needs to infer its disease.
One tomato plant can be de�ned as not healthy if an insect
or egg is found. It is not necessary to detect all the insects or
eggs to achieve the project requirements, but the performance
will be better. In general, more pictures from the cultivation
chamber and the greenhouse need to be labelled in order to
generate more robust models.

Disease detection approach using deep learning is based
on the most popular image classi�cation models. On image
classi�cation tasks, the network receives one input image
and it generates one class label as an output. However, on
disease detection tasks, the network gets one input image and
it generates various bounding boxes with each class label.�e
disease detection approach using deep learning is composed
of two networks. One network is used for generating region
proposals using a Region Proposal Network (RPN), and the
other network is used to detect diseases on the selected
regions.�eRPNproposes a set of di
erent regions of several
sizes that apparently contains a disease. Proposed regions
are inspected by a regressor and a classi�er in order to �nd
regions with an insect or an egg. �e RPN region proposal
is faster than the results obtained using computer vision, and
the quality of the selected regions is also better than using the
machine learning approach. Computer vision and machine
learning approach is based on features that are provided
manually, and deep learning approach extracts these features
automatically from the training dataset. Because of that, deep
learning pest detection and identi�cation approach has better
accuracy, and it also works betters in di
erent scenarios
and di
erent illumination conditions. A pest detection and
identi�cation model using deep learning, labelled correctly
by experts with a huge dataset of di
erent pictures, will
extract automatically many features that are impossible to
infer by a human. All the combinations of possible features
(color, shape, contours, size, etc.) are impossible to add to a
computer vision and machine learning algorithm.

6. Future Work

Once the deep learning approach is selected to be the pest
detection and identi�cation technique, di
erent improve-
ments need to be added to the dataset and to the model.
First, more data augmentations techniques need to be added
to the model such as image resizing, translation, scaling,
�ipping, rotation, perspective transformations, and lighting
changes. Model accuracy changes need to be tested in order
to know if some of these data augmentation techniques are
improving the dataset variability. Second, the generation of
di
erent synthetically generated scenes with insects and eggs
can also improve the dataset variability. �ird, in this �rst
approach, pictures of Tuta Absoluta were not added to the
model. Pictures as an insect level and as egg level need to be

added and labelled. Pictures of other diseases are also possible
to be added to the model. Fourth, the egg detection and
identi�cation work is a big challenge. Part of the future work
will be focused on trying to �nd them by the manipulation
module. �e deep learning algorithm needs to be improved
in order to be able to detect them with a better accuracy.
Finally, an Integrated Pest Management strategy will allow
the autonomous robot to decide the inspection route, the
inspection time in each plant, the number of images to
analyse in real time, and other factors in order to detect
selected pests on the greenhouse.
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