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Abstract—Comparative evaluation is a requirement for re-
producible science and objective assessment of new algorithms.
Reproducible research in the field of pansharpening of very high
resolution images is a difficult task due to the lack of openly
available reference datasets and protocols. The contribution of
this work is three-fold and it defines a benchmarking framework
to evaluate pansharpening algorithms. First, it establishes a
reference dataset, named PAirMax, composed of 14 panchro-
matic and multispectral image pairs collected over heterogeneous
landscapes by different satellites. Second, it standardizes various
image pre-processing steps, such as filtering, upsampling, and
band co-registration, by providing a reference implementation.
Third, it details the quality assessment protocols for reproducible
algorithm evaluation.
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I. INTRODUCTION

Pansharpening is a well know research topic in remote

sensing and image processing [1], [2]. Pansharpening refers

to a particular case of image reconstruction from multi-

resolution acquisitions in which a multispectral (MS) image

is super-resolved with the aid of a panchromatic (PAN) (i.e.,

monochromatic) image of higher spatial resolution. This par-

ticular problem of image fusion has been widely studied for

more than three decades [1]. Indeed, this research topic is of

particular interest for the remote sensing community, as the

joint acquisition of a multispectral image simultaneously with

a panchromatic channel is the typical configuration of most

very high spatial resolution (VHR) optical remote sensing

satellites such as GeoEye-1, WorldView-2/3/4, SPOT-6/7, and

Pléiades, just to name a few.

The image reconstruction task addressed by pansharpening

is an ill-posed problem whose goal is to provide a single image

product showing both high spatial and spectral resolutions

from simultaneously acquired PAN and MS observations. A
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large number of pansharpening algorithms have appeared in

the literature following different approaches such as based

on heuristic schemes, variational optimization and machine

learning [2].

Some efforts have been produced by the community for

providing a taxonomy of the algorithms proposed through the

years. Their presentation in an unifying framework has allowed

a classification of the main families showing relations between

different approaches [1]–[3]. An open source implementation

of the main state-of-the-art pansharpening algorithms is pub-

licly distributed in [4], which is related to the software toolbox

described in [1]. An updated version1 of the toolbox has been

recently presented in [2], also including methods belonging to

different pansharpening paradigms.

Although a great effort has been put in providing a standard-

ization of the pansharpening algorithms with their associated

implementations, reproducible research in this area is not

fully possible yet. The current main bottleneck for performing

systematic and extensive comparisons is due to the lack of

reference datasets of remote sensing images available to the

community. Extensive comparisons of competing algorithms

as it is done in other communities (e.g., in computer vision)

is not possible as the algorithms comparison (even using

publicly available implementations) is performed on typically

few images that are different from work to work. This prevents

the possibility to carry out a fair comparison for a newly

proposed algorithm. The reason for the lack of benchmark

datasets is mainly due to the fact that very high resolution

images are usually not openly available. Distribution policies

of governmental agencies and private companies distributing

the data are restrictive and rarely permit sharing images

publicly. Recently, a very large dataset consisting of VHR

MS+Pan image pairs has been presented in [5], where both

dated and state-of-the-art methods are compared and ranked

through classical evaluation indexes. The main difference

between our work and [5] is the goal. Indeed, in [5], a huge

amount of data (2000+ pairs) is released, which could be very

useful for training machine learning-based approaches, but

less interesting to assess the performance of a new developed

pansharpening procedure.

This contribution is three-fold and it defines a complete

benchmark suite to evaluate pansharpening algorithms by

including:

1http://openremotesensing.net/knowledgebase/a-new-benchmark-based-
on-recent-advances-in-multispectral-pansharpening-revisiting-pansharpening-
with-classical-and-emerging-pansharpening-methods/
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Download PAirMax
data (Section III-C)

Prepare images and run
tests (Sections III-A-B)

Compute validation
indexes (Section V)

Fig. 1: Flowchart of the pansharpening benchmark suite.

• a fully-licensed collection of 14 image pairs of MS

and PAN images (and their associated metadata) from 6

different sensors and landscapes representing significant

test cases for pansharpening algorithms. The collection

is referred to as PAirMax, which is an acronym for

Pansharpening of Airbus and Maxar MS+PAN images,

mentioning the companies that have provided the li-

censed VHR image datasets, as well as recalling the goal

of pansharpening, i.e., to maximize the spatial/spectral

information transfer from an MS+PAN image pair to

the fusion product. PAirMax is made publicly available

and is intended to be used as a benchmark to compare

pansharpening algorithms.

• accurate indications on data pre-processing, data for-

matting, upsampling of low-resolution MS images, co-

registration between PAN and resampled MS, histogram

matching when required;

• correct data preparation to apply the pansharpening eval-

uation protocols both at reduced and full resolution in a

robust and reproducible way.

Indeed, as researchers might not have access to the images

as originally acquired, relevant information on the datasets are

not available. For example, the level of pre-processing and

resampling done by the data providers might be unknown.

These processing steps can have an impact on the results.

It is also well-known that PAN and MS images have a

subpixel misalignment. In some cases this is accounted for

and addressed by pre-processing. However, the registration

procedure used is seldom described because the information is

proprietary or not available. Performance evaluation is another

topic where using different validation procedures and metrics

makes performing a standard comparison not possible.

This paper attempts to fill this gap by proposing the

PAirMAx data collection comprising 14 PAN+MS image

couples that are made available to the community. The image

collection is composed of selected scenes representing the data

heterogeneity that a pansharpening practitioner can encounter.

In addition, this paper covers in details the main pre-processing

steps that are carried out when creating a dataset for pan-

sharpening. The three main contributions of this paper are

synthesized by the flowchart in Fig.1.

This work has the ambition to propose a benchmark of

representative images for pansharpening and guidelines to

pre-processing which is often an overlooked step, although

fundamental for reproducible research.

The rest of the paper is organized as follows. The fundamen-

tals of quality assessment of pansharpened images are recalled

in Sect. II. The PAirMax collection and the best practices to

prepare image data for rigorous quality assessment are de-

scribed in Sect. III. State-of-the-art pansharpening algorithms

are reviewed in Sect. IV. Extensive experimental results and

comparisons are presented in Sect. V and conclusions are

drawn in Sect. VI.

II. QUALITY ASSESSMENT OF PANSHARPENED IMAGES

A. Background

Since the reference image of multispectral pansharpening is

unavailable, objective quality assessment has been extensively

studied in the past decades to define robust and reliable

evaluation protocols.

The generally accepted protocol was originally introduced

in [6] and refined in [7] and [8]. It is based on the consistency

and synthesis properties.

Consistency states that the pansharpened image, degraded

at the original MS resolution, should be as similar as possible

to the original MS image. It is a necessary condition that

can be verified by comparing the original MS image to a

degraded version of the pansharpened image obtained through

modulation transfer function (MTF) decimation filters tuned to

the MS sensor characteristics. Recently, it has been considered

sufficient to assess the fusion quality [9]. It is worth noting

that checking consistency at the panchromatic scale, i.e., at

full resolution, should carefully consider the tradeoff between

spectral and spatial qualities, and should avoid to evaluate the

interpolated MS image, having no spatial enhancement, as the

best-quality image.

Synthesis states that the pansharpened image should be simi-

lar to the one acquired by an ideal MS sensor having the spatial

resolution of the panchromatic sensor. The synthesis property

can be checked by following a reduced resolution (RR)

approach, i.e., by performing fusion on spatially degraded MS

and PAN to obtain a pansharpened image as close as possible

to the original MS image. The main assumption of the RR

approach is quality invariance across scales, which does not

strictly hold. Also, the way of degrading the original MS and

PAN images can significantly affect the quality assessment.

Quality can be evaluated at the original panchromatic scale,

according to a full resolution (FR) approach. In this case, the

spectral and spatial distortions are separately evaluated from

the original low-resolution MS bands and the high-resolution

panchromatic band, as originally proposed in [10]

A widely adopted FR assessment is based on the quality

with no reference (QNR) index [11] and its derived indexes.

QNR combines into a unique overall quality index a spectral

distortion measure between the original and pansharpened MS

bands and a spatial distortion measure between each MS band

and PAN.

Other FR protocols have been proposed in [12], where

the spectral consistency property is derived from [6] and the

spatial quality from [10].

The hybrid QNR (HQNR) has been presented in [13] as the

combination of the spectral distortion index proposed in [12]

with the spatial distortion index of the original QNR [11].

Other quality metrics have been proposed in [14], which

adopts the spectral distortion borrowed from [11] and the

spatial distortion based on the natural image quality evaluator

model, and in [15], which presents a perceptual quality index.

Polynomial fitting of multi-scale RR quality indexes is pro-

posed in the FR quality index proposed in [16], subsequently
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refined in [17] in the framework of a multi-scale sequential

Bayesian problem.

A very recent approach based on the combination of both

reduced resolution assessment and quality evaluation without

reference has been presented in [18].

B. Reduced Resolution Assessment

The following RR distortion/quality indexes are considered

in this work. They will be measured for comparisons and

benchmarking.

SAM: Spectral angle mapper. Given two spectral vec-

tors, x and x̂, both having N components, in which x =
[x1, x2, · · · , xN ] is the reference spectral pixel vector and

x̂ = [x̂1, x̂2, · · · , x̂N ] is the test spectral pixel vector, SAM

denotes the absolute value of the spectral angle between the

two vectors:

SAM(x, x̂) = arccos

(
〈x, x̂〉

||x||2 · ||x̂||2

)
. (1)

SAM is usually expressed in degrees and is equal to zero if and

only if the test vector is spectrally identical to the reference

vector, i.e., the two vectors are parallel and may differ only

by their moduli. A global spectral dissimilarity, or distortion,

index is obtained by averaging (1) over the whole scene.

ERGAS: French acronym for relative dimensionless global

error in synthesis [19]. It is a normalized dissimilarity index

that offers a global indication of the distortion towards the

reference of a test multi-band image:

ERGAS = 100
dh
dl

√√√√ 1

N

N∑

n=1

(
RMSE(n)

µ(n)

)2

, (2)

where dh/dl is the ratio between pixel sizes of PAN and MS,

typically 1/4 for many sensors used for pansharpening, µ(l) is

the mean (average) of the n-th band of the reference, and N
is the number of bands. Low values of ERGAS indicate high

similarity between fused and reference MS data.

Q2n: It is the multi-band extension of the universal image

quality index (UIQI, namely Q = Q20) [20] and was intro-

duced for quality assessment of pansharpened MS images, first

for four bands [21], and later extended to 2n bands [22]. Each

pixel of an image with N spectral bands is accommodated into

a hypercomplex (HC) number with one real part and N − 1
imaginary parts.

Let z = z(m,n) and ẑ = ẑ(m,n) denote the HC represen-

tation of the reference and test spectral vectors at pixel (m,n).
Analogously to UIQI, Q2n may be written as the product of

three terms:

Q2n =
|σzẑ|

σzσẑ

·
2σzσẑ

σ2
z + σ2

ẑ

·
2|z̄||¯̂z|

|z̄|2 + |¯̂z|2
. (3)

The first term is the modulus of the HC correlation coefficient

(HCCC) between z and ẑ. The second and the third terms

measure contrast changes and mean bias, respectively, on all

bands simultaneously. Statistics are calculated on N × N
blocks, typically, 32×32, and Q2n is averaged over the blocks

of the whole image to yield the global score index. Q2n takes

values in [0,1] and is equal to 1 if and only if z = ẑ for all

pixels.

C. Full Resolution Assessment

The following FR quality index is considered in this work

for comparisons and benchmarking.

HQNR: Hybrid Quality with No Reference index.

It is a unique quality index obtained by combining the

spatial distortion index DS and the spectral distortion index

D
(K)
λ , according to:

HQNR =
(
1−D

(K)
λ

)α

(1−DS)
β , (4)

where usually α = β = 1.

The spatial distortion, DS , combines the UIQI values com-

puted between each MS band and the PAN image degraded

to the resolution of MS, and again between fused MS and

full-resolution PAN. The absolute difference, averaged over

all bands, between the corresponding UIQI values yields the

spatial distortion DS [11].

The spectral distortion index is taken from Khan’s proto-

col [12], i.e., D
(K)
λ = 1 − Q2n(M̂S↓, M̃S), where M̂S↓

is the MTF-filtered pansharpened MS image considering a

resolution ratio equal to R, and M̃S is the original MS image

interpolated to the PAN scale, R times lower than the MS

scale. Again, this implementation is performed exploiting the

upsampled MS image, i.e., working at the PAN scale.

It should be noted that D
(K)
λ strictly follows the consis-

tency property and avoids possible drawbacks of the spectral

distortion index Dλ used in the QNR index, which computes

similarity at different resolutions.

III. THE PAIRMAX DATA COLLECTION

This section is devoted to the description of the dataset

collection that is distributed to the community. Maxar data

are available at https://resources.maxar.com/product-samples/

pansharpening-benchmark-dataset. Instead, Airbus datasets

are available at https://sandbox.intelligence-airbusds.com/.

The best practices to prepare high-quality reduced resolution

and full resolution datasets for pansharpening are drawn first.

Afterwards, the main characteristics of the adopted acquisition

sensors and a brief description (acquisition time, landscape,

etc.) of the proposed datasets for benchmarking purposes are

reported.

A. Data Pre-processing

The best practices for the assessment of pansharpening

products, both at reduced resolution and at full resolution,

are indicated in this Section. First, the implementation of

Wald’s protocol is detailed to ensure a reliable assessment

at reduced resolution. Then, the implementation issues and

solutions to safely apply quality with no reference indexes

at full resolution are reported. It is worth to be remarked

that a fair comparison of pansharpening approaches requires

the implementation of the same pre-processing procedures

for all the compared approaches following the presented best

practices both at reduced resolution and full resolution.
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1) Reduced Resolution: In Sect. II, Wald’s protocol has

been detailed pointing out the consistency and synthesis prop-

erties. The synthesis property is a condition both necessary and

sufficient, under the hypothesis that the performance evaluated

at reduced resolution is consistent with the assessment that

would be performed at full resolution (the so-called “invari-

ance among scale” [1], [2]). This is a crucial point requiring

attention when simulated low spatial resolution products are

generated starting from the original MS and PAN images.

Indeed, spatial degradation is achieved by means of proper

low-pass filtering followed by decimation by a factor equal

to the spatial resolution ratio between PAN and MS images.

Thus, the PAN image is degraded to the spatial resolution of

the MS image. Furthermore, this latter is reduced at a lower

resolution in order to retain the same spatial resolution ratio

of the starting products. Hence, the original MS image can be

exploited as reference for the quality assessment.

The way to get the low spatial resolution products can bias

the quality assessment at reduced resolution. Thus, some best

practices should be followed in this crucial simulation phase.

More in detail, the filter choices are crucial in this protocol. In

general, filters are defined to ensure the consistency. Hence,

it is straightforward the use of filters simulating the transfer

function of the sensor instrument. In other terms, the degra-

dation filters of the MS image have to match the modulation

transfer functions (MTFs)2 of the MS sensor [23]. However,

this information is often unavailable. In order to overcome

this limitation, estimation strategies have been employed in

the related literature [24], [25]. These can give an estimate

of the filters to be used, but this process can often introduce

errors that are scene-dependent. Thus, the classical way to

address this point is by exploiting the unique information that

is always given by the data providers, i.e., the gain at Nyquist

frequency. In Tab. I, the gains for some exemplary sensors used

for pansharpening are provided. Starting from this information

and considering that, in almost all the practical cases, the MTF

follows a zero-mean Gaussian-like distribution, this value is

used to set the unique degree of freedom represented by the

standard deviation of the above-mentioned distribution. Thus,

the filters for each MS band can be easily designed and used

for degradation purposes.

In addition, the filter used to get the degraded PAN image

has to be designed to preserve spatial details. Accordingly,

MTF-based filters should be used. It is worth to be remarked

that MTFs have a low value at Nyquist frequency for PAN

sensors. This is done in order to reduce both the telescope

diameter and aliasing effects [26]. Thus, raw images are quite

blurry implying a deconvolution step that restores sharpness,

but paying it with an increase of the noise level often re-

quiring a further processing (denoising) step (see the case

of the Pleiades-HR remote sensing system [26]). Thus, the

common choice is to degrade the PAN image via almost

ideal filters, thus mimicking the spatial features produced

after the deconvolution step. In practice, bicubic filtering is

often adopted. For more details, the interested readers can

2The MTF is the modulus of the optical transfer function that is defined as
the Fourier transform of the point spread function.

refer to the MATLAB code that will be freely distributed

enabling the simulation of reduced resolution datasets starting

from the original MS and PAN products. It is worth to

be remarked that the proposed datasets can be used only

for performance assessment purposes. Instead, their use for

training ML approaches is not advisable. Indeed, this operation

requires an amount of data that cannot be covered by our

datasets. However, for the Maxar datasets, the original set of

data will also be distributed to the Community. Thus, our

software can be used in conjunction with this huge amount

of data to build training sets for machine learning approaches

addressing the pansharpening problem. In fact, the widely used

training of pansharpening networks follow Wald’s protocol and

its implementation is the same as the one used to simulate

reduced resolution datasets. However, new research lines (see,

e.g., [27], [28]) are proposing new training procedures for

pansharpening networks by directly exploiting original (full

resolution) MS and PAN data.

2) Full Resolution: Full resolution assessment using quality

with no reference indexes is a common practice to validate

the performance at full resolution. These kinds of protocols

(e.g., the QNR and the HQNR) are usually based on an

underlying assumption of spatial alignment among the data

involved in the evaluation process. In particular, they directly

work with the upsampled version of the MS image (the so-

called EXP), the PAN image, and the pansharpened product.

The alignment between MS and PAN images is considered

implicitly solved at the MS upsampling phase. Hence, the

widely used interpolation using a polynomial kernel [29]

should take in great consideration this issue, trying to provide

a solution to the problem of the sub-pixel alignment between

the upsampling MS image and the PAN data.

In this paper, we suggest the use of interpolators using

polynomial kernels with a number of coefficients that can vary

along the image’s rows and columns. In this way, we can have

an odd or an even interpolation along the two main directions,

thus reaching a higher flexibility. It is worth remarking that

an interpolator using filters of even lengths can be exploited

to compensate the half-pixel shifts between the MS and PAN

sampling grids [30]. This can guarantee that the shift between

the upsampled MS image and PAN data turns out to be

less than a half-pixel ensuring a sub-pixel alignment without

affecting the spatial resolution of the original product. Thus,

a solution for aligning data during the upsampling step of the

MS image is provided, but we still need to answer the question

how to measure a sub-pixel misalignment.

To give more insights about this issue, we can refer to the

extensive literature about image registration, see e.g. [31]–

[33]. In this work, a 2D translation image registration to within

a small fraction of a pixel that uses nonlinear optimization and

matrix-multiply discrete Fourier transforms is exploited [31].

This algorithm can achieve registration with an accuracy

equivalent to that of the conventional fast Fourier transform

upsampling approach, but reducing both the computational

burden and the memory requirements. The software is freely
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available3 and can easily be used in MATLAB [31]. This

code is able to measure row and column sub-pixel shifts

between two images. Thus, after a first interpolation of the

MS image, we can measure and correct the shift between the

upsampled MS image and the PAN data. Moreover, we can

select the proper combination of coefficients of the above-

mentioned interpolator (even/odd interpolation along rows and

even/odd interpolation along columns) by simply minimizing

the average of the shifts calculated along both rows and

columns. It is worth to point out that the software used to

generate upsampled MS images aligned with PAN data will

be distributed to the community and the interesting readers

can refer to it for further details.

B. Sensor Characteristics

This section describes the main characteristics for each of

the sensors used in this study. For more detailed information,

the reader can check the website of Maxar Technologies4

for GeoEye-1, WorldView-2, WorldView-3, and WorldView-4,

and Airbus5 for SPOT-7 and Pleiades-1B.

1) GeoEye-1: GeoEye-1 was launched on September 6,

2008 on a Sun-synchronous orbit at an altitude of 681 km.

During the summer of 2013 the orbit altitude was raised

to 770 km, resulting to a GSD (Ground Sample Distance)

of 0.46 m for the panchromatic band. Its four multispectral

bands, corresponding to the blue, green, red, and near-infrared

portion of the electromagnetic spectrum, have a GSD of 1.84

m. The relative spectral response is shown in Fig. 2a. GeoEye-

1 can collect up to 500,000 square kilometers of per day with

a dynamic range depth of 11-bits per pixel and geospatial

accuracy better than 5 m CE90 without ground control.

2) WorldView-2: WorldView-2 is the first commercial satel-

lite to carry a very high spatial resolution sensor with more

than four spectral bands. The spacecraft was launched on

October 8, 2009 on a Sun-synchronous orbit at an altitude

of 770 km, providing 0.46 m and 1.84 m resolution for

the panchromatic and the eight multispectral bands, respec-

tively. The relative spectral response is shown in Fig. 2b.

The additional spectral bands help applications for coastal

and vegetation land cover monitoring, mapping of vegetation

stress and crop types, mapping of benthic habitats, wetlands,

coast water quality, and bathymetry. Overall, the broader and

continuous spectral coverage provides the potential for more

robust modeling in pansharpening applications. WorldView-2

has a collection capacity of 975,000 square kilometers per day

with a dynamic range depth of 11-bits per pixel and geospatial

accuracy better than 3.5 m CE90 without ground control.

3) WorldView-3: WorldView-3 was launched on August 13,

2014 on a Sun-synchronous orbit at an altitude of 617 km.

It is the first multi-payload, super-spectral, high resolution

commercial satellite to collect one panchromatic band at 0.31

m resolution, eight visible and near-infrared bands at 1.24 m,

and eight short-wave infrared bands with a spatial resolution

3https://it.mathworks.com/matlabcentral/fileexchange/18401-efficient-
subpixel-image-registration-by-cross-correlation

4https://www.maxar.com/
5https://www.intelligence-airbusds.com/

of 3.7 m (these bands are not used in this study). The relative

spectral response is shown in Fig. 2c. WorldView-3 is capable

of collecting up to 680,000 square kilometers per day with a

dynamic range depth of 11-bits per pixel for the panchromatic

and visible and near-infrared bands (14-bits per pixels for the

short-wave infrared bands), and geospatial accuracy better than

3.5 m CE90 without ground control

4) WorldView-4: The WorldView-4 spacecraft was

launched on November 11, 2016 on a Sun-synchronous

orbit at an altitude of 617 km, but experienced a failure in

its control moment gyros on January 7, 2019, preventing

the satellite from collecting imagery due to the loss of an

axis of stability. Nonetheless, in its short life WorldView-4

collected some of the highest spatial resolution images to

date, making its data useful for benchmarking pansharpening

methods. More specifically, WorldView-4 was able to collect

one panchromatic band at 0.31 m resolution (similar as

WorldView-3), and four visible and near-infrared bands at

1.24 m, with a dynamic range depth of 11-bits per pixel and

geospatial accuracy better than 5 m CE90 without ground

control. Its relative spectral response is shown in Fig. 2d.

5) SPOT-7: SPOT-7 was launched on June 30, 2014 on a

Sun-synchronous orbit at an altitude of 695 km, collecting one

panchromatic band at 1.5 m resolution and four visible and

near-infrared bands at 6.0 m. The relative spectral response is

shown in Fig. 2e. The spacecraft can collect up to 3 million

square kilometers of per day with a dynamic range depth of

14-bits per pixel and geospatial accuracy better than 35 m

CE90 without ground control.

6) Pléiades-1B: Pléiades-1B was launched on December

17, 2011 on a Sun-synchronous orbit at an altitude of 695

km, phased 90◦ apart with respect to Pléiades-1A, SPOT-

6, and SPOT-7 to offer a combined daily revisit capability

over any point on the globe. The spacecraft collects one

panchromatic band at 0.7 m resolution and four visible and

near-infrared bands at 2.8 m. Its relative spectral response

is shown in Fig. 2f. Pléiades-1B can collect up to 1 million

square kilometers of per day with a dynamic range depth of

12-bits per pixel and geospatial accuracy better than 10 m

CE90 without ground control.

C. Dataset Description

The dataset presented in this work is composed of 14

scenes that were selected as representative examples of the

heterogeneity that can be found in pansharpening applications.

Thus, we have 14 full resolution datasets and, by following the

procedure described in Sect. III-A1, we generated the related

14 reduced resolution datasets starting from the selected full

resolution test cases.

Most of the images were acquired over urban areas. These

scenes are particularly challenging for pansharpening. High

contrast features such as the edges between building rooftops

and a street and details of size smaller than the spatial resolu-

tion are particularly difficult to render accurately. Furthermore,

the presence of adjacent regions with different spectral features

can lead to the presence of spectral/color smearing across

regions resulting in spectral distortions. Natural land cover
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TABLE I: MTF gains at Nyquist frequency. NIR stands for near-infrared.

Sensor Coastal Blue Green Yellow Red Red Edge NIR NIR2

IKONOS - 0.26 0.28 - 0.29 - 0.28 -
QuickBird - 0.34 0.32 - 0.30 - 0.22 -
GeoEye-1 - 0.23 0.23 - 0.23 - 0.23 -

WorldView-2 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.27
WorldView-3 0.32 0.36 0.36 0.35 0.36 0.36 0.33 0.32
WorldView-4 - 0.23 0.23 - 0.23 - 0.23 -

PHR1B - 0.28 0.28 - 0.29 - 0.28 -
SPOT-7 - 0.33 0.33 - 0.33 - 0.33 -

(a) (b) (c)

(d) (e) (f)

Fig. 2: Relative spectral response for (a) GeoEye-1, (b) WorldView-2, (c) WorldView-3, (d) WorldView-4, (e) SPOT-7, and (f)

Pléiades-1B. The spectral response is defined as the ratio of the number of photo-electrons measured by the instrument system,

to the radiance at a particular wavelength present at the entrance to the telescope aperture. It includes not only raw detector

quantum efficiency, but also transmission losses due to the telescope optics and filters. The spectral response for each band is

normalized by dividing it to the maximum response value for that band.

types are present in some scenes. These consist in vegetated

areas, agricultural fields, open meadow areas, forested regions

and water bodies. Although vegetated areas show less sharply

contrasted spatial features than urban areas, this land cover

type has peculiar characteristics that are challenging for image

fusion. The vegetation spectra are characterized by a signifi-

cant difference in terms of reflectance level between the visible

and NIR domain, due to the presence of chlorophyll. This

feature can lead to spectral distortions as the spectral response

of the PAN typically only partially covers the domain sensed

by the NIR MS bands (see Fig. 2). Moreover, vegetated areas

are usually textured with patterns that can be regular (e.g.,

in agricultural fields) or irregular (e.g., in forested regions)

with subpixel size leading to potential spatial distortions in

the image fusion results. Some scenes contain water regions

(e.g., rivers or water bodies). The presence of water regions is

of interest for testing how the water spectra are reconstructed

in the pansharpened image. The presence of bands optimized

for bathymetry (as for WorldView-2 and 3) can be of particular

interest for these areas. In addition, as the water regions

in these images are usually placed in urban or semi-urban

areas with well defined embankment constructions they show

typically sharply defined edges with adjacent regions.

The selected areas were chosen from images acquired in

different times during the year. This is particularly interesting

as illumination conditions change across seasons. For example,

images acquired during winter can show dimmer intensities

and long shadows appearing as variations in local contrast.

Description of the main characteristics of each dataset

(description of the landscape, special features, etc.) is re-

ported in Tab. II. A true color composite of the 14 im-

ages is shown in Fig. 3. The naming scheme used in

this work for referring to the different images follows the

convention Satellite_Location_LandCover, where

Satellite is an abbreviation of the satellite plat-

form mounting the sensor that performed the acquisition,

Location refers to the spatial location and LandCover

to the main land cover type.

All PAN-MS bundles have a spatial ratio of 4, i.e., the

PAN band has 4×4 times more pixels than the corresponding
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Image name Satellite GSD B Q Location Land cover type Coords. Fig. 3

Pl_Hous_Urb PHR1B 0.70m PAN, 2.80m MS 4 12 Houston, US Miscellaneous urban A1 - A2
W3_Muni_Urb WV-3 0.31m PAN, 1.24m MS 8 11 Munich, Germany Dense urban A3 - A4
GE_Lond_Urb GE-1 0.46m PAN, 1.84m MS 4 11 London, UK Urban with long shadows B1 - B2
W3_Muni_Nat WV-3 0.31m PAN, 1.24m MS 8 11 Munich, Germany Agricultural fields and forested areas B3 - B4
W4_Mexi_Urb WV-4 0.31m PAN, 1.24m MS 4 11 Mexico City, Mexico Urban C1 - C2
S7_Napl_Urb SPOT-7 1.50m PAN, 6.00m MS 4 14 Naples, Italy Dense urban, with vegetated areas C3 - C4
W4_Mexi_Nat WV-4 0.31m PAN, 1.24m MS 4 11 Mexico City, Mexico Vegetation and water D1 - D2
S7_NewY_Mix SPOT-7 1.50m PAN, 6.00m MS 4 14 New York, US Urban with water D3 - D4
W2_Miam_Mix WV-2 0.46m PAN, 1.84m MS 8 11 Miami, US Urban with water E1 - E2
GE_Tren_Urb GE-1 0.46m PAN, 1.84m MS 4 11 Trenton, US Heterogeneous urban E3 - E4
W2_Miam_Urb WV-2 0.46m PAN, 1.84m MS 8 11 Miami, US Urban F1 - F2
Pl_Sacr_Mix PHR1B 0.70m PAN, 2.80m MS 4 12 Sacramento, US Urban with water and vegetation F3 - F4
W3_Muni_Mix WV-3 0.31m PAN, 1.24m MS 8 11 Munich, Germany Urban and vegetated areas G1 - G2
Pl_Stoc_Urb PHR1B 0.70m PAN, 2.80m MS 4 12 Stockholm, Sweden Urban G3 - G4

TABLE II: Details of the 14 image pairs composing PAirMax. The image name (first column) is composed of the abbreviation

of the satellite that acquired the image (i.e., GeoEye-1 (GE), WorldView-2 (W2), WorldView-3 (W3), WorldView-4 (W4), SPOT-7

(S7) and Pléiades (Pl)), the location (four characters of the acquired city) and the main land cover type (either urban (Urb),

natural (Nat) or mixed (Mix)). The used abbreviations for the satellite names are PHR1B for Pléiades, WV-2 for WorldView-2,

WV-3 for WorldView-3, WV-4 for WorldView-4, and GE-1 for GeoEye-1. Note that GSD, B, and Q stand for the ground

sampling distance, the number of bands for the MS image, and the radiometric resolution in bits, respectively.

MS bands. All MS bands are in the visible near-infrared

(VNIR) domains with either 4 (for GeoEye-1, WorldView-2,

SPOT-7 and Pléiades) and 8 spectral bands (for WorldView-2

and 3). See Fig. 2 for the corresponding spectral responses.

Details about the number of bands per image, the radiometric

resolution and the GSD are reported in Tab. II for convenience.

The 14 images in PAirMax were selected from original

PAN+MS bundles. All original images were acquired with

clear sky conditions with a negligible cloud cover (in particular

in the selected crops). The PAN and MS bands for the

selected scenes were cropped and co-registered according to

the procedure detailed in Sect. III-A.

IV. PANSHARPENING APPROACHES

Several taxonomies have been considered in the pansharpen-

ing literature. Among them, the one based on four main classes

has recently been widely used [2]. In particular, we have the

component substitution and the multi-resolution analysis fam-

ilies that represent the classical approaches (deeply explored

in [1]) and recent developments relying upon the variational

optimization-based and machine learning classes. These latter

emerging lines of research have a unique objective, which

is the achievement of no-compromise quality of the fused

product, usually implying a higher computational burden [2].

The component substitution (CS) approaches rely upon

the idea of a projection of the original MS image into a

transformed domain aiming at separating the spatial and the

spectral information to ease the replacement of the PAN image

for sharpening the MS image. Under the hypothesis of the

substitution of a unique component and a linear transfor-

mation applied to the MS image, the CS approaches can

be implemented in a easy and computational efficient way.

That is why many pioneering pansharpening algorithms belong

to this class. We will exploit three exemplary cases of CS

methods. Two out of three are based on the Gram-Schmidt

(GS) orthogonalization procedure. This procedure exploits an

intensity component as the first vector of the new orthogonal

basis. The way to generate the intensity component leads

to different algorithms, such as GS [34] and GS adaptive

(GSA) [35] that are both considered in this work. Furthermore,

an algorithm that leverages on the band-dependent spatial-

detail (BDSD) paradigm is exploited [36]. In particular, the

BDSD with physical constraints (BDSD-PC) includes some

constraints about the positiveness of the coefficients in the

adopted fusion model [37].

The class of multi-resolution analysis (MRA) methods relies

upon the concept of multi-scale decomposition for the PAN

image in order to extract the details to be injected into

the MS image to produce the high resolution MS image.

However, a well-designed spatial filtering is often enough

to guarantee high performance [38]. Inside this category, the

generalized Laplacian Pyramid (GLP) framework is commonly

exploited [1], [2]. In particular, it has been demonstrated

that the use of a unique Gaussian low-pass filter with a cut

frequency related to the resolution ratio between PAN and

MS images, R, and decimating by R reaches state-of-the-art

performance [23]. In this case, Gaussian filters are designed to

closely match the MS sensor MTF’s [1], [23]. We will consider

several MTF-GLP approaches in this paper. In particular, the

MTF-GLP with a full scale (FS) regression-based injection

model is considered [39]. Moreover, a MTF-GLP based on

the multiplicative or high-pass modulation injection (HPM)

scheme [40] is exploited with a haze correction (MTF-GLP-

HPM-H) in order to increase the performance [41]. Finally,

a local estimation based on clustering applied to the MTF-

GLP context-based (CBD) approach (C-MTF-GLP-CBD) is

included [42].

Variational optimization-based (VO) techniques define opti-

mization problems to be solved. The relationship between the

PAN image, the original MS image, and the desired (target)

high resolution MS image is established according to a sensor

model. However, the problem that has to be solved is ill-

conditioned, which means that a direct inversion will cause

noise amplification. To mitigate the ill-conditioning, some

kinds of regularization are necessary providing different sub-

classes of approaches. For instance, Bayesian methods can be
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Fig. 3: Collage of the 14 datasets at full resolution belonging to the proposed benchmark (selected bands: red, green, and blue).

First and third rows: upsampled MS images at PAN scale; second and fourth rows: PAN images. Column A: Pl_Hous_Urb

(A1 - A2) and W3_Muni_Urb (A3 - A4); column B: GE_Lond_Urb (B1 - B2) and W3_Muni_Nat (B3 - B4); column

C: W4_Mexi_Urb (C1 - C2) and S7_Napl_Urb (C3 - C4); column D: W4_Mexi_Nat (D1 - D2) and S7_NewY_Mix

(D3 - D4); column E: W2_Miam_Mix (E1 - E2) and GE_Tren_Urb (E3 - E4); column F: W2_Miam_Urb (F1 - F2) and

Pl_Sacr_Mix (F3 - F4); column G: W3_Muni_Mix (G1 - G2) and Pl_Stoc_Urb (G3 - G4). Note that the images in the

collage are intensity stretched to aid the visual inspection. Please, refer to Tab. II for further details about the datasets.

recast into the VO category, where the a priori plays the role of

a regularization term [43]. Sparse representation methods are

another example of approaches into the VO class. In this case,

the idea is to represent the unknown high resolution MS image

as a sparse linear combination of dictionary elements. In this

paper, we will refer to this sub-class using an approach based

on the sparse representation of injected details (SR-D) [44].

The last class is about machine learning (ML) for pan-

sharpening. Early steps in this research field have been moved

in the last decade. These approaches exploit the training by

example paradigm. Thus, we have neural networks that set

their weights in order to optimize the error between their

output and the target image. The divergence between these

latter is measured by a loss function. Due to the absence of

a target (ground-truth) image for the pansharpening problem,

a common assumption is the “invariance among scale” of the

weights to be estimated, thus working at a reduced resolution

(according to Wald’s protocol) to provide labeled data to

address the training phase. In this paper, we will consider

an exemplary case of pansharpening neural network (PNN)

using adaptive tuning schemes (A-PNN-FT) [45]. This method

is used as distributed in the toolbox in [2] with the weights

shared by the authors for the different sensors, i.e., without

re-training the network6.

A more detailed description of the used methods can be

found in [2]. For the sake of brevity, the setting of their

parameters can be found having a look at the default parame-

ters setting in the related MATLAB toolbox distributed to the

community7.

V. EXPERIMENTAL RESULTS

This section is about the description of the experimental

results. The whole set of data (i.e., the 14 reduced resolution

and the 14 full resolution datasets), which will be distributed to

the community, is exploited in this phase. Eight pansharpening

approaches (plus the simple upsampling of the MS image,

EXP) belonging to the four classes (i.e., CS, MRA, VO,

and ML), see Sect. IV, are considered to show some fusion

results. Tables, organized on a sensor basis, are reported using

6It is worth to be remarked that the authors in [2] have distributed models
just for the WorldView-2, the WorldView-3, the IKONOS, and the GeoEye-1
sensors. For other sensors (e.g., SPOT-7 and PHR1B), we do not have pre-
trained networks. In these cases, we decided to use the GeoEye-1 network
exploiting the fine tuning (considered in the A-PNN-FT) to adapt the network
to the new scenario acquired by a different sensor.

7http://openremotesensing.net/knowledgebase/a-new-benchmark-based-
on-recent-advances-in-multispectral-pansharpening-revisiting-pansharpening-
with-classical-and-emerging-pansharpening-methods/
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Pl_Hous_Urb Pl_Sacr_Mix Pl_Stoc_Urb

Q4 SAM [◦] ERGAS Q4 SAM [◦] ERGAS Q4 SAM [◦] ERGAS

GT 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000

EXP 0.8275 2.8486 3.1019 0.7664 4.7144 4.6810 0.7745 5.5523 6.5496

CS
BDSD-PC 0.9153 3.2198 2.2551 0.8190 4.7595 3.7394 0.8907 5.8573 4.8732
GS 0.9037 3.3314 2.4091 0.8007 6.1130 3.8475 0.8737 5.8399 5.2294
GSA 0.9093 3.6262 2.3541 0.8494 4.5020 3.7183 0.8904 5.6674 4.7251

MRA
MTF-GLP-FS 0.9109 3.5738 2.3143 0.8536 4.4885 3.6963 0.8923 5.6010 4.6720
MTF-GLP-HPM-H 0.9325 2.9457 2.0146 0.8859 4.3184 3.3561 0.9234 4.7030 4.2951
C-MTF-GLP-CBD 0.9260 3.0393 2.0767 0.8261 5.2433 4.1629 0.9114 5.0168 4.4031

VO SR-D 0.9444 2.6517 1.7754 0.8939 4.2534 3.1919 0.9347 4.8007 3.7173

ML A-PNN-FT 0.9690 2.1460 1.2898 0.9369 3.0835 2.3277 0.9646 3.9191 2.7862

TABLE III: Performance indexes (Q4, SAM measured in degrees, and ERGAS) computed for the three reduced resolution

PHR1B datasets. Best overall results are shown in boldface.

S7_Napl_Urb S7_NewY_Mix

Q4 SAM [◦] ERGAS Q4 SAM [◦] ERGAS

GT 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000

EXP 0.6603 3.0359 3.0310 0.7284 3.4571 4.5808

CS
BDSD-PC 0.8207 4.3560 3.2872 0.8712 3.3787 4.3722
GS 0.7589 3.0230 2.7992 0.8072 5.6693 4.5825
GSA 0.7760 7.0116 4.1055 0.8742 3.4394 4.5235

MRA
MTF-GLP-FS 0.7925 6.3716 3.7897 0.8804 3.3365 4.3359
MTF-GLP-HPM-H 0.7909 4.1795 3.7359 0.8724 4.4832 4.9883
C-MTF-GLP-CBD 0.8362 3.5275 2.9601 0.8927 3.3683 3.7157

VO SR-D 0.8821 3.0533 2.2931 0.9218 3.2480 2.8705

ML A-PNN-FT 0.9216 2.8259 1.8812 0.9516 2.6790 2.4878

TABLE IV: Performance indexes (Q4, SAM measured in degrees, and ERGAS) computed for the two reduced resolution

SPOT-7 datasets. Best overall results are shown in boldface.

W3_Muni_Mix W3_Muni_Urb W3_Muni_Nat

Q8 SAM [◦] ERGAS Q8 SAM [◦] ERGAS Q8 SAM [◦] ERGAS

GT 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000

EXP 0.6382 6.0261 10.8510 0.6164 7.7873 15.5875 0.5981 4.2291 3.5814

CS
BDSD-PC 0.9322 4.6638 4.1681 0.9241 5.7073 7.4363 0.8073 3.0237 1.9018
GS 0.7889 6.1109 7.0181 0.8126 7.9825 10.6141 0.7124 4.0648 2.6983
GSA 0.9283 4.5476 4.4244 0.9208 5.4690 7.4548 0.8044 3.2656 2.1663

MRA
MTF-GLP-FS 0.9279 4.5296 4.4457 0.9200 5.4407 7.3512 0.8059 3.2340 2.1405
MTF-GLP-HPM-H 0.9333 4.0962 4.1965 0.9251 5.6494 7.1778 0.8074 2.7901 1.7986

C-MTF-GLP-CBD 0.9192 5.2943 4.8486 0.9114 6.2052 8.1904 0.8045 3.1474 2.1637

VO SR-D 0.9016 4.7611 5.3522 0.8913 6.6353 8.3888 0.7846 3.0034 1.9844

ML A-PNN-FT 0.8784 5.0636 5.9190 0.8902 6.2602 8.4805 0.7113 3.7218 2.4970

TABLE V: Performance indexes (Q8, SAM measured in degrees, and ERGAS) computed for the three reduced resolution

WV-3 datasets. Best overall results are shown in boldface.

the classical metrics at reduced resolution (i.e., Q2n, SAM,

and ERGAS) and the HQNR index (including the spectral

distortion index, Dλ, and the spatial distortion index, DS) as

full resolution metric. Sects. V-A and V-B are devoted to the

description of the reduced resolution and full resolution results,

respectively. Finally, Sect. V-C is about the final discussion

of the obtained outcomes, even introducing some synthetic

metrics in order to sum up the overall performance considering

the whole set of data.

A. Reduced Resolution Performance Assessment

Following the procedure described in Sect. III-A1, reduced

resolution datasets are generated starting from the selected full

resolution test cases depicted in Fig. 3. The results are reported

in Tabs. III-VIII.

The first remark is that the results and the related rankings

among the adopted pansharpening approaches are strongly

sensor-dependent and scene-dependent (e.g., showing different

performance from natural to urban scenarios). Indeed, having

a look at the overall quality index Q2n (i.e., Q4 for the four

band datasets and Q8 for the eight band datasets), we can

note that the best method is represented by the A-PNN-FT

(inside the ML class) for both the PHR1B and SPOT-7 sensors.

Instead, the same approach shows low performance for WV-3

data. Furthermore, lower performance are generally reported

when vegetated scenarios are considered with respect to urban

areas, see, e.g., Tab. V column W3_Muni_Nat and Tab. VIII

column W4_Mexi_Nat. Even the presence of large areas

with water bodies can generally decrease the performance,

see Tab. VI column W2_Miam_Mix and Tab. VIII column

W4_Mexi_Nat. This is due to the fact that the blue band

(which plays a crucial rule in these scenarios) is usually much

more complicated to fuse because of the smaller spectral

overlap with the PAN channel. However, both the above-
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W2_Miam_Mix W2_Miam_Urb

Q8 SAM [◦] ERGAS Q8 SAM [◦] ERGAS

GT 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000

EXP 0.5372 10.1668 9.2066 0.5457 9.5731 9.6275

CS
BDSD-PC 0.8625 9.1420 5.4843 0.9041 8.9339 4.8079

GS 0.7368 10.8601 7.0942 0.8089 9.3340 6.5674
GSA 0.8425 8.9703 5.7451 0.8862 9.4191 5.1924

MRA
MTF-GLP-FS 0.8417 8.9726 5.7485 0.8856 9.3134 5.1692
MTF-GLP-HPM-H 0.8584 8.4659 5.4797 0.8946 8.5635 5.0204
C-MTF-GLP-CBD 0.8390 10.3918 6.2157 0.8814 9.4683 5.3149

VO SR-D 0.8229 9.1678 5.9910 0.8676 8.8079 5.5048

ML A-PNN-FT 0.8509 7.5701 5.5486 0.8849 7.3373 5.1656

TABLE VI: Performance indexes (Q8, SAM measured in degrees, and ERGAS) computed for the two reduced resolution

WV-2 datasets. Best overall results are shown in boldface.

GE_Tren_Urb GE_Lond_Urb

Q4 SAM [◦] ERGAS Q4 SAM [◦] ERGAS

GT 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000

EXP 0.5828 7.3827 10.2034 0.5924 4.0029 10.8015

CS
BDSD-PC 0.9054 6.7506 5.1234 0.9191 2.8032 5.1443
GS 0.8419 7.0974 6.6726 0.8014 3.9220 7.1635
GSA 0.8988 6.8567 5.2663 0.9142 2.7727 5.2407

MRA
MTF-GLP-FS 0.9033 6.8017 5.1500 0.9200 2.7647 5.0983
MTF-GLP-HPM-H 0.8966 5.6987 5.0639 0.9189 3.0366 5.0510

C-MTF-GLP-CBD 0.9026 6.5620 5.1373 0.9144 3.7263 7.6096

VO SR-D 0.8915 6.0835 5.3648 0.8987 2.9751 5.5659

ML A-PNN-FT 0.8859 4.8576 5.4296 0.8850 2.7801 5.9491

TABLE VII: Performance indexes (Q4, SAM measured in degrees, and ERGAS) computed for the two reduced resolution

GE-1 datasets. Best overall results are shown in boldface.

W4_Mexi_Urb W4_Mexi_Nat

Q4 SAM [◦] ERGAS Q4 SAM [◦] ERGAS

GT 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000

EXP 0.5501 6.8951 8.2120 0.7274 2.1751 2.8821

CS
BDSD-PC 0.9237 5.6125 3.8415 0.8964 2.0565 1.4891
GS 0.8547 6.4392 5.1652 0.8346 2.3298 1.7905
GSA 0.9192 5.9993 3.9933 0.8977 2.0034 1.4845

MRA
MTF-GLP-FS 0.9232 5.9122 3.9070 0.9039 1.9916 1.4669

MTF-GLP-HPM-H 0.9091 5.2514 3.9181 0.8928 1.9729 1.5576
C-MTF-GLP-CBD 0.9200 5.5694 3.8782 0.9006 1.9707 1.5010

VO SR-D 0.9047 5.4267 4.1513 0.8895 1.9127 1.5768

ML A-PNN-FT 0.8838 5.0580 4.5679 0.8820 1.8233 1.6688

TABLE VIII: Performance indexes (Q4, SAM measured in degrees, and ERGAS) computed for the two reduced resolution

WV-4 datasets. Best overall results are shown in boldface.

mentioned scenarios (with natural features) require much more

attention in future researches. Indeed, several pansharpening

algorithms have been widely tested on challenging urban

scenarios, but many of them have not been designed to work

on mixed or vegetated scenarios. This benchmark will surely

help to fill this gap in the next years, allowing researches

focused on the fusion of natural scenarios (where the control

of the spectral distortion is a key point).

The rest of this subsection will be devoted to the description

of the results for each acquisition sensor. Table III reports the

outcomes for the three test cases using the PHR1B sensor.

Houston and Stockholm are both urban, while Sacramento is

a mixed scenario consisting of three main features: buildings,

trees and meadows, and a river. CS approaches show generally

lower performance than the other methods, in particular if

we focus on the Sacramento dataset. Indeed, in this case, CS

techniques are penalized by a greater spectral distortion. MRA,

VO, and ML methods generally get better performance for

all the three test cases. The A-PNN-FT is always the best

approach followed by the SR-D and the MTF-GLP-HPM-H.

This ranking is the same for all the test cases.

The same findings as in the PHR1B test cases can be

reported for the two SPOT-7 test cases in Tab. IV. These

datasets are quite similar, fully urban for Naples and a mixed

scenario (mainly urban with a water body) for New York.

Thus, the results are less scene-dependent. The ranking is the

A-PNN-FT method followed by the SR-D approach, again.

The best MRA technique is the C-MTF-GLP-CBD instead of

the MTF-GLP-HPM-H, thus getting the third position in the

ranking.

The fusion of WV-3 data is a very interesting challenge ac-

counting for MS images with eight spectral bands in the visible

near-infrared spectrum and a very high spatial resolution. The

three test cases in Tab. V range from urban to natural scenarios
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trying to show several combinations of landscapes. Even in this

case, the performance does not seem sensitive to the change

of the acquired scenario. The best approaches can be found

in the MRA and CS classes. Poorer performance is pointed

out by using ML (A-PNN-FT) and VO (SR-D) techniques.

MTF-GLP-HPM-H is the best method closely followed by the

BDSD-PC technique. MTF-GLP-FS and GSA also represent

good solutions to the problem of fusing WV-3 data.

BDSD-PC is the best approach for both the WV-2 test

cases reported in Tab. VI. MTF-GLP-HPM-H always gets the

second position in the ranking, while SR-D is one of the

worst approaches with the overall performance index, Q8,

only better than the EXP (i.e., just an upsampling with a

polynomial interpolator) and the dated GS approach. The A-

PNN-FT approach works better than for the WV-3 test cases,

but the performance is still far from some state-of-the-art CS

and MRA methods.

MTF-GLP-FS and BDSD-PC are the best approaches for

the GE-1 datasets, as shown in Tab. VII. These latter are two

urban datasets. The particular feature of the GE_Lond_Urb

dataset is that broad shadows are present due to the particular

acquisition conditions. SR-D works better than in the previous

cases fusing eight bands datasets (WV-2 and WV-3 datasets),

but, again, state-of-the-art CS and MRA approaches get better

performance. More issues are pointed out by exploiting A-

PNN-FT.

Finally, Tab. VIII reports the outcomes for the two WV-4

test cases. Again, BDSD-PC is the best approach when the

urban dataset is considered. Instead, for the dataset consisting

of natural features, MRA approaches show a better overall per-

formance thanks to a greater spectral consistency. In this case,

the best approach is represented by MTF-GLP-FS. Again, SR-

D and A-PNN-FT get lower performance, comparable to the

ones obtained on the GE-1 test cases.

B. Full Resolution Performance Assessment

The overall performance for the full resolution test cases

is measured by the HQNR index. As in the case of the

assessment at reduced resolution, we can easily note that

the results are often sensor-dependent and lower performance

can be observed when vegetated scenarios are considered,

see Tab. XI column W3_Muni_Nat and Tab. XIV column

W4_Mexi_Nat. Moreover, for the full resolution test cases,

we can observe a slight variability of the results depending on

the considered landscape. The last general remark is about CS

approaches. Indeed, they get always quite low performance

(even worse than the EXP approach). These results are driven

by the introduction of a (often relevant) spectral distortion.

Indeed, considering very high resolution datasets as the ones

at full resolution, the spectral distortion should be kept under

control. Furthermore, the ability of CS methods in reducing

the spatial distortion is not able to compensate the spectral

distortion issue, thus causing low performance. However,

future researches should go in the direction of providing more

reliable indexes at full resolution, in particular measuring the

spatial distortion, thus allowing higher performance of CS

approaches from a numerical point of view. Anyway, the best

approaches always belong to the MRA, VO, and ML classes,

representing the main difference with respect to the assessment

at reduced resolution (where CS methods, as the state-of-the-

art BDSD-PC, can reach comparable, or, in some cases, higher,

performance than MRA, VO, and ML methods).

Tab. IX shows the outcomes for the three PHR1B datasets.

The best approach is always the SR-D followed by the A-PNN-

FT. The best MRA approach is the MTF-GLP-HPM-H, thus

obtaining the third position in the ranking. These outcomes

mainly corroborate the ones at reduced resolution. Moreover,

comparable results are obtained for the SPOT-7 test cases in

Tab. X. The best approach is the SR-D followed by the A-

PNN-FT. The best MRA method is the C-MTF-GLP-CBD,

corroborating the results at reduced resolution, again. A greater

variability in the rankings in Tab. XI can be remarked, where

the WV-3 outcomes are reported. In fact, the C-MTF-GLP-

CBD is the best approach in the case of W3_Muni_Mix and

W3_Muni_Urb datasets, and the SR-D is the best technique in

the W3_Muni_Nat test case. The A-PNN-FT also shows high

performance for all the three test cases. The WV-2 outcomes

are aligned with the WV-3 ones, see Tab. XII. Even in these

test cases, the best results are obtained by the SR-D (always the

best approach), the A-PNN-FT, and the C-MTF-GLP-CBD.

It is worth to be remarked that context-based approaches are

favorites when we deal with the fusion of very high resolution

images, as the ones at full resolution, thus justifying higher

performance of the C-MTF-GLP-CBD in the MRA class

with respect to the results at reduced resolution. Tabs. XIII

and XIV report the results for the full resolution GE-1 and

WorldView-4 datasets, respectively. MRA approaches get the

best performance for both the GE-1 datasets and for the

W4_Mexi_Urb dataset. The MTF-GLP-HPM-H is the best

approach for the GE_Tren_Urb and the W4_Mexi_Urb test

cases. Instead, the C-MTF-GLP-CBD is the best method when

we fuse data coming from the GE_Lond_Urb dataset. A-

PNN-FT and SR-D get good overall performance ranking just

after the MRA approaches. Finally, for the W4_Mexi_Nat

dataset, the best method is the A-PNN-FT followed by the

SR-D and the MTF-GLP-HPM-H approaches.

Finally, two exemplary test cases have been reported in

Figs. 4 and 5, respectively. The former is about the fusion

of Airbus data, in particular considering the Pl_Sacr_Mix

dataset. The latter is about the combination of Maxar data, in

particular considering the W2_Miam_Mix dataset. Only some

close-ups are depicted in order to ease a visual inspection. To-

gether with the upsampled MS and the original PAN products,

the pansharpened images of all the considered approaches have

been presented. The general agreement between the depicted

true color fused images and the numerical results in Tabs. IX

and XII, respectively, can easily be remarked.

C. Discussion

A general discussion of the results obtained at reduced

resolution and at full resolution exploiting all the defined test

cases is drawn in this subsection. First of all, we present some

synthetic indexes that are able to capture the general trend over

the test cases, see Tab. XV. In greater details, we propose the
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Pl_Hous_Urb Pl_Sacr_Mix Pl_Stoc_Urb

Dλ DS HQNR Dλ DS HQNR Dλ DS HQNR

EXP 0.0174 0.1011 0.8833 0.0331 0.0660 0.9030 0.0144 0.1048 0.8824

CS
BDSD-PC 0.0597 0.1362 0.8122 0.1280 0.1656 0.7276 0.0496 0.1182 0.8380
GS 0.1090 0.1132 0.7901 0.1670 0.1453 0.7120 0.0952 0.0886 0.8246
GSA 0.0721 0.1517 0.7871 0.0952 0.1901 0.7328 0.0567 0.1501 0.8018

MRA
MTF-GLP-FS 0.0356 0.1292 0.8398 0.0460 0.1553 0.8058 0.0268 0.1252 0.8514
MTF-GLP-HPM-H 0.0201 0.0932 0.8886 0.0346 0.1151 0.8543 0.0156 0.0821 0.9036
C-MTF-GLP-CBD 0.0293 0.1210 0.8532 0.0490 0.1669 0.7923 0.0189 0.0990 0.8840

VO SR-D 0.0074 0.0172 0.9755 0.0241 0.0278 0.9487 0.0048 0.0059 0.9893

ML A-PNN-FT 0.0235 0.0692 0.9089 0.0360 0.0717 0.8948 0.0181 0.0622 0.9209

TABLE IX: Performance indexes (Dλ, DS , and HQNR) computed for the three full resolution PHR1B datasets. Best overall

results are shown in boldface.

S7_Napl_Urb S7_NewY_Mix

Dλ DS HQNR Dλ DS HQNR

EXP 0.0181 0.1819 0.8033 0.0309 0.1450 0.8286

CS
BDSD-PC 0.0498 0.1753 0.7836 0.0967 0.1966 0.7258
GS 0.1885 0.0512 0.7700 0.2508 0.1824 0.6126
GSA 0.0766 0.1874 0.7503 0.1539 0.2251 0.6557

MRA
MTF-GLP-FS 0.0260 0.1375 0.8401 0.0406 0.1684 0.7978
MTF-GLP-HPM-H 0.0347 0.1473 0.8232 0.0468 0.1529 0.8074
C-MTF-GLP-CBD 0.0200 0.1007 0.8813 0.0406 0.1401 0.8250

VO SR-D 0.0057 0.0384 0.9561 0.0242 0.0087 0.9673

ML A-PNN-FT 0.0337 0.1177 0.8526 0.0691 0.1205 0.8187

TABLE X: Performance indexes (Dλ, DS , and HQNR) computed for the two full resolution SPOT-7 datasets. Best overall

results are shown in boldface.

W3_Muni_Mix W3_Muni_Urb W3_Muni_Nat

Dλ DS HQNR Dλ DS HQNR Dλ DS HQNR

EXP 0.0588 0.1082 0.8394 0.0677 0.1011 0.8381 0.1198 0.1754 0.7258

CS
BDSD-PC 0.1787 0.0299 0.7968 0.1933 0.0168 0.7931 0.2390 0.1137 0.6744
GS 0.1749 0.0633 0.7729 0.1426 0.0613 0.8048 0.3192 0.1164 0.6015
GSA 0.1412 0.0521 0.8141 0.1691 0.0505 0.7890 0.1859 0.1634 0.6811

MRA
MTF-GLP-FS 0.0369 0.0450 0.9197 0.0433 0.0463 0.9124 0.0967 0.1622 0.7568
MTF-GLP-HPM-H 0.0370 0.0583 0.9069 0.0528 0.0954 0.8569 0.0958 0.1900 0.7324
C-MTF-GLP-CBD 0.0423 0.0308 0.9282 0.0506 0.0167 0.9336 0.1000 0.1757 0.7418

VO SR-D 0.0259 0.0500 0.9254 0.0331 0.0625 0.9065 0.0698 0.1420 0.7981

ML A-PNN-FT 0.0731 0.0380 0.8918 0.0685 0.0171 0.9156 0.2026 0.0464 0.7603

TABLE XI: Performance indexes (Dλ, DS , and HQNR) computed for the three full resolution WV-3 datasets. Best overall

results are shown in boldface.

use of the mean operator, the standard deviation, the median

operator, and the median absolute deviation indexes calculated

on the overall quality index, Q2n, at reduced resolution and

on the HQNR index at full resolution. The mean and the

median operators indicate the average performance reached

by a pansharpening algorithm considering all the test cases.

Instead, deviation indexes from the mean and the median

operators are represented by the standard deviation and the

median absolute deviation, respectively. We prefer to use both

the mean and the median thanks to the different sensitivity

with respect to the outliers (e.g., the median guarantees that

the final outcome is less sensitive to a quite high or low result

obtained by a pansharpening algorithm on a single test case).

Thus, having a look at Tab. XV column Reduced Resolution,

which sums up the results at reduced resolution, we can

remark that all the pansharpening algorithms get comparable

performance (except for the dated GS approach and the EXP)

accounting for both the mean and the median operators. The

best result is obtained by the A-PNN-FT if the mean operator

is considered. Instead, the median operator indicates the C-

MTF-GLP-CBD as the best pansharpening approach. This is

due to the fact that the A-PNN-FT method represents the best

approach, showing a high gap with the other methods, on

the PHR1B and the SPOT-7 datasets. Thus, these results can

be viewed as outliers influencing the mean operator. Instead,

using the median operator, this influence is mitigated and the

best approach is represented by an MRA approach (C-MTF-

GLP-CBD) that generally shows better performance than the

A-PNN-FT (see, e.g., the WV-3, the WV-4, and the GE-1 test

cases).

The overall performance for the full resolution test cases

is measured by the HQNR index. The first remark is about

CS approaches. Indeed, they show low performance, even

worse than the EXP approach, as measured by the mean

and the median operators. These results have already been

pointed out and justified in the previous subsection. Thus, the

best approaches belong to the MRA, VO, and ML classes.

In particular, the SR-D is clearly the best algorithm at full
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W2_Miam_Mix W2_Miam_Urb

Dλ DS HQNR Dλ DS HQNR

EXP 0.0683 0.0447 0.8900 0.0526 0.0636 0.8871

CS
BDSD-PC 0.1918 0.0434 0.7731 0.1457 0.0532 0.8088
GS 0.1518 0.0992 0.7641 0.1219 0.0811 0.8068
GSA 0.1298 0.0825 0.7984 0.0862 0.0627 0.8566

MRA
MTF-GLP-FS 0.0487 0.0879 0.8677 0.0296 0.0542 0.9178
MTF-GLP-HPM-H 0.0520 0.1218 0.8325 0.0289 0.0682 0.9049
C-MTF-GLP-CBD 0.0510 0.0645 0.8878 0.0336 0.0302 0.9372

VO SR-D 0.0315 0.0477 0.9223 0.0183 0.0445 0.9380

ML A-PNN-FT 0.0611 0.0222 0.9181 0.0457 0.0325 0.9233

TABLE XII: Performance indexes (Dλ, DS , and HQNR) computed for the two full resolution WV-2 datasets. Best overall

results are shown in boldface.

GE_Tren_Urb GE_Lond_Urb

Dλ DS HQNR Dλ DS HQNR

EXP 0.0875 0.0680 0.8505 0.1116 0.1089 0.7916

CS
BDSD-PC 0.2204 0.0237 0.7611 0.2648 0.0449 0.7022
GS 0.1830 0.0504 0.7759 0.1986 0.0758 0.7406
GSA 0.1545 0.1058 0.7561 0.2348 0.0849 0.7002

MRA
MTF-GLP-FS 0.0490 0.0503 0.9032 0.0705 0.0551 0.8784
MTF-GLP-HPM-H 0.0478 0.0191 0.9339 0.0689 0.0532 0.8816
C-MTF-GLP-CBD 0.0602 0.0498 0.8930 0.0859 0.0260 0.8903

VO SR-D 0.0224 0.1207 0.8596 0.0386 0.0893 0.8755

ML A-PNN-FT 0.0624 0.0388 0.9013 0.0816 0.0545 0.8684

TABLE XIII: Performance indexes (Dλ, DS , and HQNR) computed for the two full resolution GE-1 datasets. Best overall

results are shown in boldface.

W4_Mexi_Urb W4_Mexi_Nat

Dλ DS HQNR Dλ DS HQNR

EXP 0.0881 0.1041 0.8170 0.1230 0.1376 0.7564

CS
BDSD-PC 0.2032 0.0195 0.7813 0.2371 0.1552 0.6445
GS 0.1742 0.0474 0.7867 0.2830 0.1360 0.6194
GSA 0.1441 0.0850 0.7831 0.2157 0.1706 0.6505

MRA
MTF-GLP-FS 0.0466 0.0501 0.9056 0.0980 0.1540 0.7631
MTF-GLP-HPM-H 0.0467 0.0306 0.9242 0.0979 0.1090 0.8038
C-MTF-GLP-CBD 0.0590 0.0323 0.9107 0.1010 0.1271 0.7847

VO SR-D 0.0210 0.1181 0.8634 0.0658 0.0842 0.8556

ML A-PNN-FT 0.0598 0.0583 0.8854 0.0728 0.0343 0.8954

TABLE XIV: Performance indexes (Dλ, DS , and HQNR) computed for the two full resolution WV-4 datasets. Best overall

results are shown in boldface.

resolution (confirmed by both the mean and the median

operators) followed by A-PNN-FT. Afterwards, we have the

MRA approaches (with performance very close to each other)

leaded by the C-MTF-GLP-CBD. A final remark is related

to the deviation indexes. In particular, as already pointed

out in the previous subsections, we have a variability of the

results that depends on the sensor used to capture the scene.

This is measured by values of both the deviation indexes

that are clearly different from zero. Moreover, for the full

resolution test cases, we can observe a slight increase of the

variability with respect to the outcomes at reduced resolution,

as measured by the Q2n index.

A last remark is about the computational analysis. In

Tab. XVI, the execution times are calculated using a work-

station equipped with an Intel R©CoreTMI7 3.2GHz processor.

The analysis is performed by varying the fused image size and

the number of the spectral bands of the MS image (either 4

or 8 bands). Tab. XVI enables us to see how the algorithm

performance varying along the data size to be fused. It is

clear that VO approaches (i.e., the SR-D) are the more time

consuming followed by ML methods (i.e., the A-PNN-FT)

and CS/MRA context-based techniques (as the C-MTF-GLP-

CBD). For more details, the interesting readers can refer to [2].

VI. SUMMARY

This work focuses on the critical pre-processing phase and

on the quality assessment protocols for pansharpening. In

particular, the best practices for addressing the preparation

of reduced resolution datasets following Wald’s protocol are

drawn. Furthermore, both the HQNR protocol and the way

to prepare the crucial (for a proper assessment of pansharp-

ening algorithms) upsampled MS image at full resolution

are detailed. Software in MATLAB will be shared with the

scientific community to address both the assessments in the

proper way, preparing reduced resolution datasets and aligned

full resolution set of data. Moreover, 14 reduced resolution

and 14 full resolution datasets are presented. These latter

have been acquired by several well-established sensors for
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4: Close-ups of fused results at full resolution for the Pl_Sacr_Mix dataset (selected bands: red, green, and blue). (a)

EXP; (b) PAN; (c) BDSD-PC; (d) GS; (e) GSA; (f) MTF-GLP-FS; (g) MTF-GLP-HPM-H; (h) C-MTF-GLP-CBD; (i) SR-D;

(j) A-PNN-FT.

pansharpening (i.e., WorldView-2, WorldView-3, WorldView-

4, GeoEye-1, Pléiades, and SPOT-7). These datasets will be

distributed to the community to aid reproducible science. The

experimental result section has shown the outcomes of some

state-of-the-art pansharpening approaches on the presented

reduced resolution and full resolution datasets. Some synthetic

indexes have been proposed to sum up the obtained results for

an overall performance assessment. Finally, a computational

analysis is reported to complete the comparison of the selected

pansharpening approaches. The hope of the authors is that

this work together with the survey [2] and companion code

available at8 can provide the community with a complete

benchmarking suite for performing and favoring reproducible

research on the whole pansharpening chain, from dataset

8http://openremotesensing.net/knowledgebase/a-new-benchmark-based-
on-recent-advances-in-multispectral-pansharpening-revisiting-pansharpening-
with-classical-and-emerging-pansharpening-methods/

creation to algorithm comparison.
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