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Abstract—The large collections of datasets for researchers
working on the Simultaneous Localization and Mapping problem
are mostly collected from sensors such as wheel encoders and
laser range finders mounted on ground robots. The recent grow-
ing interest in doing visual pose estimation with cameras mounted
on micro-aerial vehicles however has made these datasets less
useful. In this paper, we describe our work in creating new
datasets collected from a sensor suite mounted on a quadrotor
platform. Our sensor suite includes a forward looking camera, a
downward looking camera, an inertial measurement unit and a
Vicon system for groundtruth. We propose the use our datasets
as benchmarking tools for future works on visual pose estimation
for micro-aerial vehicles. We also show examples of how the
datasets could be used for benchmarking visual pose estimation
algorithms.

Index Terms—Micro-Aerial Vehicles, Quadrotor, Visual
SLAM, Benchmarking Tool.

I. INTRODUCTION

Over the past two decades, the problem of Simultaneous

Localization and Mapping (SLAM) for ground robots has been

actively researched on by a large number of researchers [5]–

[7]. In many cases, the most convenient way to assess a SLAM

algorithm would be to test it on offline datasets collected

from a sensor suite mounted on the robot which was driven

through the environment. This approach has made it easier

for researchers to focus on algorithm developments while

eliminating hardware and data synchronization issues. Robot

trajectories and maps produced from the SLAM algorithms are

usually benchmarked against architectural blueprints for indoor

environments or global positioning system (GPS) for outdoor

environments. Consequently, a large number of repositories

hosting these offline datasets could be found [1]–[3]. The

most common sensor suite consists of the inertial measurement

units (IMUs), wheel encoders, laser range finders, ultra-sonic

sensors, and GPS for outdoor environments.

In the recent years, the research focus of SLAM is grad-

ually moving towards using cameras as the main sensor [9],

[10]. This is largely due to the fact that the 2D laser range

finder, which has been the most popular choice for doing

SLAM on ground robots, could only provide very limited

information from its planar point cloud readings. In contrast,

images obtained from cameras could be used to extract 3D

information of the environment, and more importantly, rich

information given by the color and pixel intensity could also

be used for scene recognition which has been proven to be

more superior for the detection of loop closure opportunities

[8]. In even more recent years, there is a strong growing

interest among various research groups on using Micro-Aerial

Vehicles (MAVs) for autonomous navigation in challenging

environments due to its locomotive advantages over ground

robots. Higher maneuverability and limited payload of flying

robots imply that cameras would be a nature choice for its

main sensor.

However, the paradigm shift in the robotics platforms and

sensors means that the large collections of offline datasets,

which are available in many repositories, for SLAM would no

longer be useful. Hence, in this paper we describe our work on

creating datasets collected from a sensor suite mounted on a

MAV as a benchmarking tool for MAV visual pose estimation.

Our sensor suite includes a forward looking and a downward

looking camera, an IMU unit with 3 axis gyroscopes, 3 axis

accelerometers and a magnetometer, and a Vicon system.

Pose measurements from the Vicon system are used as the

groundtruth which is very useful for benchmarking visual

pose estimation of a MAV flying in indoor environments

where it would be impossible to justify using 2D architectural

blueprints. In addition, ARToolKitPlus markers [14], which can

be used to estimate the camera poses, are placed on known

positions on the ground and the flightpaths are choreographed

to ensure that the markers are always within the line-of-sight

of the downward looking camera.

The paper is structured as follows. In Section II, we describe

our MAV platform and the sensor suite used for data collection

as well as the environment setup. In Section III, we describe

the procedures for synchronizing the readings collected from

different sensors. We will also discuss about the camera

calibration procedures. In Section IV, we describe the content

of the benchmarking datasets and provide information on how

to obtain a copy of it. Finally, in Section V, we show examples

of the usage of our dataset to quantify existing visual pose

estimation algorithms such as the 5-point algorithm [15], 4-

point algorithm [18] and ARToolKitPlus [14] compared to the

groundtruth from the Vicon system.

II. MAV PLATFORM AND ENVIRONMENT SETUP

Figure 1(a) shows a “Pelican” quadrotor from Ascend-

ing Technologies 1 which we used for data collection. The

quadrotor has an inbuilt MEMS IMU equipped with 3 axis

gyroscopes, 3 axis accelerometers and a magnetometer which

respectively gives the measurements of the attitude rates,

accelerations and absolute heading. A filter within the IMU

1http://www.asctec.de/
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Fig. 1. (a) The “Pelican” quadrotor equipped with a forward looking camera, a
downward looking camera, an IMU, and three reflective markers for the Vicon
system. (b) Group of ARToolKitPLus markers placed in known location.

fuses the attitude rates, accelerations and heading at a rate of

1KHz to give absolute attitude measurements.

For our objective of visual pose estimation, we added

a forward looking and a downward looking camera. Both

cameras are PointGrey USB-Firefly 2 cameras which run at

a maximum framerate of 30 frames per second. The forward

looking camera is equipped with a 6mm CS-mount lens with

80◦ field of view and the downward looking camera has a

fisheye lens with 150◦ field of view to increase the coverage.

The IMU and the cameras are connected to an onboard

computer providing UART and USB interfaces. This computer

is equipped with a 1.6GHz Intel Atom processor and 1GB

RAM and thus is able to run standard x86 operating systems

such as Ubuntu 9.10 in our case.

For data-capturing, we make use of the ROS [4] framework.

We wrote nodes to receive IMU data over a serial interface

at 200Hz as well as for capturing images from the cameras.

These nodes publish IMU- and image-messages that are logged

into binary “bag”-files onto a USB stick using the ROS-tool

“rosbag” and are later exported via scripts to matlab-files.

Furthermore, to have a preview, images are streamed at lower

quality via a wireless 802.11n connection to a laptop serving

as ground station.

The quadrotor was flown in a 10m×10m×10m indoor

environment equipped with eight Vicon cameras mounted on

the four sides of the ceiling walls. Three reflective markers

are mounted asymmetrically and rigidly onto the quadrotor for

the motion capture. Pose estimation from the Vicon system is

performed at a separate computer system at a precise frequency

of 200Hz. Furthermore, a group of ARToolkit markers is

placed on the floor at known locations with respect to the Vicon

coordinate origin. Figure 1(b) shows the group of ARToolK-

itPLus markers used in our setup. The ARToolKitPLus was

originally created for tracking camera poses in the augmented

reality applications, but is used in our experimental setup for

enhancing features on the floor for the images.

III. DATA SYNCHRONIZATION AND CAMERA

CALIBRATION

A. Data Synchronization

The camera images, Vicon and IMU data are not useful

for benchmarking visual pose estimation algorithms on MAVs

2http://www.ptgrey.com/products/fireflymv/index.asp

unless they are perfectly synchronized. There are no synchro-

nization issues between the camera and IMU since these data

were captured on the same computer evaluating embedded

timestamps from the respective hardware. Synchronization

between the Vicon system and IMU/camera poses a problem

since these data were collected on different computers. The

IMU and Vicon data however could not be synchronized by

direct comparison because the IMU measures the attitude rates

in the body frame but the Vicon system measures the Euler

angles with respect to its frame of reference. We therefore

took the advantage of the precise sampling rate of the Vicon

system to overcome this problem. We would differentiate the

Euler angles and transform them into the body frame. Equation

1 shows the relationship between the attitude rates (p, q, r)

in the body frame and the Euler angles (φ, θ, ψ). fv is the

frequency of the Vicon system.
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Figure 2 shows the IMU and Vicon roll and pitch angular

rates in the body frame. Both data are clearly out of phase

from each other. To synchronize the IMU and Vicon data, we

create distinctive attitude rate profiles before and after flying

the quadrotor by manually rotating the quadrotor around the

roll and pitch directions respectively. We would then do a

cross-correlation between the two data to find the time-shift

between them. Figure 3 shows the correlation coefficients plot

for both roll and pitch angular rates.

Fig. 2. Unsynchronized Vicon and IMU roll and pitch angular rates in the
body frame.

Finally, we generate the synchronized data by compensating

for the time-shift. An important factor to note is that cross-

correlation in the discrete domain requires the signals to have

the same sampling interval. We ensure that both the Vicon

and IMU data have the same sampling intervals by cubic spline

interpolation. Figure 4 shows the IMU and Vicon roll and pitch

angular rates after synchronization. It is interesting to note

that the cross-correlation done for both roll and pitch angular

rates also results with a synchronization of the yaw angular

rates as shown in Figure 5. This shows the accuracy of our

synchronization method.

B. Camera Calibration

The first step to many visual algorithms is to find the

camera intrinsic value and distortion coefficients. We have to



Fig. 3. Cross-correlation factors for unsynchronized roll and pitch body
rates. The time-shift between two signals corresponds to the highest positive
correlation.

Fig. 4. IMU and Vicon roll and pitch angular rates after time synchronization.

Fig. 5. IMU and Vicon yaw angular rates after time synchronization.

use two different camera calibration methods for the 6mm CS-

mount lens and the fisheye lens due to the difference in the

camera models. The “Bouguet Camera Calibration Toolbox”

[11] and “Scaramuzza Omni-directional Camera Calibration

Toolbox” [12], [13] were used to calibrate the 6mm CS-mount

lens and the fisheye lens respectively. Both toolboxes provide

functions to undistort the images after calibration. Figures 6

and 7 show examples of the calibration images before and

after undistortion. It should be noted that the camera intrinsic

values are not explicit results from the “Scaramuzza Omni-

directional Camera Calibration Toolbox” for the fisheye lens.

It must be computed from Equation 2 after the calibration

and undistortion processes. sf is the zoom factor specified

by the user during the undistortion process. The borders of an

undistorted image usually contains artifacts, and sf determines

the size of these borders to be removed after the undistortion

process. iw is the image width, and iwc and ihc are the image

center coordinates.

Fig. 6. Images from downward looking camera before and after undistortion.

Fig. 7. Images from forward looking camera before and after undistortion.

K =
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The transformation matrix quadTcam that relates the camera

frame to the quadrotor body frame in the Vicon system must be

known for accurate comparison of any visual pose estimation

with the Vicon system groundtruth. We made use of the

Vicon system to find out quadTcam since physical measure-

ments will not give satisfactory results. Three Vicon reflective

markers were fixed onto the image calibration board during

the calibration process and this gives us the transformation
V iconTcalib that relates the calibration board frame to the Vicon

frame. The reflective markers on the quadrotor body gives us

the transformation V iconTquad that relates the quadrotor body

frame to the Vicon frame. The transformation matrix calibTcam
can be obtained from the camera extrinsic values after the

camera calibration and hence we are able to compute quadTcam
from Equation 3.

quadTcam = inv(V iconTquad)
V iconTcalib

calibTcam (3)

IV. BENCHMARKING DATASET PACKAGE

Five synchronized datasets - 1LoopDown, 2LoopsDown,

3LoopsDown, hoveringDown and randomFront are created

from this work. These datasets are collected from the quadrotor

flying 1, 2 and 3 loop sequences, hovering within a space of

approximately 1m×1m×1m, and flying randomly within the

sight of the Vicon system. These datasets consist of images

from the camera, accelerations, attitude rates, absolute angles

and absolute headings from the IMU, and groundtruth from

the Vicon system with their respective timestamps. Images

from the first 4 datasets are from the downward looking

camera and images from the last dataset are from the forward

looking camera. Synchronized datasets for the calibrations of

the forward and downward cameras are also provided.

We propose to measure the quality of any pose estimation

algorithm with cosine similarity. The quality of each axis is



measured separately, and the measurements for each of these

axes could be obtained from the pose estimation algorithm

and groundtruth as n-dimensional vectors denoted by E and

G. The cosine similarity α is given by Equation 4 and has a

range of [−1 1] when the estimates exactly disagree or match

the groundtruth. The matlab script that computes the cosine

similarity is provided. Our datasets are available for download

on http://projects.asl.ethz.ch/sfly/doku.php?id=mav datasets.

α =
E.G

‖E‖ ‖G‖
(4)

V. POSE ESTIMATION WITH DATASET

A. Visual Odometry from the 5-point Algorithm

Fig. 8. Comparison of 5-point algorithm measurements to ground truth. The
plots show roll, pitch, yaw, x, y, z values for 120 keyframes extracted from
the 1LoopDown dataset. The high α value for yaw measurements shows that
it is very accurate.

In this example, we computed the visual odometry using

the 5-point algorithm for 120 keyframes extracted from the

1LoopDown dataset and compared it to the ground truth. First,

we extracted the SIFT features [17] in all the keyframes and

performed feature matching for each consecutive keyframe

pair. Next, we computed the essential matrix using the 5-point

algorithm [15] for each keyframe pair. Finally, the rotation

matrix R and translation vector t that relates each image pair

are extracted from the essential matrix. The RANSAC [16]

algorithm is used for a more robust estimation of the essential

matrix.

Figure 8 shows the comparison of the rotation and trans-

lation values. Each subplot shows the 5-point algorithm mea-

surement (blue graphs) against the groundtruth measurement

(black graphs). The translation vector t from both the 5-point

Fig. 9. Global trajectories from the 5-point algorithm (red dotted graph)
and groundtruth (black graph) in the top view. The blue graph is the global
trajectory computed with yaw values from the 5-point algorithm and remaining
values from groundtruth.

algorithm and the groundtruth are normalized to unit length for

better comparison. The α value for each axis is also computed.

It is immediately visible from the plot and α value that the

yaw measurements are most accurate. The accuracy of the yaw

angle estimated by the 5-point algorithm can be explained by

the downward looking camera where the yaw rotation is an in-

plane rotation. The roll measurements has the lowest α value

and therefore least accurate. The other measurements show a

similar trend with the ground truth but are not exact.

Figure 9 shows the global trajectories from the 5-point

algorithm (red dotted graph) and the groundtruth (black graph)

in top view. The pair-wise transformations from the 5-point

algorithm are concatenated to get the global trajectory. We

scaled the translation vectors t with the groundtruth scale since

we are only able to recover the relative scale from the 5-point

algorithm. It can be seen that the global trajectory from the

5-point algorithm has a similar shape as the ground truth, but

the length in the x and y directions are much shorter due to

inaccuracy in the pose estimation. The blue graph shows the

global trajectory computed with yaw values from the 5-point

algorithm and remaining values from the groundtruth. This

trajectory is very similar to the groundtruth because the yaw

values from the 5-point algorithm are very accurate.

B. Visual Odometry from the 4-point Algorithm

Similar to the 5-point algorithm example, in this example

we extracted 120 keyframes from the 1LoopDown dataset,

and extracted SIFT matches [17] for each consecutive pair

of keyframes. Next, we computed the homography for each

consecutive pair of keyframes. For robust estimation, we used

the 4-point RANSAC algorithm [16] to eliminate outliers

followed by the Direct Linear Transformation algorithm [19]

to estimate the homography with all the inliers. The relative

pose (R and t) between each consecutive pair of keyframes is

obtained by decomposing the homography [18]. This however

gives 4 solutions where 2 are physically impossible and could



Fig. 10. Comparison of 4-point algorithm measurements to Vicon ground
truth. The plots show roll, pitch, yaw, x, y, z values for 120 keyframes
extracted from the 1LoopDown dataset. Similar to the 5-point algorithm, the
yaw measurements is very accurate with a high α value.

Fig. 11. Global trajectories from the 4-point algorithm (red dotted graph)
and groundtruth (black graph) in the top view. The blue graph is the global
trajectory computed with rotation values from the 4-point algorithm and
remaining values from groundtruth.

be eliminated. In our implementation, the correct solution is the

one from the remaining 2 solutions which gives the smallest

difference in R when compared with the IMU readings.

Figure 10 shows plots of the relative rotation and translation

values between consecutive keyframes (blue graphs) overlaid

with the Vicon groundtruth (black graphs). For better compar-

ison, the translation values from the 4-point algorithm and the

groundtruth are normalized to unit length. Similar to the 5-

point algorithm, the yaw measurements is very accurate with

a high α value. The most interesting observation is that the

4-point algorithm failed to detect changes for roll, pitch and

z directions. The failure of the 4-point algorithm to detect

changes in the roll, pitch and z directions is probably because

the relative changes in these directions are significantly smaller

than the remaining directions.

Figure 11 shows the global trajectories from the 4-point

algorithm (red dotted graph) and the Vicon groundtruth (black

graph). Similar to the 5-point algorithm, the pair-wise trans-

formations from the 4-point algorithm are concatenated to

get the global trajectory. We scaled the translation vectors t

with the groundtruth scale since we are only able to recover

the relative scale from the 4-point algorithm. We observed

that the global trajectories from the 4-point algorithm deviates

significantly from the groundtruth. This deviation is mainly due

to the erroneous translation values. The blue graph is the global

trajectory with the rotation values from the 4-point algorithm

and remaining values from the groundtruth. The similarity

between the two trajectories shows that the yaw estimates from

the 4-point algorithm are accurate.

C. Pose Estimation with ARToolKitPlus

Fig. 12. Comparison of ARToolKitPlus measurements to ground truth. The
plots show x, y, z, roll, pitch, yaw values for the 1LoopDown dataset. The
translation values and yaw measurements are very precise with α values close
to 1.

The final example that we show in this paper is the pose

estimation results from the ARToolKitPlus software [14] as

compared to the Vicon groundtruth. A group of 44 ARToolK-

itPlus markers was placed on the ground at known poses with

respect to the reference frame of the Vicon system. This would

allow us to obtain the pose of the MAV with respect to the



Fig. 13. Comparison of ARToolKitPlus pose estimates to ground truth (top
view). The black graph is the groundtruth. A smoother trajectory after median
filtering is shown by the blue graph.

reference frame of the Vicon system and direct comparison

with the pose estimated from the Vicon system would be

possible. Unlike the two previous examples which extracted

keyframes, in this example we processed every single frame

from the 1LoopDown dataset.

Figure 12 shows the comparison of the absolute rotation

and translation values from ARToolKitPlus with the Vicon

groundtruth (black graphs). It is clear from these plots and

α values that the translation and yaw measurements from

ARToolKitPlus (blue graphs) are very precise with the ex-

ception of occasional glitches. Roll and pitch measurements

are significantly less accurate. This is probably due to the

small changes which are harder to measure. Figure 13 shows

the computed trajectory from the ARToolKitPlus software

(red dotted graph) overlaid with the groundtruth from the

Vicon system (black graph) in top view. We observed that

the occasional glitches in the ARToolKitPlus pose estimate

caused “jumps” to the trajectory. Nevertheless, the problem of

occasional glitches in the ARToolKitPlus pose estimate can be

easily alleviated by smoothing the estimates with a median

filter (in this example, size=5). The blue graph in Figure

13 shows the estimated trajectory after filtering. The filtered

trajectory is obviously smoother and closer to the groundtruth.

VI. CONCLUSIONS

In this paper, we have pointed out the need for a new bench-

marking toolset for evaluating pose estimation algorithms on

MAVs. We have created synchronized datasets from a forward

looking camera, a downward looking camera and IMU on a

quadrotor platform, and groundtruth from the Vicon system.

We have also showed examples of using these datasets for

benchmarking some existing visual pose estimation algorithms.

Our datasets are made available for public access with the hope

that they could be useful for future researchers working on

pose estimation algorithms on MAVs.
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