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a b s t r a c t 

The flow refueling location problem (FRLP) locates p stations in order to maximize the flow 

volume that can be accommodated in a road network respecting the range limitations of 
the vehicles. This paper introduces the charging station location problem with plug-in hy- 
brid electric vehicles (CSLP-PHEV) as a generalization of the FRLP. We consider not only the 
electric vehicles but also the plug-in hybrid electric vehicles when locating the stations. 
Furthermore, we accommodate multiple types of these vehicles with different ranges. Our 
objective is to maximize the vehicle-miles-traveled using electricity and thereby minimize 
the total cost of transportation under the existing cost structure between electricity and 
gasoline. This is also indirectly equivalent to maximizing the environmental benefits. We 
present an arc-cover formulation and a Benders decomposition algorithm as exact solution 
methodologies to solve the CSLP-PHEV. The decomposition algorithm is accelerated using 
Pareto-optimal cut generation schemes. The structure of the formulation allows us to con- 
struct the subproblem solutions, dual solutions and nondominated Pareto-optimal cuts as 
closed form expressions without having to solve any linear programs. This increases the 
efficiency of the decomposition algorithm by orders of magnitude and the results of the 
computational studies show that the proposed algorithm both accelerates the solution pro- 
cess and effectively handles instances of realistic size for both CSLP-PHEV and FRLP. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Due to the economic and environmental concerns associated with gasoline, alternative fuel vehicles (AFVs) appeal to 
customers worldwide. In recent years, a proliferation of AFVs has been observed on the roads ( U.S. Department of Energy, 
2014 ). Liquefied petroleum gas (LPG), natural gas, hydrogen, electric and plug-in hybrid electric vehicles are some of the 
technologies that depend on some form of fuel, different than petroleum, to run. Several parties benefit from their intro- 
duction into the transportation sector. From the individual drivers’ perspective, they are an efficient way of reducing the 
transportation costs and environmental impacts such as greenhouse gases ( Arslan et al., 2014; U.S. Department of Energy, 
2015a; 2015b; Windecker and Ruder, 2013 ). From the entrepreneurs’ perspective, the vehicles themselves as well as the in- 
frastructure they require are possible investment areas. For the oil-importing governments, the AFVs mean less dependence 
on export oil and governments (e.g., United States) are encouraging fuel provider fleets to implement petroleum-reduction 
measures ( Congress, 2005 ). 
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As the AFVs are known for their rather limited range, their increasing numbers naturally raise the problem of insuf- 
ficient alternative refueling stations. Lack of enough refueling infrastructure has been identified as one of the barriers for 
the adoption of AFVs ( Bapna et al., 2002; Kuby and Lim, 2005; Melaina and Bremson, 20 08; Melaina, 20 03; Romm, 20 06 ). 
In this respect, the refueling station location problem has been touted in the recent literature. There are two mainstream 

approaches in AFV refueling station location: maximum-coverage and set-covering. The cover-maximization approach for 
refueling station problem has been considered by Kuby and Lim (2005) with the flow refueling location problem (FRLP). 
The objective of the FRLP is to locate p stations in order to maximize the flow volume that can be refueled respecting the 
range limitations of the vehicles. A demand is assumed to be the vehicle flow driving on the shortest path between an 
origin and destination (OD) pair on a roundtrip. Satisfying a demand, or in other words, refueling a flow requires locating 
stations at a subset of the nodes on the path such that the vehicles never run out of fuel. Kuby and Lim (2005) pregenerate 
minimal feasible combinations of facilities to be able to refuel a path, and then build a mixed integer linear programming 
(MILP) problem to solve the FRLP. There are applications of the problem in the literature ( Kuby et al., 2009 ), analyses are 
carried out to better understand the driver behavior ( Kuby et al., 2013 ) and different extensions to the original problem 

are considered such as capacitated stations ( Upchurch et al., 2009 ), driver deviations from the shortest paths ( Kim and 
Kuby, 2012; Yıldız et al., 2015 ) and locating stations on arcs ( Kuby and Lim, 2007 ). Different than other studies on FRLM, 
Kuby et al. (2009) consider maximizing the vehicle-miles-traveled (VMT) on alternative fuel rather than maximizing the 
flow volume. The authors use FRLM for the location decisions of hydrogen stations in Florida and build a decision support 
system to investigate strategies for setting up an initial refueling infrastructure in the metropolitan Orlando and statewide. 
Since the pregeneration phase of the method by Kuby and Lim (2005) requires extensive memory and time, several solution 
enhancements have been proposed ( Capar and Kuby, 2012; Capar et al., 2013; Kim and Kuby, 2013; Lim and Kuby, 2010; 
MirHassani and Ebrazi, 2013 ). In particular, MirHassani and Ebrazi (2013) present an innovative graph transformation and 
Capar et al. (2013) propose a novel modeling logic for the FRLP both of which increase the solution efficiency of the FRLP 
drastically. In the set-covering approach to the refueling station location problem, the objective is to minimize the number 
of stations while covering every possible demand in the network ( Li and Huang, 2014; MirHassani and Ebrazi, 2013; Wang 
and Lin, 2009; Wang and Wang, 2010 ). 

FRLM and flow covering problems in general have recently been used in the literature to locate charging stations 
( Chung and Kwon, 2015; Hosseini and MirHassani, 2015; Jochem et al., 2015; Wang, 2011; Wang and Lin, 2009; 2013 ). 
Along with the ideas behind all these applications of flow based models to the charging station location problem, Nie and 
Ghamami (2013) identified Level 3 fast charging as necessary to achieve a reasonable level of service in intercity charg- 
ing station location. A similar result is also attained in Lin and Greene (2011) using the National Household Travel Survey. 
Therefore, similar to aforementioned studies, we assume that the charging stations to be located provide Level 3 service. 

In this study, our objective is to embed the plug-in hybrid electric vehicles (PHEVs) into the charging station location 
problem. All of the aforementioned studies related to refueling or charging station location consider single-type-fueled ve- 
hicles. However, using dual sources of energy, PHEVs utilize electricity as well as gasoline for transportation. 

Even though PHEVs penetrated the market after HEVs and EVs, they have comparable sales numbers. The sales of PHEVs 
increased faster than EVs globally in 2015 ( Irle et al., 2016 ) and experts estimate that PHEV sales will surpass EVs in the 
short term ( Shelton, 2016 ). In 2015, total PHEV sales in Europe and US were 194.615 and 193.757, respectively ( Pontes, 
2016; U.S. Department of Energy, 2016b ). Among top selling PHEVs in US are Chevrolet Volt, Toyota Prius, Ford Fusion and 
Ford C-Max forming approximately 95% of the US PHEV market. Mitsubishi Outlander, BYD Qin, BMW i3 are the top three 
selling brands in Europe sharing more than half of the European PHEV market. Shelton (2016) reports that the sales of EVs 
and PHEVs are expected to reach to 1 million and 1.35 million in 2020, respectively. Furthermore, PHEV global sales are 
expected to double by 2025, reaching to 2.7 million PHEVs on the roads. 

Similar to the approach by Kuby et al. (2009) , we maximize the VMT on electricity which minimizes the total cost of 
transportation under the existing cost structure between electricity and gasoline. Even though maximizing the AFV numbers 
in long-distance trips brings environmental benefits, maximizing VMT brings along additional value from an environmental 
point of view; and in essence, it is also equivalent to minimizing the effects of greenhouse gases. In this context, green 
transportation is an emerging research topic that has made its debut in the literature in recent years. There are different 
studies taking into account the green perspective in transportation problems and considering the mileage driven on elec- 
tricity such as green vehicle routing problem ( Erdo ̆gan and Miller-Hooks, 2012 ; Schneider et al., 2014 ) and optimal routing 
problems ( Arslan et al., 2015 ). With our approach to the charging station location problem, the environmental benefits of 
charging station location are fully exploited by considering VMT and additionally taking the PHEVs into account. 

1.1. Contributions 

We introduce the charging station location problem with plug-in hybrid electric vehicles as a generalization of the flow 

refueling location problem by Kuby and Lim (2005) . To our knowledge, this is the first study to consider the PHEVs in in- 
tercity charging station location decisions. We minimize the total cost of transportation by maximizing the total distance 
traveled using electricity. We also address the topic of multi-class vehicles with different ranges in our formulations, which 
has been discussed as a future research topic in several studies starting with Kuby and Lim (2005) . For the exact solution 
of this practically important and theoretically challenging problem, we present an arc-cover model. To enhance the solution 
process, we propose a Benders decomposition (BD) algorithm. We construct subproblem solutions in closed form expres- 
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sions to accelerate the algorithm. Furthermore, three different cut generation schemes are proposed: singlecut, multicut and 
Pareto-optimal cut. Using the special structure of the subproblem and its dual, we construct these three types of cuts as 
closed form expressions without having to solve any LPs. The computational gains with the Pareto-optimal cut generation 
scheme are significant. 

In the following section, the problem is formally introduced. The formulation and the BD algorithm are presented in 
Sections 3 and 4 , respectively. The computational results and the accompanying discussion follow in Section 5 . We conclude 
the study in Section 6 . 

2. The charging station location problem with plug-in hybrid electric vehicles 

Similar to MirHassani and Ebrazi (2013) , we start with a brief discussion on the common sense in charging logic, formally 
introduce the charging station location problem with plug-in hybrid electric vehicles (CSLP-PHEV) and present its complexity 
status. 

2.1. Common sense in charging logic 

Charging logic and range of EVs: The AFVs have a limited range and they need to refuel on their way to the destination 
before running out of fuel. Taking the limited range into account, Kuby and Lim (2005) extensively discuss the refueling 
logic of AFVs. In their study, the AFVs are assumed to have their tank half-full at the origin node and they are required to 
have at least half-full tank when arriving at the destination node unless a refueling station is located at these nodes. This 
ensures that they can make their trip back to the same refueling station again in the following trip. The charging logic of EVs 
is similar to the refueling logic of AFVs with only one minor difference: they can be charged at their origin and destination 
nodes since these nodes represent cities and dense residential areas where there exist charging opportunities possibly at the 
drivers’ home, at shopping malls, parking lots or at charging stations. Hence, we assume that the driver has fully charged 
battery at the origin node, and it is allowed to arrive at the destination node with a depleted battery. When traveling 
intercity, the EVs require charging stations on the road to facilitate the trip. In this study, we consider the location of such 
intercity charging facilities. Note that this is not a restrictive assumption from the methodological perspective. The means 
to adapt the model for different charging logics without affecting our solution methodology is discussed in the following 
section. 

Charging logic and range of PHEVs: Using its internal combustion engine, a PHEV can travel on gasoline similar to a con- 
ventional vehicle. It can also charge its battery at a charging station and travel using electricity until a minimum state of 
charge is reached, similar to an EV. Existing studies suggest that PHEV drivers actively search for electricity usage oppor- 
tunities to avoid the use of gasoline ( He et al., 2013; Lin and Greene, 2011 ). A recent survey carried out by Axsen and 
Kurani (2008) reveals that early PHEV consumers are generally enthusiastic about any available opportunity to charge their 
batteries ( Lin and Greene, 2011 ). Considering the price effect of gasoline on the consumer behavior ( Walsh et al., 2004; Weis 
et al., 2010 ), He et al. (2013) also point out that PHEVs can benefit from the available charging opportunities due to the cost 
difference between gasoline and electricity. With the sparsely located charging stations especially in the initial stages of 
infrastructure establishment, we also assume PHEVs will stop at available charging stations to decrease transportation costs. 
One way of relaxing this strong assumption will be discussed in the following section. 

One-way trip: When considering the connectivity of an origin-destination pair, similar to FRLP, we consider the shortest 
path between the OD pairs. With our origin and destination charging availability assumption, considering only the one-way 
trip is without loss of generality. Note that for EVs, enabling this trip ensures that the round-trip between the same OD 

pair is also feasible. On the PHEV side, consider two consecutive nodes that a PHEV stops for charging. Regardless of the 
direction that the PHEV is traveling between these two nodes, the distance that it can travel on electricity is the same on 
this connection. Thus, enabling a one-way trip also ensures the round trip feasibility for PHEVs. 

2.2. Problem definition 

Definition 1. Let G = (N, E) represent our transportation network where N is the set of nodes and E is the set of edges. 
Let A = { (i, j) ∪ ( j, i ) : { i, j} ∈ E} be the set of directional arcs implied by edges in E . An EV demand q is a four-tuple 
〈 s (q ) , t(q ) , f q e v , L e v 〉 , where s ( q ), t ( q ) ∈ N are the origin and the destination nodes of the demand, respectively; f q e v is the 
EV flow traveling on the shortest path between s ( q ) and t ( q ); and L ev is the electric range of the particular EV. A PHEV 

demand q = 〈 s (q ) , t(q ) , f q 
phe v 

, L phe v 〉 , is similarly defined. 

The sets of EV and PHEV demands are referred to as Q ev and Q phev , respectively. The demand set is Q = Q e v ∪ Q phe v . 

Definition 2. A CSLP-PHEV instance is a four tuple 〈 G, Q, K, p 〉 where G is the transportation network, Q is the set of 
demands, K ⊆N is the set of candidate nodes, and p ≤ | K | is a positive integer. Given such an instance, the CSLP-PHEV 

problem is defined as finding the set of nodes with cardinality p such that the distance to be covered on electricity is 
maximized. 
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Fig. 1. Network transformation to relax full charge assumption at the destination node. 

2.3. Complexity 

Proposition 1. CSLP-PHEV is NP-Complete. 

Proof. Given an CSLP-PHEV instance, it is easy to check the feasibility of the problem. Thus, CSLP-PHEV is in NP. In order to 
show that CSLP-PHEV is NP-Complete, we now provide a transformation from the FRLP. Consider an FRLP instance 〈 G, F, K, 
p 〉 , with network G , demand set F , candidate facility nodes K ⊆N , and the number of stations to be located p . For the CSLP- 
PHEV instance 〈 G ′ , Q phev ∪ Q ev , K, p 〉 , let Q phe v = ∅ , and Q e v = F with f q e v = f q 

a fv 
/d q where f q 

a fv 
is the flow of alternative fuel 

vehicles and d q is the shortest distance between s ( q ) and t ( q ). For the corresponding network G ′ , we add two dummy nodes 
s ′ ( q ) and t ′ ( q ) for each q ∈ F , and two dummy arcs ( s ′ ( q ), s ( q )) and ( t ( q ), t ′ ( q )) with lengths of L ev /2 to G . Observe that solving 
this CSLP-PHEV instance is equivalent to solving the corresponding FRLP instance. Thus, CSLP-PHEV is NP-Complete. �

2.4. Relaxing our assumptions for different charging logics 

In this subsection, we will identify possible remedies for relaxing the major assumptions of the charging logics as pre- 
sented above. The first assumption is related to the charging logic of PHEVs. We assume that all PHEV drivers stop to charge 
whenever possible. Though, this is a very strong assumption, our approach can be adapted to deal with it. In particular, 
assume that only a fraction of these drivers, say ν percent, prefer stopping to charge while the remaining drivers simply 
prefer to keep driving on gasoline. Observe that the location of the charging stations will not be affected by those drivers 
who are intolerant to stopping. Therefore, we can simply take ν% of the PHEV drivers into account when constructing our 
problem instances. 

The second major assumption is regarding the availability of the charging stations at the destination nodes. Observe that, 
without sufficient infrastructure in place, this assumption might not generally hold, and not all destinations might have a 
charging station available. However, this assumption can easily be relaxed by a simple network transformation as presented 
in Fig. 1 . Let ˆ q be an EV demand driving between nodes s ( ̂  q ) and t( ̂  q ) . If we assume full charge availability at the destination 
node, then there is no need for a transformation and the network can be taken as in part (a) in the figure. If we assume 
that there is no charging station at the destination node, then we need to make sure that the EV arrives at the destination 
node half-full charged. This charge level is to enable a trip back to the last-visited charging station. Similar reasoning is also 
applied in FRLM by Kuby and Lim (2005) . To ensure that the EV arrives at the destination node with a half-full charge, we 
add a dummy node t ′ ( ̂  q ) and an arc between nodes t( ̂  q ) and t ′ ( ̂  q ) with a distance of L ev /2. After the transformation the new 

destination of the EV demand ˆ q is now t ′ ( ̂  q ) , as in part (b) in the figure. Similarly, one can relax the full charge assumption 
at the origin node. 

3. Mathematical model 

In this section, the required notation and the charging station location model with plug-in hybrid electric vehicles (CSLM- 
PHEV) are presented. Given an CSLP-PHEV instance, let N q ⊆N and A q ⊆A be the sets of nodes and arcs, respectively, on the 
shortest path between s ( q ) and t ( q ), ∀ q ∈ Q . Let d a , ∀ a ∈ A q be the arc distance and d q = 

∑ 

a ∈ A q d a be the distance of the 
shortest path. Now, for a given q ∈ Q ev , consider an arc a ∈ A q , and a node i ∈ N q appearing on the shortest path prior to 
traversing arc a . Observe that if the distance between node i and head node of arc a on the shortest path between s ( q ) and 
t ( q ) is less than or equal to L ev , then an EV can charge at node i and traverse arc a completely. In this context, let K q a be 
the set of nodes i ∈ K that enable complete traversal of the directional arc a ∈ A q by an EV. For a given q ∈ Q phev , partial 
traversal of an arc is also plausible. Let d qi a be the distance on arc a ∈ A q that can be traveled by a PHEV using electricity if 
there exists a charging station at node i ∈ N q , and let R q a be the set of candidate sites that enable at least partial traversal of 
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the directional arc a ∈ A q by a PHEV using electricity. We need the following decision variables: 

x k = 

{

1 , if a refueling station is located at node k ∈ K 
0 , otherwise 

z q = 

{

1 , if EV demand q is covered 
0 , otherwise 

y qi a = 

{

1 , if PHEV demand on arc a travels at least partially on electricity by charging at node i 
0 , otherwise 

CSLM-PHEV formulation is as follows: 

maximize 
∑ 

q ∈ Q e v 

f q e v d 
q z q + 

∑ 

q ∈ Q phe v 

a ∈ A q 

i ∈ R q a 

f q 
phe v 

d qi a y 
qi 
a (1) 

subject to 

y qi a ≤ x i ∀ q ∈ Q 
phe v , a ∈ A q , i ∈ R q a \ s (q ) (2) 

∑ 

i ∈ R q a 

y qi a ≤ 1 ∀ q ∈ Q 
phe v , a ∈ A q (3) 

z q ≤
∑ 

i ∈ K q a 

x i ∀ q ∈ Q 
e v , a ∈ A q (4) 

∑ 

k ∈ K 

x k = p (5) 

x k ∈ { 0 , 1 } ∀ k ∈ K (6) 

y qi a ∈ { 0 , 1 } ∀ q ∈ Q 
phe v , a ∈ A q , i ∈ R q a (7) 

z q ∈ { 0 , 1 } ∀ q ∈ Q 
e v (8) 

The objective function maximizes the distance traveled using electricity by both EVs and PHEVs. Constraints (2) ensure 
that if the PHEV associated with demand q travels using electricity on an arc a by refueling at node i , then node i must have 
a charging station except when i = s (q ) due to the charging logic. Constraints (3) make sure that an arc a is not counted 
more than once in the objective function even if more than one station is capable of refueling the vehicle’s travel over that 
arc. Constraints (4) are for setting z q equal to 1 only if all of the path between s ( q ) and t ( q ) is traversable using electricity by 
the EV associated with demand q . These constraints are inherited from the study by Capar et al. (2013) . Constraints (5) set 
the number of open facilities to p . Constraints (6) –(8) are domain restrictions. 

3.1. Variable relaxation 

Proposition 2. The variables y qi a and z 
q necessarily assume binary values in an extreme point of the polyhedron that is formed 

by relaxing their integrality requirement in the CSLM-PHEV formulation. 

Proof. Let CSLM-PHEV-R be the polyhedron that is formed by relaxing the y qi a and z 
q variables in the CSLM-PHEV formu- 

lation. Now, assume that there exists an extreme point of CSLM-PHEV-R , say ξ = (x ; y ; z) , with some fractional entries in 

y . For a given ˆ q ∈ Q phe v and ˆ a ∈ A q , let T ˆ q 
ˆ a 

= { i ∈ R 
ˆ q 
ˆ a 
: 0 < y 

ˆ q i 
ˆ a 

< 1 } . Consider the unit vector e i (of length | R q a \ s (q ) | with i th 

entry equal to 1 and the remaining entries equal to 0), and the zero vector 0 (of length | R q a \ s (q ) | with all entries equal to 

zero). Note that ( x ; 0 ; z ), (x ; e i ; z) ∈ CSLM-PHEV-R , ∀ i ∈ T 
ˆ q 
ˆ a 
due to Constraints (2) and (3) . Observe that the point ξ can be 

represented as a strict convex combination of ( x ; e i ; z ) and the vector ( x ; 0 ; z ). Thus ξ cannot be an extreme point and y 
variables necessarily assume binary values. With a similar reasoning, it is easy to see that the z variables also assume binary 
values in a solution of CSLM-PHEV-R . �

The integrality property of the flow variables has been discussed in the literature starting with the introduction of the 
original FRLM problem by Kuby and Lim (2005) . 

3.2. Variable elimination 

For a given q ∈ Q , the set A q contains all the arcs on the shortest path between s ( q ) and t ( q ) and the number of variables 
and constraints depends on the size of this set. However, due to the charging logic of EVs and PHEVs, the size of the set 



O. Arslan, O.E. Kara ̧s an / Transportation Research Part B 93 (2016) 670–695 675 

A q can be significantly reduced. Let B q e v and B 
q 
phe v 

be the sets of arcs on the shortest path between s ( q ) and t ( q ) that can be 

completely covered by an EV or PHEV, respectively, by charging at the origin node (i.e. the distance between the origin node 
and the head node of an arc in sets B q e v and B 

q 
phe v 

is less than the range of EV and PHEV, respectively). Since we assume that 

the EVs and PHEVs begin their trip fully charged at the origin node, the arcs in sets B q e v and B 
q 
phe v 

can always be completely 

traversed using electricity. 
Let A q e v and A 

q 
phe v 

be the sets of arcs on the shortest path between s ( q ) and t ( q ) excluding B q e v and B 
q 
phe v 

, respectively. More 

formally, A q e v = { a ∈ A q : a / ∈ B q e v } and A 
q 
phe v 

= { a ∈ A q : a / ∈ B q 
phe v 

} . By considering these sets rather than the set A q , variables 

y qi a , ∀ q ∈ Q phe v , a ∈ B q 
phe v 

, i ∈ R q a are eliminated from the formulation, and the number of Constraints (2)-(4) are reduced. 

Then, the final formulation, which we shall refer to as CSLM-PHEV becomes: 

maximize 
∑ 

q ∈ Q e v 

f q e v d 
q z q + 

∑ 

q ∈ Q phe v 

a ∈ A q 
phe v 

i ∈ R q a 

f q 
phe v 

d qi a y 
qi 
a + 

∑ 

q ∈ Q phe v 

a ∈ B q 
phe v 

f q 
phe v 

d a (9) 

subject to 

y qi a ≤ x i ∀ q ∈ Q 
phe v , a ∈ A q 

phe v 
, i ∈ R q a \ s (q ) (10) 

∑ 

i ∈ R q a 

y qi a ≤ 1 ∀ q ∈ Q 
phe v , a ∈ A q 

phe v 
(11) 

z q ≤
∑ 

i ∈ K q a 

x i ∀ q ∈ Q 
e v , a ∈ A q e v (12) 

∑ 

k ∈ K 

x k = p (13) 

z q ≤ 1 ∀ q ∈ Q 
e v (14) 

y qi a ≥ 0 ∀ q ∈ Q 
phe v , a ∈ A q 

phe v 
, i ∈ R q a (15) 

z q ≥ 0 ∀ q ∈ Q 
e v (16) 

x k ∈ { 0 , 1 } ∀ k ∈ K (17) 

Let F= 
∑ 

q ∈ Q phe v 

a ∈ B q 
phe v 

f q 
phe v 

d a , as it appears in the objective function. Since F is fixed for a given CSLM-PHEV instance, we 

exclude it from the formulations in the following parts of the paper for conciseness. Note that, a covered arc contributes 
to the objective function for the PHEVs, but not for the EVs. Therefore, there does not exist a fixed term in the objective 
function related to EVs and the set B q e v . If all of the arcs on a given path of EV demand ˆ q ∈ Q e v can be covered by charging 
at the origin, then Constraints (12) are eliminated for ˆ q in the formulation and z ̂ q variable naturally assumes a value of 1. 

4. Benders decomposition 

Considering PHEVs beside EVs further compound the challenge in the charging station location problem. There are sev- 
eral successful implementations of Benders decomposition ( Benders, 1962 ) for location problems in the recent literature 
( de Camargo et al., 20 08; 20 09; Contreras et al., 2011; Cordeau et al., 20 0 0; 20 01; Costa, 20 05; Fontaine and Minner, 2014; 
Froyland et al., 2013; Khatami et al., 2015; Martins de Sá et al., 2015; de Sá et al., 2013; Wheatley et al., 2015; Wu et al., 
2005 ). In this section, we propose a BD algorithm as the solution technique and apply enhancements to improve the solution 
time of the algorithm by efficiently solving the subproblem and constructing Pareto-optimal cuts in closed form expressions. 
Observe that in our particular case, fixing the location variables x turns the formulation into a linear programming model 
due to Proposition 2 . In our presentation, we use a similar notation to the study by Üster and Kewcharoenwong (2011) . 

4.1. Benders subproblem 

For a given ˆ x ∈ { 0 , 1 } | K| , the subproblem of the CSLM-PHEV, referred to as SP (y, z| ̂  x ) is presented below: 

maximize 
∑ 

q ∈ Q e v 

f q e v d 
q z q + 

∑ 

q ∈ Q phe v 

a ∈ A q 
phe v 

i ∈ R q a 

f q 
phe v 

d qi a y 
qi 
a (18) 
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subject to 

y qi a ≤ ˆ x i ∀ q ∈ Q 
phe v , a ∈ A q 

phe v 
, i ∈ R q a \ s (q ) (19) 

∑ 

i ∈ R q a 

y qi a ≤ 1 ∀ q ∈ Q 
phe v , a ∈ A q 

phe v 
(20) 

z q ≤
∑ 

i ∈ K q a 

ˆ x i ∀ q ∈ Q 
e v , a ∈ A q e v (21) 

z q ≤ 1 ∀ q ∈ Q 
e v (22) 

y qi a ≥ 0 ∀ q ∈ Q 
phe v , a ∈ A q 

phe v 
, i ∈ R q a (23) 

z q ≥ 0 ∀ q ∈ Q 
e v (24) 

Note that setting all the variables equal to zero is a feasible solution to the subproblem. Due to Constraints (19) –(22) , it 
is also bounded. 

Let μ, ρ , φ and σ be the dual variables associated with constraints (19), (20), (21) and (22) , respectively. Then, the dual 
subproblem, referred to as SP D (μ, ρ, φ, σ | ̂  x ) , is expressed as follows: 

minimize 
∑ 

q ∈ Q phe v 

a ∈ A q 
phe v 

i ∈ R q a \ s (q ) 

ˆ x i μ
qi 
a + 

∑ 

q ∈ Q phe v 

a ∈ A q 
phe v 

ρq 
a + 

∑ 

q ∈ Q e v 

a ∈ A q e v 
i ∈ K q a 

ˆ x i φ
q 
a + 

∑ 

q ∈ Q e v 

σq (25) 

subject to 
∑ 

a ∈ A q e v 

φq 
a + σq ≥ f q e v d 

q ∀ q ∈ Q 
e v (26) 

μqi 
a + ρq 

a ≥ f q 
phe v 

d qi a ∀ q ∈ Q 
phe v , a ∈ A q 

phe v 
, i ∈ R q a \ s (q ) (27) 

ρq 
a ≥ f q 

phe v 
d qs (q ) a ∀ q ∈ Q 

phe v , a ∈ A q 
phe v 

, s (q ) ∈ R q a (28) 

μqi 
a , ρ

q 
a ≥ 0 ∀ q ∈ Q 

phe v , a ∈ A q 
phe v 

, i ∈ R q a \ s (q ) (29) 

φq 
a , σq ≥ 0 ∀ q ∈ Q 

e v , a ∈ A q e v (30) 

4.2. Benders master problem 

Let D(SP D ) denote the set of extreme points of SP D (μ, ρ, φ, σ | ̂  x ) . Then, we can construct the master problem, referred 
to as MP , as follows: 

maximize η (31) 

subject to 

η ≤
∑ 

q ∈ Q phe v 

a ∈ A q 
phe v 

i ∈ R q a \ s (q ) 

x i μ
qi 
a + 

∑ 

q ∈ Q phe v 

a ∈ A q 
phe v 

ρq 
a + 

∑ 

q ∈ Q e v 

a ∈ A q e v 
i ∈ K q a 

x i φ
q 
a + 

∑ 

q ∈ Q e v 

σq ∀ (μ, ρ, φ, σ ) ∈ D(SP D ) (32) 

∑ 

k ∈ K 

x k = p (33) 

x k ∈ { 0 , 1 } ∀ k ∈ K (34) 

We have now transformed the CSLM-PHEV model into an equivalent mixed integer programming model with | K | binary 
and one continuous variables. In order to handle the exponential number of constraints of the MP model due to the set 
D(SP D ) , we apply a branch-and-cut approach. Using the dual variable values obtained from the subproblem, a cut is added 
to the master problem at each iteration in the form of an inequality (32) . Note that since the primal subproblem is always 
feasible and bounded, by strong duality, the dual is also feasible and bounded. Therefore, the cuts added at each iteration 
are optimality cuts. 

The classical Benders implementation solves the master problem to optimality before solving the subproblem. This entails 
the possibility of unnecessarily revisiting the same solutions again in the master problem. Therefore, we solve our problem 

in a single branch and bound tree similar to Codato and Fischetti (2006) . At every potential incumbent solution encountered 
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in the search tree, we solve the subproblem and add an optimality cut, if necessary. In our computational studies, we 
implement this method using the lazy constraint callback of the CPLEX Concert Technology. 

4.3. Subproblem solution 

Observe that the subproblem SP (y, z| ̂  x ) can be decomposed based on the vehicle type. The first term in the objective 
function and Constraints (21), (22) and (24) are related to EVs, while the remaining parts are related to PHEVs. We refer 
to the former problem as SP e v (z| ̂ x ) , and the latter as SP phe v (y | ̂ x ) . Observe that SP e v (z| ̂ x ) can further be decomposed on the 
basis of demand. For a given demand q ∈ Q ev , we refer to the partition which is formulated below as SP e v q (z| ̂ x ) . 

maximize f q e v d 
q z q (35) 

subject to 

z q ≤
∑ 

i ∈ K q a 

ˆ x i ∀ a ∈ A q e v (36) 

z q ≤ 1 (37) 

z q ≥ 0 (38) 

Let K ⋆ ( ̂  x ) = { k ∈ K : ˆ x k = 1 } . Observe that identifying if the path between s ( q ) and t ( q ) can be traveled by an EV without 
running out of electricity can be done by checking the existence of an open station to cover every arc on the path. Hence, 
the following variable construction is an optimal solution for SP e v q (z| ̂ x ) . 

z q = 

{

1 , if | K q a ∩ K ⋆ ( ̂  x ) | ≥ 1 , ∀ a ∈ A q e v 
0 , otherwise 

(39) 

As for the PHEVs, the SP phe v (y | ̂ x ) problem can be decomposed on the basis of demand and arc. For a given demand q ∈ 

Q phev and a ∈ A q 
phe v 

, we refer to the partition which is formulated below as SP phe v qa (y | ̂ x ) : 

maximize 
∑ 

i ∈ R q a 

f q 
phe v 

d qi a y 
qi 
a (40) 

subject to 

y qi a ≤ ˆ x i ∀ i ∈ R q a \ s (q ) (41) 

∑ 

i ∈ R q a 

y qi a ≤ 1 (42) 

y qi a ≥ 0 ∀ i ∈ R q a (43) 

Similar to the case with EVs, the solution can easily be constructed. Observe that, for the demand q , the distance that 
can be traveled on arc a using electricity is equal to max 

j∈ R q a ∩{ K ⋆ ( ̂ x ) ∪ s (q ) } 
{ d q j a } in which case the associated variable y q j a assumes a 

value of 1. That is, 

y qi a = 

{

1 , if i = argmax j∈ R q a ∩{ K ⋆ ( ̂ x ) ∪ s (q ) } { d 
q j 
a } 

0 , otherwise 
(44) 

4.4. Benders cut characterization 

In the dual subproblem SP D (μ, ρ, φ, σ | ̂  x ) , variables φ and σ and Constraints (26) and (30) are related to the EVs, while 
variables μ and ρ and Constraints (27) –(29) are related to PHEVs. Therefore SP D (μ, ρ, φ, σ | ̂  x ) problem can also be decom- 
posed into two: SP D e v (φ, σ | ̂ x ) and SP D phe v (μ, ρ| ̂ x ) . Note that the former problem can also be decomposed on the basis of 
demand. Let the q th partition of the SP D e v (φ, σ | ̂ x ) problem be defined as SP D e v q (φ, σ | ̂ x ) , which is stated as follows: 

minimize 
∑ 

a ∈ A q e v 
i ∈ K q a 

ˆ x i φ
q 
a + σq (45) 

subject to 
∑ 

a ∈ A q e v 

φq 
a + σq ≥ f q e v d 

q (46) 
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φq 
a , σq ≥ 0 ∀ a ∈ A q e v (47) 

Observe that this is a continuous knapsack problem. Therefore we can construct the solution of this problem in closed 
form. Before we proceed, we need some further definitions. Let A 

q 
0 ( ̂  x ) and A 

q 
1 ( ̂  x ) be the sets of arcs in A 

q 
e v , induced by ˆ x , 

that cannot be covered by any of the open stations and that can only be covered by a single station, respectively. Formally, 
A 

q 
0 ( ̂  x ) = { a ∈ A q e v : | K 

q 
a ∩ K ⋆ ( ̂  x ) | = 0 } and A 

q 
1 ( ̂  x ) = { a ∈ A q e v : | K 

q 
a ∩ K ⋆ ( ̂  x ) | = 1 } . Note that A 

q 
1 ( ̂  x ) might be empty even if z q = 1 , 

e.g., if all arcs on the path between s ( q ) and t ( q ) can be covered by at least two open stations. But we have a non-empty 
A 

q 
0 ( ̂  x ) set for any q with z q = 0 . 

Proposition 3. For a given ˆ x , and path ˆ q ∈ Q e v , the following is the characterization of optimal solutions to SP D e v 
ˆ q 
. 

Case (1) If path ˆ q is not chargeable (i.e., z ̂ q = 0 ), then: 

(a) For all α ∈ A 
ˆ q 
0 ( ̂  x ) , the following solution is optimal: 

- σ ˆ q = 0 

- φ ˆ q 
α = f 

ˆ q 
e v d ̂

 q 

- φ ˆ q 
a = 0 , ∀ a ∈ (A 

ˆ q 
e v \ α) . 

Case (2) If path ˆ q is chargeable (i.e., z ̂ q = 1 ), then: 

(a) For all α ∈ A 
ˆ q 
1 ( ̂  x ) , the following solution is optimal: 

- σ ˆ q = 0 

- φ ˆ q 
α = f ˆ q e v d ̂

 q 

- φ ˆ q 
a = 0 , ∀ a ∈ (A 

ˆ q 
e v \ α) 

(b) The following is also an optimal solution: 

- σ ˆ q = f ˆ q e v d ̂
 q 

- φ ˆ q 
a = 0 , ∀ a ∈ A 

ˆ q 
e v 

Proof. All results follow trivially from the fact that SP D e v q (φ, σ | ̂ x ) is a continuous knapsack problem. �

Note that any convex combination of alternative optimal solutions is also optimal for SP D e v q (φ, σ | ̂ x ) . 

The subproblem for PHEVs which we refer to as SP D phe v (μ, ρ| ̂ x ) can be decomposed on the basis of demand and arc. 

We refer to the partition of a th arc of the q th demand as SP D 
phe v 
qa (μ, ρ| ̂ x ) , which is stated as follows: 

minimize 
∑ 

i ∈ R q a \ s (q ) 

ˆ x i μ
qi 
a + ρq 

a (48) 

subject to 

μqi 
a + ρq 

a ≥ f q 
phe v 

d qi a ∀ i ∈ R q a \ s (q ) (49) 

ρq 
a ≥ f q 

phe v 
d qs (q ) a s (q ) ∈ R q a (50) 

μqi 
a , ρ

q 
a ≥ 0 ∀ i ∈ R q a \ s (q ) (51) 

The following result can be attained through complementary slackness conditions: 

Proposition 4. For a given path ˆ q and arc ˆ a ∈ A 
ˆ q 
phe v 

, the following is the characterization of optimal solutions to SP D 
phe v 
ˆ q ̂ a 

(μ, ρ| ̂ x ) . 

Case (1) If 
∑ 

i ∈ R ˆ q 
ˆ a 
y 
ˆ q i 
ˆ a 

= 0 , then the following solution is optimal: 

- ρ ˆ q 
ˆ a 

= 0 

- μ ˆ q i 
ˆ a 

= f 
ˆ q 
phe v 

d 
ˆ q i 
ˆ a 
, ∀ i ∈ R 

ˆ q 
ˆ a 
\ s ( ̂  q ) 

Case (2) If y ˆ q s ( ̂ q ) 
ˆ a 

= 1 , then the following solution is optimal: 
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- ρ ˆ q 
ˆ a 

= f 
ˆ q 
phe v 

d 
ˆ q s ( ̂ q ) 
ˆ a 

- μ ˆ q i 
ˆ a 

= max { 0 , f ˆ q 
phe v 

d 
ˆ q i 
ˆ a 

− ρ ˆ q 
ˆ a 
} , ∀ i ∈ R 

ˆ q 
ˆ a 
\ s ( ̂  q ) 

Case (3) If y 
ˆ q j 
ˆ a 

= 1 for j � = s ( ̂  q ) , then the following are the conditions for optimality: 

- μ ˆ q j 
ˆ a 

+ ρ ˆ q 
ˆ a 

= f ˆ q 
phe v 

d ˆ q j 
ˆ a 

, 

- μ ˆ q i 
ˆ a 

= 0 , and ρ ˆ q 
ˆ a 

≥ f 
ˆ q 
phe v 

d 
ˆ q i 
ˆ a 
, ∀ i ∈ R 

ˆ q 
ˆ a 
: i ∈ K ⋆ ( ̂  x ) , i � = s ( ̂  q ) , i � = j, 

- μ ˆ q i 
ˆ a 

+ ρ ˆ q 
ˆ a 

≥ f 
ˆ q 
phe v 

d 
ˆ q i 
ˆ a 
, ∀ i ∈ R 

ˆ q 
ˆ a 
: i / ∈ K ⋆ ( ̂  x ) , i � = s ( ̂  q ) , i � = j, 

- ρ ˆ q 
ˆ a 

≥ f 
ˆ q 
phe v 

d 
ˆ q s ( ̂ q ) 
ˆ a 

, if s ( ̂  q ) ∈ R 
ˆ q 
ˆ a 
, 

- μ ˆ q i 
ˆ a 
, ρ ˆ q 

ˆ a 
≥ 0 , ∀ i ∈ R 

ˆ q 
ˆ a 
, i / ∈ K ⋆ ( ̂  x ) , i � = s ( ̂  q ) . 

Proof. Since 
∑ 

i ∈ R ˆ q 
ˆ a 
y 
ˆ q i 
ˆ a 

= 0 , we have y ˆ q i 
ˆ a 

= 0 , ∀ i ∈ R 
ˆ q 
ˆ a 
. We then have | R ˆ q 

ˆ a 
∩ K ⋆ ( ̂  x ) | = 0 , that is ˆ x i = 0 , ∀ i ∈ R q a \ s (q ) . Therefore, 

Case (1) follows. When 
∑ 

i ∈ R ˆ q 
ˆ a 
y ˆ q i 
ˆ a 

= 1 , either y ˆ q s ( ̂ q ) 
ˆ a 

= 1 or y ˆ q j 
ˆ a 

= 1 for j � = s ( ̂  q ) . In the former case, we have d ˆ q s ( ̂ q ) 
ˆ a 

≥ d ˆ q i 
ˆ a 
, ∀ i ∈ 

R 
ˆ q 
ˆ a 
, i ∈ K ⋆ ( ̂  x ) , i � = s ( ̂  q ) since y ˆ q s ( ̂ q ) 

ˆ a 
= 1 . Thus, we have μ ˆ q j 

ˆ a 
+ ρ ˆ q 

ˆ a 
= f 

ˆ q 
phe v 

d 
ˆ q j 
ˆ a 
. This implies that μ ˆ q i 

ˆ a 
= 0 , ∀ i ∈ R 

ˆ q 
ˆ a 
, i ∈ K ⋆ ( ̂  x ) , i � = s ( ̂  q ) . 

For i ∈ R 
ˆ q 
ˆ a 
, i / ∈ K ⋆ ( ̂  x ) , i � = s ( ̂  q ) , we have μ ˆ q i 

ˆ a 
= max { 0 , f ˆ q 

phe v 
d 
ˆ q i 
ˆ a 

− ρ ˆ q 
ˆ a 
} due to Constraint (49) . In the latter case, we have y ˆ q j 

ˆ a 
= 

1 for j � = s ( ̂  q ) . This implies that d ˆ q j 
ˆ a 

≥ d 
ˆ q i 
ˆ a 
, ∀ i ∈ R 

ˆ q 
ˆ a 
, ∀ i ∈ K ⋆ ( ̂  x ) , i � = s ( ̂  q ) , i � = j. Since we have ˆ x i = 1 for i ∈ R 

ˆ q 
ˆ a 
, ∀ i ∈ K ⋆ ( ̂  x ) , i � = 

s ( ̂  q ) , i � = j, we have the first two conditions as given in Case (3). Since we can have d ˆ q j 
ˆ a 

< d 
ˆ q i 
ˆ a 
for i ∈ R 

ˆ q 
ˆ a 
, i / ∈ K ⋆ ( ̂  x ) , i � = s ( ̂  q ) , i � = 

j, we keep Constraint (49) in the third bullet of Case (3). The remaining two bullets are also inherited from the constraint 
set of SP D 

phe v 
qa (μ, ρ| ̂ x ) . This completes the proof. �

Remark 1. Both Propositions 3 and 4 assume primal feasibility as given, and present the properties of optimal solutions for 
their respective problems. 

Remark 2. A Benders cut can be constructed by first solving the subproblem using (39) and (44) , and then by generating 
the dual variables μ, ρ , φ and σ that satisfy the conditions given in Propositions 3 and 4 . The generated cut can be added 
to the master problem as an inequality of the form (32) . 

In the following, we propose three different cut selection schemes. The first one produces a single cut for each subprob- 
lem solved. This cut is used as a benchmark in the computational study section to compare the efficiencies of the remaining 
two cut selection schemes. The next scheme is multicut generation scheme in which several cuts are added at each iteration. 
In the last scheme, we generate a Pareto-optimal cut. 

4.5. Benders cut selection Scheme 1: single cut 

For a given ˆ x , we can construct the primal subproblem solutions z q , ∀ q ∈ Q ev and y qi a , ∀ q ∈ Q phe v , a ∈ A q 
phe v 

, i ∈ R q a . Consider 

the corresponding dual solution presented in Algorithm 1 in the Appendix. Parts of the algorithm that are analogous to cases 
in Propositions 3 and 4 are explicitly shown. The dual variables obtained can be used to construct a single cut to be added 
to the master problem at each iteration as an inequality of type (32) . 

4.6. Benders cut selection Scheme 2: multicut 

Birge and Louveaux (1988) considered addition of several cuts in a single iteration in the context of two-stage stochastic 
linear programs. Multicut version of BD algorithm has successfully been implemented in different applications ( de Camargo 
et al., 2008; Lei et al., 2014; Trukhanov et al., 2010; You and Grossmann, 2013 ). To implement the multicut version, we need 
to modify our master problem. For this purpose, let βe v 

q and δphe v 
qa be new surrogate variables associated with SP D e v q (φ, σ | ̂ x ) 

and SP D 
phe v 
qa (μ, ρ| ̂ x ) , respectively; D (SP D e v q ) and D (SP D 

phe v 
qa ) be the set of extreme points for the respective problems. Then 

the modified master problem can be expressed as: 

maximize 
∑ 

q ∈ Q e v 

βe v 
q + 

∑ 

q ∈ Q phe v 

a ∈ A q 
phe v 

δphe v 
qa (52) 
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subject to 

βe v 
q ≤

∑ 

a ∈ A q e v 
i ∈ K q a 

x i φ
q 
a + σq ∀ q ∈ Q 

e v , (φ, σ ) ∈ D(SP D 
e v 
q ) (53) 

δphe v 
qa ≤

∑ 

i ∈ R q a \ s (q ) 

x i μ
qi 
a + ρq 

a ∀ q ∈ Q 
phe v , a ∈ A q 

phe v 
, (μ, ρ) ∈ D(SP D 

phe v 
qa ) (54) 

∑ 

k ∈ K 

x k = p (55) 

x k ∈ { 0 , 1 } ∀ k ∈ K (56) 

For a given ˆ x , multiple extreme points for each subproblem as presented in Propositions 3 and 4 exist. By modifying the 
master problem, we can now use the information that is available for each subproblem and add a cut corresponding to each 
extreme point, as presented in Algorithm 2 in the Appendix. In this fashion, a cut pool is collected at each iteration. 

4.7. Benders cut selection Scheme 3: Pareto-optimal cut 

Reducing the number of Benders iterations is of great value to accelerate the implementation. However, as we have 
identified above, conditions in Propositions 3 and 4 imply that several cuts can be generated for a given vector ˆ x . Out of 
these cuts, the simple cut generation scheme selects one cut to be added at each iteration, and the multicut implementation 
adds several cuts at once. One other option is to select a cut that might help us reduce the number of iterations. In this 
section, we present the Pareto-optimal cut generation scheme in the sense of the study by Magnanti and Wong (1981) . Let 
X be the feasible set of the master problem in the first iteration (i.e. X = { x ∈ { 0 , 1 } | K| : 

∑ 

k ∈ K x k = p} ), opt (P) be the optimal 
objective function value of the problem P, and the function C(x, μ, ρ, φ, σ ) be defined as the following: 

C(x, μ, ρ, φ, σ ) = 

∑ 

q ∈ Q phe v 

a ∈ A q 
phe v 

i ∈ R q a \ s (q ) 

x i μ
qi 
a + 

∑ 

q ∈ Q phe v 

a ∈ A q 
phe v 

ρq 
a + 

∑ 

q ∈ Q e v 

a ∈ A q e v 
i ∈ K q a 

x i φ
q 
a + 

∑ 

q ∈ Q e v 

σq (57) 

In their seminal paper, Magnanti and Wong (1981) presented the notion of cut domination in the BD framework. The cut 
generated by the dual solution ( ̂  μ, ˆ ρ, ˆ φ, ˆ σ ) is said to dominate the cut generated by the dual solution ( ̃  μ, ˜ ρ, ˜ φ, ˜ σ ) , if and 
only if C(x, ˆ μ, ˆ ρ, ˆ φ, ˆ σ ) ≤ C(x, ˜ μ, ˜ ρ, ˜ φ, ˜ σ ) for all x ∈ X with a strict inequality for at least one point. A cut is called Pareto- 
optimal , if no other cuts dominate it. To obtain a Pareto-optimal cut induced by ˆ x , we need to solve the following linear 
programming problem: 

minimize C( ̄x , μ, ρ, φ, σ ) (58) 

subject to 

(26) − (30) 

C( ̂  x , μ, ρ, φ, σ ) = opt( SP D (μ, ρ, φ, σ | ̂  x ) ) (59) 

where x̄ ∈ ri (X c ), a point in the relative interior of the convex hull of the set X , is called a core point . We refer to this LP 
as MW (μ, ρ, φ, σ | ̂ x , ̄x ) . Our initial core point is a vector of length | K | with all entries equal to p 

| K| 
. In the following Benders 

iterations, we use the average of the current core point and the active solution of the MP, similar to Papadakos (2008) . 
At this point, note that Constraint (59) and fractional coefficients x̄ i may prevent obtaining an efficient optimal-dual 

solution, as is the case for the study by Contreras et al. (2011) . However, as we present in the following parts, we 
can cleverly exploit the knapsack nature of the subproblems to find the optimal solutions for the MW problem using 
Remark (1) . 

4.8. Magnanti-Wong problem solution 

Similar to the subproblem and the dual of the subproblem, the MW (μ, ρ, φ, σ | ̂  x , ̄x ) problem can also be decomposed. 
The EV problem partition for a given demand q ∈ Q ev , which we refer to as MW e v q (φ, σ | ̂ x , ̄x ) is formulated as: 

minimize 
∑ 

a ∈ A q e v 
i ∈ K q a 

x̄ i φ
q 
a + σq (60) 
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subject to 
∑ 

a ∈ A q e v 
i ∈ K q a 

ˆ x i φ
q 
a + σq = opt( SP D 

e v 
q (φ, σ | ̂  x ) ) (61) 

∑ 

a ∈ A q e v 

φq 
a + σq ≥ f q e v d 

q (62) 

φq 
a , σq ≥ 0 ∀ a ∈ A q e v (63) 

Observe that the constraint set enforces the solution to be optimal for the SP D e v q (φ, σ | ̂ x ) problem for which we have the 
optimal solutions presented in Proposition 3. Therefore we can construct the optimal variable values of the MW e v q (φ, σ | ̂ x , ̄x ) 
in the following proposition: 

Proposition 5. The following solution is optimal for MW e v q (φ, σ | ̂ x , ̄x ) . 

φq 
a = 

⎧ 

⎪ 
⎨ 

⎪ 
⎩ 

f q e v d 
q , i f z(q ) = 1 , |A 

q 
1 ( ̂  x ) | � = 0 , a = argmin b∈A q 1 ( ̂ x ) 

{

∑ 

i ∈ K q 
b 
x̄ i 
}

and 
∑ 

i ∈ K q a 
x̄ i ≤ 1 

f q e v d 
q , i f z(q ) = 0 and a = argmin b∈A q 0 ( ̂ x ) 

{

∑ 

i ∈ K q 
b 
x̄ i 
}

0 , otherwise 

(64) 

σq = 

⎧ 

⎪ 
⎨ 

⎪ 
⎩ 

f q e v d 
q , i f z(q ) = 1 and 

∑ 

i ∈ K q a 
x̄ i > 1 , ∀ a ∈ A 

q 
1 ( ̂  x ) 

f q e v d 
q , i f z(q ) = 1 and |A 

q 
1 ( ̂  x ) | = 0 

0 , otherwise 

(65) 

Proof. Let P(φ, σ | ̂ x ) be the set of optimal dual variables for SP D e v q (φ, σ | ̂ x ) problem as identified in Proposition 3 . Then we 
can remodel the problem without the complicating Constraints (61) as follows: 

minimize 
∑ 

a ∈ A q e v 
i ∈ K q a 

x̄ i φ
q 
a + σq (66) 

subject to 

(σq , φ
q 
a ) ∈ P(φ, σ | ̂  x ) (67) 

Note that we have two conditions in Proposition 3 depending on the optimal value of z ( q ). 
Case (1) If the path q ∈ Q is not chargeable (i.e., z q = 0 ), then the optimal solution of MW e v q (φ, σ | ̂ x , ̄x ) problem is φq 

a = 

f q e v d 
q for a = argmin 

b∈A q 0 ( ̂ x ) 
{ 
∑ 

i ∈ K q 
b 
x̄ i } and all of the remaining variables are equal to zero. 

Case (2) If a given path q ∈ Q ev is chargeable (i.e., z q = 1 ), then we can find the optimal solution of the MW e v q (φ, σ | ̂ x , ̄x ) 
problem by investigating the tradeoff between the objective function coefficients of σ and φ. First of all, observe that if 
|A 

q 
1 ( ̂  x ) | = 0 , then the only optimal solution can be attained by letting σq = f q e v d 

q and all of the remaining variables equal to 
zero. Otherwise, if |A 

q 
1 ( ̂  x ) | ≥ 1 , then we check if 

∑ 

i ∈ K q a 
x̄ i > 1 , ∀ a ∈ A 

q 
1 ( ̂  x ) in which case, assigning σ = f q e v d 

q and all of the 

remaining variables equal to zero produces the optimal solution for MW e v q (φ, σ | ̂ x , ̄x ) . Lastly, if |A 
q 
1 ( ̂  x ) | � = 0 and 

∑ 

i ∈ K q a 
x̄ i ≤ 1 , 

then we select the arc with a = argmin 
b∈A q 1 ( ̂ x ) 

{ 
∑ 

i ∈ K q 
b 
x̄ i } and assign φ

q 
a = f q e v d 

q and all of the remaining variables equal to 

zero. We now have the desired result as presented in Proposition 5 . �

In a similar fashion, we can construct the optimal variable values of the MW 
phe v 
qa (μ, ρ| ̂ x , ̄x ) problem, which is defined as: 

minimize 
∑ 

i ∈ R q a \ s (q ) 

x̄ i μ
qi 
a + ρq 

a (68) 

subject to 
∑ 

i ∈ R q a \ s (q ) 

ˆ x i μ
qi 
a + ρq 

a = opt( SP D 
phe v 
qa (μ, ρ| ̂  x ) ) (69) 

μqi 
a + ρq 

a ≥ f q 
phe v 

d qi a ∀ i ∈ R q a \ s (q ) (70) 

ρq 
a ≥ f q 

phe v 
d qs (q ) a s (q ) ∈ R q a (71) 
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μqi 
a , ρ

q 
a ≥ 0 ∀ i ∈ R q a \ s (q ) (72) 

Proposition 6. The following solution is optimal for MW 
phe v 
qa (μ, ρ| ̂ x , ̄x ) . 

(1) If y ˆ q j 
ˆ a 

= 1 for j � = s ( ̂  q ) , then: 

ρq 
a = argmin λ∈ S q a 

⎛ 

⎜ 
⎝ 

∑ 

i ∈ R q a \ s (q ) 
i / ∈ K ⋆ ( ̂ x ) 

(

x̄ i max { 0 , f q 
phe v 

d qi a − λ} 
)

+ (1 − x̄ j ) λ

⎞ 

⎟ 
⎠ 

where ρmax = f q 
phe v 

d q j a , ρmin = max { f q 
phe v 

d qs (q ) a , max 
i ∈ R q a ∩ K 

⋆ ( ̂ x ) ,i � = j,i � = s (q ) f 
q 
phe v 

d qi a } and S 
q 
a = { ρmin , ρmax } ∪ { f q 

phe v 
d qi a : ρmin ≤

f q 
phe v 

d qi a ≤ ρmax and i ∈ R q a , ∀ i / ∈ K ⋆ ( ̂  x ) , i � = s (q ) , i � = j} 

else if y ˆ q s ( ̂ q ) 
ˆ a 

= 1 then, ρq 
a = f q 

phe v 
d qs (q ) a 

else ρq 
a = 0 . 

(2) μqi 
a = max { 0 , f q 

phe v 
d qi a − ρq 

a } , i ∈ R q a \ s (q ) 

Proof. Similar to the MW e v q (φ, σ | ̂ x , ̄x ) problem, MW 
phe v 
qa (μ, ρ| ̂ x , ̄x ) can also be modeled using the conditions in Proposition 4 . 

Note that we have three conditions in Proposition 4 depending on the optimal value of y qi a . There are unique optimal solu- 

tions for both Case (1) and Case (2) . They are also optimal for the MW 
phe v 
qa (μ, ρ| ̂ x , ̄x ) problem. When we have y q j a = 1 for j 

� = s ( q ), that is Case (3) , MW 
phe v 
qa (μ, ρ| ̂ x , ̄x ) can be written as: 

minimize 
∑ 

i ∈ R q a \ s (q ) 

x̄ i μ
qi 
a + ρq 

a (73) 

subject to 

μq j 
a + ρq 

a = f q 
phe v 

d q j a (74) 

μqi 
a = 0 ∀ i ∈ R q a , ∀ i ∈ K ⋆ ( ̂  x ) , i � = s (q ) , i � = j (75) 

ρq 
a ≥ f q 

phe v 
d qi a ∀ i ∈ R q a , ∀ i ∈ K ⋆ ( ̂  x ) , i � = s (q ) , i � = j (76) 

μqi 
a + ρq 

a ≥ f q 
phe v 

d qi a ∀ i ∈ R q a , ∀ i / ∈ K ⋆ ( ̂  x ) , i � = s (q ) , i � = j (77) 

ρq 
a ≥ f q 

phe v 
d qs (q ) a if s (q ) ∈ R q a (78) 

μqi 
a , ρ

q 
a ≥ 0 ∀ i ∈ R q a , i / ∈ K ⋆ ( ̂  x ) , i � = s (q ) (79) 

Note that the optimality conditions given in Proposition 4 are simply appended as constraints to the above model. 
This ensures that our optimal solution for MW 

phe v 
qa (μ, ρ| ̂ x , ̄x ) is also optimal for SP D phe v (μ, ρ| ̂ x ) . In this model, we have 

μq j 
a = f q 

phe v 
d q j a − ρq 

a due to Constraints (74) . Rewriting μq j 
a , and letting μ

qi 
a = 0 , ∀ i ∈ R q a , ∀ i ∈ K ⋆ ( ̂  x ) , i � = s (q ) , i � = j, we have an 

equivalent model: 

x̄ j f 
q 
phe v 

d q j a + minimize 
∑ 

i ∈ R q a \ s (q ) 
i / ∈ K ⋆ ( ̂ x ) 

x̄ i μ
qi 
a + (1 − x̄ j ) ρ

q 
a (80) 

subject to 

ρq 
a ≥ f q 

phe v 
d qi a ∀ i ∈ R q a , i ∈ K ⋆ ( ̂  x ) , i � = s (q ) , i � = j (81) 

μqi 
a + ρq 

a ≥ f q 
phe v 

d qi a ∀ i ∈ R q a , ∀ i / ∈ K ⋆ ( ̂  x ) , i � = s (q ) , i � = j (82) 

ρq 
a ≥ f q 

phe v 
d qs (q ) a if s (q ) ∈ R q a (83) 

f q 
phe v 

d q j a − ρq 
a ≥ 0 (84) 

μqi 
a , ρ

q 
a ≥ 0 ∀ i ∈ R q a , i / ∈ K ⋆ ( ̂  x ) , i � = s (q ) (85) 
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Table 1 

Road network features. 

Network #nodes # OD pair nodes #edges node degree 

Min Max Mean 

25-node 25 300 86 1 6 3 .36 
California (CA) 339 1167 1234 1 7 3 .64 

Observe that Constraints (81), (83) and (84) can be combined as ρmax ≥ ρq 
a ≥ ρmin , where ρmax = f q 

phe v 
d q j a and ρmin = 

max { f q 
phe v 

d qs (q ) a , max 
i ∈ R q a ∩ K 

⋆ ( ̂ x ) ,i � = j,i � = s (q ) 
f q 
phe v 

d qi a } . The model is then: 

x̄ j f 
q 
phe v 

d q j a + minimize 
∑ 

i ∈ R q a \ s (q ) 
i / ∈ K ⋆ ( ̂ x ) 

x̄ i μ
qi 
a + (1 − x̄ j ) ρ

q 
a (86) 

subject to 

μqi 
a + ρq 

a ≥ f q 
phe v 

d qi a ∀ i ∈ R q a , ∀ i / ∈ K ⋆ ( ̂  x ) , i � = s (q ) , i � = j (87) 

ρmax ≥ ρq 
a ≥ ρmin (88) 

μqi 
a ≥ 0 ∀ i ∈ R q a , i / ∈ K ⋆ ( ̂  x ) , i � = s (q ) (89) 

In this model, we can determine the optimal μ values once we know the optimal value of ρ . At this point, note that 
the set of values that ρ can assume are from the set S q a = { ρmin , ρmax } ∪ { f q 

phe v 
d qi a : ρmin ≤ f q 

phe v 
d qi a ≤ ρmax and i ∈ R q a , ∀ i / ∈ 

K ⋆ ( ̂  x ) , i � = s (q ) , i � = j} . Any other possible value for the ρ variable would either be suboptimal or infeasible. Thus, the fol- 

lowing solution is optimal for MW 
phe v 
qa (μ, ρ| ̂ x , ̄x ) . 

ρq 
a = argmin λ∈ S q a 

⎛ 

⎜ 
⎝ 

∑ 

i ∈ R q a \ s (q ) 
i / ∈ K ⋆ ( ̂ x ) 

(

x̄ i max { 0 , f q 
phe v 

d qi a − λ} 
)

+ (1 − x̄ j ) λ

⎞ 

⎟ 
⎠ (90) 

μqi 
a = max { 0 , f q 

phe v 
d qi a − ρq 

a } (91) 

This completes the proof. �

Remark 3. In a regular MW framework, two different LP problems need to be solved for every subproblem, one to obtain 
the optimal value of the subproblem, and one for the MW problem. However, in our particular case, we are able to construct 
the primal subproblem solution, the dual subproblem solution and a Pareto-optimal cut directly, without any need to build 
an LP. 

5. Computational study 

In this section, we present performance analyses of the CSLM-PHEV model and the BD algorithm with three different 
cut selection schemes. Note that in all three decomposition implementations, we only construct one search tree, and solve 
the master problem using branch-and-cut method. In order to compare the computational performances of the solution 
techniques, computational studies are carried out on two datasets. The first one, shown in Fig. 2 , is a 25-node dataset 
commonly used in the literature ( Hodgson, 1990; Kuby and Lim, 2005; MirHassani and Ebrazi, 2013 ). A second dataset is a 
real-world representation of the California (CA) road network as presented in Fig. 3 ( Arslan et al., 2015; Yıldız et al., 2015 ). 
The data related to network specifications are presented in Table 1 . 

All of the instances are run on a desktop computer with 3.16GHz 2xDuo CPU, 2.00GB RAM. The algorithms are imple- 
mented using Java and CPLEX 12.5 ( IBM, 2013 ) with Concert Technology. 

5.1. 25-Node road network 

In the 25-node road network, all nodes are assumed to be origin and destination nodes similar to previous studies. 
Following the convention in the literature, we assume that the demand between OD pairs is directly proportional with 
the populations of the origin and the destination nodes, and inversely proportional with the distance between the OD 

pair, and the calculation of the vehicle flow is due to gravity model by Hodgson (1990) . The ranges considered in the 
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Fig. 2. 25-node road network. 

Table 2 

25-node road network results. 

25-node network in previous studies are 4, 8, and 12. Since we can handle multiple vehicle types in the same problem, 
we consider EVs and PHEVs with ranges 4, 8 and 12 for every OD pair with equal flows as attained from the gravity 
model. With these settings, we solved the problem using the BD algorithm with singlecut, multicut and Pareto-optimal 
cut generation schemes. The p value range is from 1 to 25. The results are presented in Table 2 . In the table, the second 
column represents the optimal solution value. We express this value as the percentage of covered distance with respect 
to the total coverable distance . Total coverable distance is defined as the difference in the objective function value of the 
CSLM-PHEV model when a charging station is located at all of the nodes in the network and when no charging station is 
located in the network. The third column is the solution time of the CSLM-PHEV model. Corresponding to each of the three 
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Fig. 3. California state road network. 

BD implementations, there are seven columns. # Subproblems shows the number of subproblems solved, # Cuts is the total 
number of cuts added, Prep.Sol.Time, Master Sol.Time and Subp.Sol.Time show the preprocessing time, master problem solution 
time and the subproblem solution time, respectively. Avg.Subp.Sol.Time is the average solution time of a single subproblem, 
found by dividing the Subp.Sol.Time by the # Subproblems. Total Sol.Time column is the total running time, which equals to 
the summation of preprocessing, subproblem and master problem solution times. 

There are some critical insights regarding the nature of the solution techniques. The BD algorithm with singlecut imple- 
mentation generally solves the most number of subproblems while the multicut implementations requires to solve the least 
number of subproblems to arrive at the optimal solution. However, the number of cuts added to the master problem is far 
more in multicut implementation than the other two cut implementations. The Pareto-optimal cut implementation solves 
more subproblems than the multicut, but the cuts added are far less in number. On the average, the Pareto-optimal cut 
generation scheme solves the problems faster than the other two cut generation techniques. As it will be apparent in the 
following parts, similar line of results can be observed in larger sized networks. 
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Table 3 

EV sales. 

Designator Range (km) Percentage in total EV sales (%) 

EV-1 426 25 .43 
EV-2 142 19 .58 
EV-3 132 54 .99 

Table 4 

PHEV sales. 

Designator Range (km) Percentage in total PHEV sales (%) 

PHEV-1 61 45 .13 
PHEV-2 32 20 .46 
PHEV-3 19 34 .41 

Table 5 

California road network results. 

5.2. California road network 

The CA dataset is a real world representation of the California road network with 339 nodes and 1234 arcs. 57 centers 
with a population of 50,0 0 0 or above are selected as the origin and destination nodes. Similar to Yıldız et al. (2015) , we con- 
sider all pairings of these nodes with at least 30 miles apart. There are 1167 such pairings as presented in Table 1 . As done 
in the 25-node network case, the vehicle flows between pairings are calculated using the gravity model ( Hodgson, 1990 ). 

Related to EV and PHEV sales numbers, Center for Sustainable Energy (2015) reports new-vehicle rebates on behalf of the 
California Air Resource Boards Clean Vehicle Rebate Project (CVRP). We can extract EV and PHEV sales versus brands to get 
the sales percentages in California State for vehicles with different ranges. Table 3 shows that 25.43% of the total EV sales 
have an extended range of 426 km (265 miles). Similarly, Table 4 shows that 45.13% of the PHEVs have a range of 61 km (38 
miles). Therefore, we have 6 copies for each of the 1167 OD pairs, three of them representing the EVs with different ranges, 
and the remaining three representing the PHEVs with different ranges. 

The California results are presented in Table 5 for problem instances ranging from p = 1 , through p = 20 with increments 
of one. After 20 charging stations where the coverage reaches to 94.49%, we increased p by 10, through 100, where the 
coverage reaches to 10 0.0 0%. Optimal solutions could be obtained by the CSLM-PHEV model and the BD algorithm with 
multicut and Pareto-optimal cut implementations. However singlecut implementation terminated with an optimality gap of 
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Table 6 

Summary of computational results. 

Parameter CSLM-PHEV Singlecut Multicut Pareto-optimal 

Avg. # Subproblems – 1148 .57 7 .32 43 .96 
Avg. # Cuts – 1131 .29 89871 .18 32 .79 
Avg. prep. sol.time (s) – 3 .03 6 .12 3 .47 
Avg. master sol.time (s) – 786 .81 56 .43 0 .70 
Avg. subp. sol.time (s) – 821 .05 194 .31 53 .21 
Avg. subp. sol. time (s) – 0 .71 26 .91 1 .14 
Avg. total sol. time (s) 874 .38 > 1610 .88 256 .87 57 .38 

less than 0.51% for p = 16 to p = 70 within an hour time-limit. The multicut implementation solution time is much smaller 
than singlecut implementation, however, it performs worse than the CSLM-PHEV model for instances with p = 50 to p = 90 . 
Also note that the number of cuts added are, on the average, 89871.18 ( Table 6 ). The results indicate that the number of 
subproblems and the solution times of the Pareto-optimal cut implementation do not get overwhelmed for increasing values 
of p . As seen in Table 6 , the average number of subproblems is 43.96 with an average solution time of less than one minute, 
which is on the average 15 times faster than the CSLM-PHEV model. Our BD algorithm with Pareto-optimal cut construction 
performs much faster than the CSLM-PHEV model and the other two cut construction techniques especially for smaller p 
values. The average speedup is nearly 30 times for p ≤ 20. For greater p values, the runtime of the CSLM-PHEV model also 
decreases and gets closer to the runtimes of the Pareto-optimal cut implementation of the BD algorithm. It is worth noting 
that even though BD algorithm is mostly used with the objective of solving problems of larger sizes rather than efficiency 
concerns, our implementation not only guarantees larger problem sizes (due to decomposition) but also presents promising 
results for the solution time reduction as well. To confirm this assertion, we also doubled the EV and PHEV demands for 
the CA network. That is, we considered 12 copies of demand for each OD pair rather than 6. In that case, the results of 
Pareto-optimal cut implementation are presented in Table 7 . The CSLM-PHEV model cannot even write the problem into 
the memory and results in out-of-memory error for every instance. However, BD algorithm does not explicitly create all the 
variables in the solution and continues to solve these large-scale instances within reasonable times. Duplicating the demand 
does not change the number of binary variables in the CSLP-PHEV problem, however the increase in the number of variables 
(namely the y and z variables) is drastic. Thus, the CSLM-PHEV model fails to solve the problem. For the BD algorithm, the 
subproblem solutions and the cuts are constructed in closed form, and this reduces the requirement for extensive memory. 

Table 8 lists the optimal charging station locations for p = 1 through 20. The first column shows the p value. For a given 
row, an ‘ × ’ sign shows that the corresponding node, as depicted in Fig. 4 , is selected. For example, for p = 4, nodes 2, 3, 
5 and 6 are the optimal locations of the charging stations. Observe that the optimal locations of the charging stations are 
robust in the sense that a node appearing in one solution shows up again in several different forthcoming solutions with 
increasing p values. Similar findings have been recognized in the literature for the flow-covering problems ( Upchurch et al., 
2009 ). 

If a node does not show up again, it is generally substituted by other nodes. For instance, node 1 shows up in most of 
the optimal solutions for p = 1 through 9. Then, nodes 12 and 13 start showing up in the optimal solutions for p = 10 and 
onwards. Looking at Fig. 4 , we observe that these nodes are geographically right next to each other. The same is also true 
for different node combinations as well. In particular, Node 1 leaves the optimal solution set and nodes 12 and 13 enter; 
node 7 leaves and nodes 2 and 4 enter; node 8 leaves and nodes 16 and 17 enter; node 11 leaves and node 14 enters; and 
node 14 leaves and node 11 reenters the optimal solution set again. 

For p = 20, all nodes shown in Fig. 4 except 1, 7, 8 and 14 are selected as charging station locations. These 4 nodes, as 
shown above, are substituted by other nodes in the network. Another point regarding the optimal charging station locations 
is that five of these 20 charging station nodes are also OD pairs. This number is quite significant, given that vehicles start 
with a full battery. 

The initial charging stations start showing up in the middle regions of the state on the highway nodes. Then, the selected 
nodes start spreading over to north and to the south of the initially selected node. The first seven charging stations gradually 
cover the highway nodes to connect the northern cities to the southern cities. The eighth charging station node connects 
Los Angeles to San Diego. Similarly, the ninth selected node connects San Francisco to Sacramento. According to the results, 
initially connecting the northern region to the southern region is critical. 

5.3. Solving the flow refueling location problem by the Benders decomposition approach 

Observe that the CSLP-PHEV is a generalization of FRLP. Therefore the BD algorithm proposed in earlier sections can also 
be implemented for FRLM. In this subsection, our objective is to test the performance of the BD approach with Pareto- 
optimal cut implementation (BD-PO) on the solution of FRLP. For this purpose, we consider the California dataset with 1167 
OD pairs, and only EVs but no PHEVs. Between each OD pair, we have t ∈ { 2 , 3 , . . . , 9 } types of EVs with ranges varying 
between 50 and 150 km. 
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Table 7 

California road network results with demand doubled. 

Table 8 

Optimal charging station locations for California road network. 

p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 ×

2 × ×

3 × × ×

4 × × × ×

5 × × × × ×

6 × × × × × ×

7 × × × × × × ×

8 × × × × × × × ×

9 × × × × × × × × ×

10 × × × × × × × × × ×

11 × × × × × × × × × × ×

12 × × × × × × × × × × × ×

13 × × × × × × × × × × × × ×

14 × × × × × × × × × × × × × ×

15 × × × × × × × × × × × × × × ×

16 × × × × × × × × × × × × × × × ×

17 × × × × × × × × × × × × × × × × ×

18 × × × × × × × × × × × × × × × × × ×

19 × × × × × × × × × × × × × × × × × × ×

20 × × × × × × × × × × × × × × × × × × × ×
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Table 9 

California road network BD-PO and FRLM solution times (s) for different number of EV types between each OD pair. 

t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 

p BD-PO AC-PC BD-PO AC-PC BD-PO AC-PC BD-PO AC-PC BD-PO AC-PC BD-PO AC-PC BD-PO AC-PC BD-PO AC-PC 

1 3 .9 18 .3 7 .8 34 .9 15 .6 155 .0 20 .1 287 .8 32 .5 426 .7 52 .2 725 .2 92 .0 897 .4 126 .6 N/A 
2 5 .5 11 .9 15 .5 89 .7 25 .6 152 .7 41 .0 293 .1 48 .3 456 .6 107 .2 372 .2 151 .2 513 .1 256 .9 N/A 
3 9 .0 12 .1 16 .5 9 .9 32 .8 49 .2 44 .0 103 .7 88 .0 307 .7 122 .2 165 .4 208 .3 235 .7 396 .5 N/A 
4 7 .8 13 .0 25 .2 62 .7 33 .8 140 .5 68 .2 283 .9 90 .6 306 .3 202 .2 435 .8 274 .2 542 .5 516 .1 N/A 
5 6 .6 4 .6 22 .1 9 .9 38 .4 18 .7 53 .1 54 .6 97 .5 70 .7 129 .1 70 .7 312 .7 256 .4 446 .1 N/A 
6 7 .9 11 .0 22 .6 30 .8 42 .2 49 .5 84 .8 236 .2 95 .5 157 .9 225 .6 166 .1 401 .5 340 .5 460 .7 N/A 
7 9 .6 13 .2 32 .7 26 .6 77 .1 141 .7 77 .8 317 .9 140 .9 330 .4 227 .0 358 .9 383 .5 441 .0 536 .9 N/A 
8 12 .7 15 .7 41 .7 46 .2 71 .4 213 .5 132 .3 358 .2 166 .7 570 .0 252 .3 497 .5 532 .9 483 .4 819 .1 N/A 
9 16 .9 23 .4 46 .2 102 .7 96 .5 240 .5 145 .9 437 .9 297 .0 1389 .3 353 .4 564 .6 716 .8 690 .0 1070 .9 N/A 
10 18 .5 16 .0 59 .1 67 .7 139 .5 175 .4 195 .3 685 .4 318 .3 830 .1 432 .1 715 .6 1066 .4 1015 .5 1588 .0 N/A 
11 22 .8 15 .2 93 .7 133 .2 137 .4 257 .9 251 .2 658 .8 294 .1 979 .7 450 .3 762 .9 918 .9 943 .1 1328 .9 N/A 
12 32 .4 22 .4 137 .0 211 .8 170 .7 293 .4 328 .9 447 .7 517 .6 747 .7 627 .5 1304 .3 1363 .2 N/A 1740 .3 N/A 
13 101 .5 47 .3 263 .7 392 .1 216 .5 314 .9 315 .2 585 .6 459 .2 1991 .3 804 .9 1969 .9 1340 .9 863 .7 2071 .6 N/A 
14 186 .0 53 .4 1140 .9 918 .2 203 .0 206 .8 336 .0 521 .1 670 .0 957 .2 942 .2 2202 .8 1777 .9 1388 .8 3573 .9 N/A 
15 163 .9 32 .8 1360 .8 502 .4 240 .1 265 .1 623 .6 990 .9 872 .0 1328 .0 1798 .9 5226 .4 1791 .6 N/A 2717 .3 N/A 
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Fig. 4. Optimal charging station locations for California road network. 

Table 9 shows the solution times of BD-PO method and the arc-cover path-cover (AC-PC) model by Capar et al. (2013) to 
solve FRLP. The first column is the number of stations ( p ) to be located. In the second and third columns, the solution times 
are depicted in a network with t = 2 different EV types between each OD pair. The results for t ∈ { 2 , 3 , . . . , 9 } are also 
shown in the table. The BD-PO algorithm consistently solves all of the instances whereas the AC-PC fails to solve some of 
the large scale instances for t = 8 and cannot solve any of the instances for t = 9 due to excessive memory requirement. 17 
of the 120 AC-PC instances could not be written to the memory of the computer. Therefore our BD-PO approach gives us 
the opportunity to solve large-scale instances of the problem. Furthermore, it also brings along computational efficiency. In 
80 of the remaining 103 instances, BD-PO algorithm outperformed the AC-PC. Average acceleration in runtime is 1.72 times 
and on some instances, the BD-PO algorithm solves 14.33 times faster than the AC-PC. Figs. 5 and 6 compare the solution 
times of the AC-PC and the BD-PO algorithm for p = 1 , . . . , 15 and for different EV types, respectively. Note that both figures 
depict the averages of those instances that both algorithms can solve to optimality. 
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Fig. 5. Solution times of AC-PC model and BD-PO in California road network for changing number of stations. 

Fig. 6. Solution times of AC-PC and BD-PO in California road network for changing number of EV types. 

6. Conclusions 

Potential environmental benefits of alternative fuel vehicles (AFVs) such as electric vehicles (EVs) and plug-in hybrid 
electric vehicles (PHEVs) are widely discussed in the existing literature. Maximizing the vehicle flow might be tricky when it 
comes to maximizing the environmental benefits, because hybrid vehicles can drive on both regular gasoline and alternative 
forms of fuels. Even though they are not considered in location decisions, they also widely contribute to the environmental 
benefits and maximal utilization of alternative-fuels needs to be considered as well. Maximizing the electricity usage in 
transportation is also equivalent to minimizing the total cost under the current cost structure between the electricity and 
the gasoline. 

To this end, we present the charging station location problem with plug-in hybrid electric vehicles (CSLP-PHEV) as an 
extension of the flow refueling location problem (FRLP). Different than previous studies, we consider hybrid vehicles in addi- 
tion to single-type fueled vehicles when locating the charging stations. Rather than considering solely the vehicle flows, our 
objective is to maximize the exploitation of the alternative fuels. With this green viewpoint, we maximize the environmental 
benefits. 

Additionally considering the PHEVs beside EVs complicate the already-difficult FRLP problem. In particular, we deal with 
this challenge by proposing an effective BD technique. Using the special structure of the formulation, we are able to con- 
struct subproblem solutions and associated cuts without the need to build and solve LPs. Furthermore, we can cleverly 
‘pick’ the Pareto-optimal cuts among several alternative cuts. We tested alternative cut construction techniques and results 
indicate that Pareto-optimal cut generation effectively decreases the solution times in orders of magnitude. Computational 
studies show that the BD algorithm is capable of solving realistic size instances. 

The scope of our problem and algorithm is not limited with PHEVs. With minor modifications, it can easily be adapted 
for all types of multi-fuel vehicles with engines that can run on multiple types of fuels such as Volvo Multi-Fuel, several 
military vehicles including M35 cargo truck and T-80 truck, or flex-fuel vehicles that run on gasoline or gasoline-ethanol 
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blends of up to 85% ethanol ( U.S. Department of Energy, 2016a ) such as Volvo Flexifuel, Volkswagen Total Flex, Chevrolet 
FlexPower, Renault Hi-Flex, and Ford Flexifuel. 

Future research in this area can be directed towards considering capacities of the stations. As the number of EVs and 
PHEVs increase, the capacities of the stations may become critical. Furthermore, considering the deviations of the drivers 
from the shortest paths might be another research direction. 
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Appendix A. Algorithms 

Algorithm 1: Single Cut Construction 

Input : ˆ x 
Output : A valid cut 
foreach ˆ q ∈ Q 

e v do 

Calculate z ̂ q using ˆ x and (39) 
if z ̂ q = 0 then // Prop.3 - Case(1) 

σ ˆ q ← 0 

φ ˆ q 
α ← f ˆ q e v d ̂

 q where α ∈ A 
ˆ q 
0 ( ̂  x ) is the first uncovered arc on the path 

φ ˆ q 
a ← 0 , ∀ a ∈ (A 

ˆ q 
e v \ α) 

else // Prop.3 - Case(2) 

σ ˆ q ← f ˆ q e v d ̂
 q 

φ ˆ q 
a ← 0 , ∀ a ∈ A 

ˆ q 
e v 

foreach ˆ q ∈ Q 
phe v and ˆ a ∈ A 

ˆ q 
phe v 

do 

foreach i ∈ R ˆ q ˆ a do 

Calculate y ˆ q i ˆ a using ˆ x and (44) 

if 
∑ 

i ∈ R ˆ q 
ˆ a 
y ˆ q i ˆ a = 0 then // Prop.4 - Case(1) 

ρ ˆ q 
ˆ a 
← 0 

μ ˆ q i 
ˆ a 

← f ˆ q 
phe v 

d ˆ q i ˆ a , ∀ i ∈ R ˆ q ˆ a \ s ( ̂  q ) 

else if 
∑ 

i ∈ R ˆ q 
ˆ a 
y ˆ q i ˆ a = 1 and y ˆ q s ( ̂ q ) ˆ a 

= 1 then // Prop.4 - Case(2) 

ρ ˆ q 
ˆ a 
← f ˆ q 

phe v 
d ˆ q s ( ̂ q ) ˆ a 

μ ˆ q i 
ˆ a 

← max { 0 , f ˆ q 
phe v 

d ˆ q i ˆ a − ρ ˆ q 
ˆ a 
} , ∀ i ∈ R ˆ q ˆ a \ s ( ̂  q ) 

else // Prop.4 - Case(3) 

ρ ˆ q 
ˆ a 
← f ˆ q 

phe v 
d ˆ q j ˆ a 

μ ˆ q j 
ˆ a 

← 0 

μ ˆ q i 
ˆ a 

← 0 , ∀ i ∈ R ˆ q ˆ a : i ∈ K ⋆ ( ̂  x ) , i � = s ( ̂  q ) , i � = j 

μ ˆ q i 
ˆ a 

← max { 0 , f ˆ q 
phe v 

d ˆ q i ˆ a − ρ ˆ q 
ˆ a 
} , ∀ i ∈ R ˆ q ˆ a : i / ∈ K ⋆ ( ̂  x ) , i � = s ( ̂  q ) , i � = j 

return η ≤
∑ 

q ∈ Q phe v 

a ∈ A q 
phe v 

i ∈ R q a \ s (q ) 

x i μ
qi 
a + 

∑ 

q ∈ Q phe v 

a ∈ A q 
phe v 

ρq 
a + 

∑ 

q ∈ Q e v 

a ∈ A q e v 
i ∈ K q a 

x i φ
q 
a + 

∑ 

q ∈ Q e v σq 
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Algorithm 2: Multicut Construction 

Input : ˆ x 
Output : Cut pool G 
foreach ˆ q ∈ Q 

e v do 

Calculate z ̂ q using ˆ x and (39) 
if z ̂ q = 0 then // Prop.3 - Case(1) 

foreach α ∈ A 
ˆ q 
0 ( ̂  x ) do 

σ ˆ q ← 0 

φ ˆ q 
α ← f ˆ q e v d ̂

 q 

φ ˆ q 
a ← 0 , ∀ a ∈ (A 

ˆ q 
e v \ α) 

G ← G ∪ { βe v 
ˆ q ≤

∑ 

i ∈ K ˆ q α
x i φ

ˆ q 
α } 

else // Prop.3 - Case(2) 

foreach α ∈ A 
ˆ q 
1 ( ̂  x ) do 

σ ˆ q ← 0 

φ ˆ q 
α ← f ˆ q e v d ̂

 q 

φ ˆ q 
a ← 0 , ∀ a ∈ (A 

ˆ q 
e v \ α) 

G ← G ∪ { βe v 
ˆ q ≤

∑ 

i ∈ K ˆ q α
x i φ

ˆ q 
α } 

σ ˆ q ← f ˆ q e v d ̂
 q 

φ ˆ q 
a ← 0 , ∀ a ∈ A 

ˆ q 
e v 

G ← G ∪ { βe v 
ˆ q ≤ σ ˆ q } 

foreach ˆ q ∈ Q 
phe v and ˆ a ∈ A 

ˆ q 
phe v 

do 

foreach i ∈ R ˆ q ˆ a do 

Calculate y ˆ q i ˆ a using ˆ x and (44) 

if 
∑ 

i ∈ R ˆ q 
ˆ a 
y ˆ q i ˆ a = 0 then // Prop.4 - Case(1) 

ρ ˆ q 
ˆ a 
← 0 

μ ˆ q i 
ˆ a 

← f ˆ q 
phe v 

d ˆ q i ˆ a , ∀ i ∈ R ˆ q ˆ a \ s ( ̂  q ) 

G ← G ∪ { δphe v 
ˆ q ̂ a 

≤
∑ 

i ∈ R ˆ q 
ˆ a \ s ( ̂ q ) 

x i μ
ˆ q i 
ˆ a 
} 

else if y ˆ q s ( ̂ q ) ˆ a 
= 1 then // Prop.4 - Case(2) 

ρ ˆ q 
ˆ a 
← f ˆ q 

phe v 
d ˆ q s ( ̂ q ) ˆ a 

μ ˆ q i 
ˆ a 

← max { 0 , f ˆ q 
phe v 

d ˆ q i ˆ a − ρ ˆ q 
ˆ a 
} , ∀ i ∈ R ˆ q ˆ a \ s ( ̂  q ) 

G ← G ∪ { δphe v 
ˆ q ̂ a 

≤
∑ 

i ∈ R ˆ q 
ˆ a \ s ( ̂ q ) 

x i μ
ˆ q i 
ˆ a 

+ ρ ˆ q 
ˆ a 
} 

else // Prop.4 - Case(3) 

ρ ˆ q 
ˆ a 
← f ˆ q 

phe v 
d ˆ q j ˆ a 

μ ˆ q j 
ˆ a 

← 0 

μ ˆ q i 
ˆ a 

← 0 , ∀ i ∈ R ˆ q ˆ a : i ∈ K ⋆ ( ̂  x ) , i � = s ( ̂  q ) , i � = j 

μ ˆ q i 
ˆ a 

← max { 0 , f ˆ q 
phe v 

d ˆ q i ˆ a − ρ ˆ q 
ˆ a 
} , ∀ i ∈ R ˆ q ˆ a : i / ∈ K ⋆ ( ̂  x ) , i � = s ( ̂  q ) , i � = j 

G ← G ∪ { δphe v 
ˆ q ̂ a 

≤
∑ 

i ∈ R ˆ q 
ˆ a \ s ( ̂ q ) 

x i μ
ˆ q i 
ˆ a 

+ ρ ˆ q 
ˆ a 
} 

ρ ˆ q 
ˆ a 
← max { f q 

phe v 
d qs (q ) a , max 

i ∈ R q a ∩ K 
⋆ ( ̂ x ) ,i � = j,i � = s (q ) 

{ f q 
phe v 

d qi a }} 

μ ˆ q j 
ˆ a 

← 0 

μ ˆ q i 
ˆ a 

← 0 , ∀ i ∈ R ˆ q ˆ a : i ∈ K ⋆ ( ̂  x ) , i � = s ( ̂  q ) , i � = j 

μ ˆ q i 
ˆ a 

← max { 0 , f ˆ q 
phe v 

d ˆ q i ˆ a − ρ ˆ q 
ˆ a 
} , ∀ i ∈ R ˆ q ˆ a : i / ∈ K ⋆ ( ̂  x ) , i � = s ( ̂  q ) , i � = j 

G ← G ∪ { δphe v 
ˆ q ̂ a 

≤
∑ 

i ∈ R ˆ q 
ˆ a \ s ( ̂ q ) 

x i μ
ˆ q i 
ˆ a 

+ ρ ˆ q 
ˆ a 
} 

return G 
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