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Abstract:  Flooding is the costliest form of natural disaster and impacts are expected to increase, 19 

in part, due to exposure of new development to flooding. However, these costs could be reduced 20 

through the acquisition and conservation of natural land in floodplains. Here we quantify the 21 

benefits and costs of reducing future flood damages in the United States by avoiding 22 

development in floodplains. We find that by 2070, cumulative avoided future flood damages 23 

exceed the costs of land acquisition for more than one-third of the unprotected natural lands in 24 

the 100-year floodplain (areas with a 1% chance of flooding annually). Large areas have an even 25 

higher benefit-cost ratio: for 54,433 km2 of floodplain, avoided damages exceed land acquisition 26 

costs by a factor of least 5 to 1. Strategic conservation of floodplains would avoid unnecessarily 27 

increasing the economic and human costs of flooding while simultaneously providing multiple 28 

ecosystem services.   29 
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Text 30 

Flooding is one of the most costly and damaging types of natural hazard in the world1. In 31 

the US alone, flooding has caused an average of more than $8 billion annually in damages since 32 

20002 and future damages are expected to rise due to climate change and continued development 33 

in high risk areas3. Incomplete and inaccurate mapping of flood risk zones hinders the ability of 34 

floodplain managers and planners to guide development to limit exposure and mitigate flood 35 

risk. The Federal Emergency Management Agency (FEMA) is tasked with delineating Special 36 

Flood Hazard Areas. These are zones projected to be inundated with a 1% annual exceedance 37 

probability (AEP) or “100-year” recurrence interval flood event and within which property 38 

owners are required to purchase flood insurance under the National Flood Insurance Program 39 

(NFIP). However, nearly 40% of the conterminous United States (CONUS) lacks this mapping 40 

for riverine floodplains, limiting the potential to plan new development to minimize future 41 

fluvial flood risk. Recent research has highlighted the shortcomings of current information and 42 

used new comprehensive floodplain mapping, revising estimates of people at risk from a 100-43 

year flood from 13 million to more than 40 million4.  44 

Flood risk management in the US is not only constrained by incomplete floodplain 45 

mapping but also relies heavily on built infrastructure to protect assets in the 100-year 46 

floodplain5. As many as 160,000 kilometers of levees protect more than $1.3Tn in assets, yet 47 

deferred maintenance and delayed repair prompted the American Society of Civil Engineers to 48 

give levees in the US a ‘D’ grade in its most recent report card, indicating that this infrastructure 49 

is “in poor to fair condition,… with strong risk of failure”6. When impaired and under-designed 50 

infrastructure fails, it can have catastrophic results for people and property that were presumed to 51 

be protected. This engineered approach to risk mitigation not only potentially exacerbates 52 

vulnerability by encouraging development in floodplains. It also disconnects floodplains from 53 

the channel, degrading important habitats and reducing the capacity of natural ecosystems to 54 

process nutrients, capture sediment, sequester carbon, recharge aquifers and perform a range of 55 

other critical functions7. The loss and degradation of these ecosystems reduces the multiple 56 

benefits that people derive from healthy rivers and floodplains and can exacerbate flood risk in 57 

other parts of the river system8, 9. Recent analyses demonstrate the potential for floodplain 58 

protection and restoration to help reduce risk at specific sites or river reaches10, 11, yet 59 

information does not exist to incorporate this strategy into regional decision-making and target 60 

efficient use of limited resources.  61 

To address this gap, we quantified the potential future flood damages that could be 62 

avoided by conserving current natural lands in floodplains, some of which are projected for 63 

development by 2050 and 2070. We used the output from a new continental-scale hydrodynamic 64 

model12 together with the National Land Cover Database (NLCD) to quantify the area of natural 65 

lands (forests, wetlands and grasslands) in riverine floodplains in the conterminous US. We then 66 

used the Protected Area Database of the US (PADUS) and the US Environmental Protection 67 

Agency (USEPA) Integrated Climate and Land Use Scenarios (ICLUS) of projected 68 

development patterns to identify areas of natural land cover in US floodplains that are not 69 

currently protected and are also projected to be developed. The hydrodynamic model enables 70 

locally accurate mapping of floodplains associated with varying frequencies of flood events at 71 

high resolution (1 arc second, ~30 m). We conducted spatial and economic analyses for 5 72 

different flood probabilities: the 20% AEP event or 5-year flood; the 5% AEP (20-year); the 2% 73 

AEP (50-year); the 1% AEP (100-year), and the 0.2% AEP (500-year) flood event. We identified 74 
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more than 675,919 km2 of natural lands in the 100-year floodplain across the conterminous US 75 

that are not currently in some form of protected status, while the 5-year floodplain contains more 76 

than 371,129 km2 of similarly unprotected natural lands (Table 1). Only a portion of these areas 77 

are projected to be developed by 2050 or 2070 under either of the two ICLUS future population 78 

growth and development scenarios considered in this analysis. In the 100-year floodplain, 79 

141,449 km2 and 127,928 km2 are projected to be developed by 2050 under the SSP5 (fossil-80 

fueled development) and SSP2 (middle of the road) scenarios respectively. Results in the main 81 

text are based on SSP2, the middle-of-the-road scenario. Results from the higher-development 82 

scenario (SSP5), which show greater avoided damages and therefore greater benefits of 83 

floodplain protection, are presented in the Supplementary Materials. 84 

The projected new development in floodplains would increase the number of assets at 85 

risk and thus the associated damages from flood events. We used the FEMA National Structure 86 

Inventory and the National Land Use Dataset13 to develop a per-pixel asset value of current 87 

developments, and iterated these values across the ICLUS land use projections. To estimate the 88 

economic impact of future floods we applied depth-damage functions from the US Army Corps 89 

of Engineers to quantify the expected damages to projected development from future flood 90 

events. We estimated the average annual losses (AAL) within each of the five floodplain 91 

boundaries for each year from 2018 to 2070. Since future development is projected to occur 92 

gradually we calculated the AALs for each year to capture the timing of expected increases in 93 

exposure and damages. We then calculated the present value (PV) of potential damages from all 94 

future flood events through both 2050 and 2070 using a standard 2.75% discount rate for water 95 

resources planning and evaluation14 as well as a higher 5% and a variable declining discount rate. 96 

The PV of future flood damages by 2070 ranges from $136 to $225 Bn in the 5-year floodplain 97 

and from $368 to $608 Bn in the 500-year floodplain, depending on the discount rate applied 98 

(see Supplementary Materials). 99 

However, these potential damages could be reduced if some of the currently unprotected 100 

natural floodplain lands were conserved and future development instead occurred outside of 101 

floodplains. Land acquisition is a strategy to prevent potential future development in areas that 102 

are at risk of flooding and to ensure open space is conserved. Other strategies, such as more 103 

restrictive zoning or establishment of conservation easements, could also avoid future 104 

development, but we quantified the cost to acquire all currently unprotected floodplain areas to 105 

provide an upper-limit estimate of the cost of avoiding these future flood damages through land 106 

acquisition. We developed a new county-level land cost layer for the CONUS based on actual 107 

parcel-level transactions made for conservation purposes, agricultural land prices from the US 108 

Department of Agriculture's 2017 Census of Agriculture15, and developed land prices from Davis 109 

et al.16, to estimate the acquisition cost of currently unprotected natural lands within floodplains 110 

for the flood events analyzed. Our estimates of acquisition cost represent the upper bound of the 111 

opportunity cost of floodplain protection; that is, the highest-value non-conservation land use 112 

foregone due to conservation (e.g., agriculture, developed). We calculated acquisition costs and 113 

damages for multiple floodplain areas corresponding with the 5-year, 20-year, 50-year, 100-year 114 

and 500-year flood zones. We then compared PV damage reductions and land acquisition costs 115 

within each floodplain (e.g. 5-year extent, 20-year extent, etc.). All dollar values used in the 116 

analysis and reported in the paper are for 2018.  117 

Purchasing the 675,919 km2 of unprotected natural lands in the 100-year floodplain 118 

would cost $306 Bn and purchasing all of the 371,129 km2 of unprotected natural lands in the 5-119 
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year floodplain would cost $172 Bn. We tallied the cost of acquiring all of the unprotected 120 

natural lands in the floodplains (not only those places projected to be developed in the ICLUS 121 

data) to account for uncertainty in development projections and because protecting only the 122 

specific lands projected to be developed would likely induce partial displacement (leakage) of 123 

development to other natural floodplain areas not currently identified in development 124 

projections. While our land prices reflect opportunity costs, including the option value of future 125 

development,17, 18 we explored the impact on results of adding an additional opportunity cost of 126 

1.4% of the county-level mean price for residential land and structures, which we estimate is 127 

equivalent to the mean loss in residential amenity values associated with proximity to rivers that 128 

owners or developers of displaced properties may incur (see Supplementary Information). 129 

However, protection of floodplains may not result in net loss of aggregate amenity benefit as 130 

displacement of development increases open space and associated home value premiums for 131 

remaining residential properties just outside the floodplain19.   132 

Comparing the floodplain acquisition costs to the flood damages associated with 133 

projected development, we find positive benefit:cost ratios (BCRs) for this floodplain 134 

conservation strategy for most, but not all, combinations of flood probabilities and discount rates 135 

evaluated for both 30-year (i.e. to 2050) and 50-year (i.e. to 2070) time horizons (Table SI1). At 136 

the scale of the conterminous US, using a 2.75% discount rate to compare floodplain acquisition 137 

to cumulative potential damages avoided by 2070, we calculate average BCRs ranging from 1.3 138 

for acquiring floodplains in the 5-year floodplain to 2.2 for acquiring floodplains in the 20-year 139 

floodplain (Figure 1). The strategy is also generally cost-effective even when evaluated over a 140 

shorter, 30-year time period, with average BCRs ranging from 1.1 for acquiring all floodplains in 141 

the 500-year floodplain to 1.5 for acquiring all floodplains in the 20-year floodplain; the one 142 

exception being the 5-year floodplain, which at the scale of the conterminous US has an average 143 

BCR of 0.9. For a higher discount rate of 5% and a 30-yr time horizon, acquisition costs exceed 144 

the benefits of avoided flood damages for most flood probability zones, with the exception of the 145 

20-year floodplain where the average BCR still exceeds 1. However, when the strategy is 146 

evaluated with a longer time horizon and accounts for potential damages out to 2070, floodplain 147 

acquisition is expected to be cost-effective across almost all flood probability and discount rate 148 

combinations. These findings are robust to higher costs that include the additional 1.4% 149 

opportunity cost: at the scale of the CONUS and under the standard discount rate, protection 150 

yields net benefits for all but the 5-year floodplain area over the 50-year horizon, and all but the 151 

5-year and 500-year areas over a 30-year horizon (Figure SI4).  152 

Although conserving floodplains to avoid damages from projected development is a 153 

strategy that produces net economic benefits across wide regions of the US (Figure 3), it is most 154 

cost-effective and produces the highest net present value (NPV) benefits when targeted to 155 

conservation of the region between the 5% and 20% AEP zones (Figure 2). The avoided flood 156 

damages in this area exceed the costs of acquiring these additional 158,786 km2 of unprotected 157 

natural floodplain by a factor of 2.9 by 2050 and 4.3 by 2070 using the 2.75% standard discount 158 

rate (Table 1), with NPVs of $133 Bn and $233 Bn, respectively. Although the 5-year floodplain 159 

inundates more frequently, projected development is greater in the area beyond the 5-year but 160 

within the 20-year floodplain, making this zone the economically optimal area to target for 161 

conservation. Additionally, our results indicate that floodplain conservation is most cost-162 

effective when targeted to certain areas of the country. Counties with the most projected new 163 

development, with the lowest land costs and that also experience frequent flooding show up as 164 
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the places where floodplain acquisition would likely yield the greatest BCR. Across the CONUS, 165 

the total BCR for acquiring land in the 20-year floodplain to avoid damages by 2070 is 2.2, yet 166 

floodplain acquisition is only cost-effective in the 55% of counties that have a BCR greater than 167 

1. This strategy would be particularly effective in 36% of counties that have a BCR exceeding 2  168 

and even more cost-effective in 13% of counties that have a BCR greater than 5. Regions of the 169 

country where floodplain protection generates particularly large net benefits include the 170 

southwestern US, the eastern Great Lakes, the Appalachians, and the areas around Miami and 171 

Houston (Figure 3).  172 

This analysis highlights the opportunity to mitigate future flood risk in the CONUS 173 

through targeted land conservation in riverine floodplains. We find that a strategy of floodplain 174 

acquisition would be economically justified when compared to the present value of avoided 175 

flood damages projected to occur by 2070. Our estimate of costs is likely high since it presumes 176 

the direct purchase of all of the currently unprotected natural lands in floodplains. Use of 177 

conservation easements or changes in zoning or land use regulations could achieve floodplain 178 

conservation at a much lower cost20. Moreover, our estimate of benefits is likely low because 179 

floods impose a wide range of additional costs on society beyond the direct damages to building 180 

structures considered in our analysis21. Total damages likely would be at least 25% higher than 181 

our estimates of avoided direct damages, and possibly substantially more for larger flood 182 

events22, 23. Our estimate of damages does not account for potential protection that could be 183 

provided by additional flood defense mechanisms and likely overestimates damages in areas 184 

where development behind levees would be protected from some levels of flooding. However, 185 

levees impose construction, operation and management costs which we also do not tally. Built 186 

infrastructure also creates a “levee effect”, inducing complacency and encouraging risky 187 

development 24 which can lead to even greater damage costs if and when levees fail. Use of built 188 

infrastructure in certain areas of the floodplain also exaerbates flood risk elsewhere, which could 189 

increase damage costs beyond what we have estimated in this analysis25. Additionally, our 190 

analysis does not incorporate projected climate change impacts on flooding, which are expected 191 

to increase the frequency and severity of floods in some areas of the US26, 27, likely exacerbating 192 

damages. Finally, our estimates of the benefits of floodplain conservation focus solely on 193 

avoided damages, undervaluing other ecosystem services related to water quality, carbon 194 

sequestration, provision of habitat, and conservation of the option value of future development in 195 

places where the benefit-cost calculation changes over time28, 29.  196 

 This analysis demonstrates for the first time that targeted conservation of natural lands in 197 

floodplains to avoid potential development is an economically beneficial strategy to mitigate 198 

future flood risk in the US. This strategy would not be viable or appropriate everywhere yet 199 

could be utilized to a much greater extent than currently in combination with other flood risk 200 

reduction efforts. The impacts of flooding are context-specific and local, and the high resolution 201 

of the flood and economic data we employ enable identification of specific areas where 202 

floodplain protection yields strong net economic benefits. Ongoing development in floodplains 203 

globally and the lack of stringent floodplain zoning and development regulations in many 204 

countries suggest that similar analyses would yield comparable results in other areas of the 205 

world. These findings can inform proactive and integrated flood risk management and efforts to 206 

steer development out of harm’s way could complement use of flood defenses and other risk 207 

reduction measures and generate net economic benefits to society.   208 

 209 
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METHODS 210 

Flood Hazard Model 211 

The hazard layers of the CONUS used in this analysis, representing fluvial flooding in river 212 

basins larger than 50 km2 and pluvial flooding everywhere, are detailed in Wing et al.12. The 213 

underlying terrain is represented by a Digital Elevation Model (DEM) derived from the US 214 

Geological Survey (USGS) National Elevation Dataset (NED) at 1 arc second (~30 m) 215 

resolution. The HydroSHEDS global hydrography dataset30 delineates the river network. 216 

Channels wider than the grid resolution (~30 m) are burned directly into the DEM, while smaller 217 

streams are represented using the subgrid method of Neal et al.31. Known flood defenses from 218 

the US Army Corps of Engineers (USACE) National Levee Database are also burned into the 219 

DEM. The fluvial model component involves driving design discharges of given probabilities 220 

through the HydroSHEDS-derived channels and over the NED-derived floodplain using the 221 

inertial form of the shallow water equations in two dimensions (based on the LISFLOOD-FP 222 

numerical model32, 31). These design discharges are based on river gauge records, and the issue of 223 

ungauged catchments is addressed by applying a global regionalized flood frequency analysis 224 

(RFFA)33. The principle of the RFFA methodology is that data from gauged catchments can be 225 

transferred to ungauged ones. Catchments are grouped into homogenous clusters based on 226 

upstream annual rainfall, land area and climatology, and it is assumed that catchments within 227 

each group share similar flood frequency behavior. Using their mean annual flood and growth 228 

curves, every river reach in the CONUS has ten design discharges of a given probability 229 

calculated between 20% AEP (so-called 1 in 5-year recurrence interval) and 0.2% AEP (so-230 

called 1 in 500-year recurrence interval). 231 

 The pluvial component of the hazard model simulates flooding resulting from intense 232 

rainfall directly onto the land surface. As with the design discharges, ten return period rainfall 233 

scenarios are generated using Intensity-Duration-Frequency (IDF) relationships defined by the 234 

National Oceanic and Atmospheric Administration (NOAA). Similar to the RFFA-derived 235 

discharges, the IDF data are clustered based on their climatology and upstream annual rainfall so 236 

that each grid cell in the DEM has a design rainfall scenario. Using a modified Hortonian 237 

equation of Morin and Benyamini34 and the Harmonized World Soil Database of the Food and 238 

Agriculture Organization of the United Nations (FAO), the pluvial model accounts for the 239 

infiltration of this rainfall into the ground. The drainage of water in developed areas is also 240 

accounted for. A drainage design standard is assumed based on the intensity and duration of the 241 

rainfall scenario as well as the degree of urbanization, inferred from the satellite luminosity data 242 

of Elvidge et al.35. River catchments smaller than 50 km2 in land area are simulated in the 243 

pluvial, rather than fluvial, model component for a number of reasons: i) flood hazard on these 244 

small streams is characterized by a flashy response to intense and localized rainfall, better 245 

captured by the pluvial model; ii) the availability river flow data for these small streams is 246 

limited; and iii) their representation in the RFFA is unsuitable owing to their heterogenous flow 247 

behavior. 248 

 The fluvial and pluvial model components are used in conjunction to form a single 249 

integrated hazard layer for each return period. Each grid cell in this layer represents the 250 

maximum water depth of either component. Pluvial water depths smaller than 0.15 m are 251 

ignored; a threshold commonly used for surface water masks36, 12. These hazard layers are 252 

intersected with an array of spatial data, which are described in the following paragraphs. 253 

 254 
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ICLUS future land-use projections and land-use land-cover data 255 

We integrated multiple publicly-available spatial data layers to identify floodplains at risk for 256 

potential development where land acquisition could be a cost-effective flood damage reduction 257 

strategy. Future projections of potential development in the CONUS have been generated by the 258 

US Environmental Protection Agency (EPA) Integrated Climate and Land-Use Scenarios 259 

(ICLUS) project37. Based on assumptions relating to future technological innovations, fertility 260 

rates and migration patterns, possible maps of land-use in the CONUS have been generated for 261 

future scenarios, known as Shared Socio-economic Pathways (SSPs), for each decade up to 262 

2100. The various future scenarios not only differ in the amount of projected population growth 263 

and associated area of development, but they also provide different spatial projections about 264 

where development may occur. In this study, we focus analysis on SSP2: the most-likely 265 

scenario where population growth tracks the US Census Bureau projection and historical 266 

migration patterns continue. 267 

 Using the National Land Cover Database (NLCD) of the Multi-Resolution Land 268 

Characteristics Consortium (MRLC38) and USGS Protected Areas Data (PADUS), the total area 269 

of floodplains currently in unprotected natural land cover can be ascertained. In conjunction with 270 

the future land-use maps, we have used this information to estimate which future developments 271 

are ‘new’; that is, a floodplain currently in unprotected (as per PADUS), natural land cover (as 272 

per the NLCD) that is projected to be developed (as per ICLUS). 273 

 274 

Economic Assessment of Flood Damages  275 

We quantified the economic losses of flood damages estimated to occur as a result of projected 276 

future development. Economic values (in 2018 USD) were assigned to particular ‘developed’ 277 

land-use classes. The Federal Emergency Management Agency (FEMA) National Structure 278 

Inventory contains information on buildings in the CONUS. The location and value of these 279 

structures has been intersected with the National Land Use Dataset (NLUD) of the present-day13, 280 

thereby producing an average value per pixel of different classifications. Iterating these values 281 

across the future land-use maps means that the economic value of developments on currently 282 

unprotected natural land can be estimated. To generate an idea of actual damages that may occur 283 

to these assets as a result of flooding, relative depth-damage relationships are applied. These 284 

relationships are based on empirical and synthetic damage data collated by the USACE. 285 

Different damage functions are applied depending on the type of development: residential, 286 

commercial, institutional, industrial or transportation. Using these relationships between the 287 

water depth and the economic value in a particular cell produces an expected damage from a 288 

certain return period flood. 289 

 Expected yearly damages, or average annual loss (AAL), is the integral of the 290 

probability-damage curve39. We calculate the AAL using the formula:  291 

 292 

    	 = ( )..  293 

 294 

where L is the economic loss as a function of each flood frequency f, calculated for all 295 

probability flood events between a 20% AEP (5-year) and 0.1 % AEP (1000-year) flood events. 296 

We calculated the AAL of developments projected to be built in currently natural unprotected 297 

floodplain land at each decadal time step to 2070. Yearly AALs were calculated by interpolating 298 
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between those at each of the decadal time steps. To estimate the value of all future avoided flood 299 

losses we calculated the Present Value (PV) using the formula:  300 

 301 

     302 

 303 

Where AALn is the average annualized loss for year n and r is the annual discount rate. We 304 

applied three discount rates – 2.75%, 5% and a declining social discount rate – to ensure our 305 

conclusions are robust to multiple justifiable economic assumptions. In the US, federal water 306 

resources projects use discount rates which are determined by Section 80(a) of the Water 307 

Resources Development Act (WRDA) of 1974; Congressional Research Service (2016) and the 308 

Water Resources Council's Principles and Standards for Planning Water and Related Land 309 

Resources Projects, established pursuant to the Water Resources Planning Act (WRPA) of 1962 310 

(42 U.S.C.). In FY2018, applicable regulations under both laws set the water resources planning 311 

discount rate for US Army Corps of Engineers projects at 2.75 percent (Natural Resources 312 

Conservation Service 2017). The WRDA/WRPA-prescribed fixed rate of 2.75 percent was used 313 

as our baseline discount rate, however, to explore the sensitivity of our findings to changes in the 314 

discount rate, we also ran our analysis with two additional rates. First, we used a fixed real social 315 

discount rate (SDR) of 5 percent, to better capture the social opportunity cost of capital and 316 

which a recent analysis suggests is a better approximation of private returns for the US than the 317 

Office of Management and Budget’s 7 percent rate40. The second is a certainty-equivalent social 318 

time preference-based SDR for long-lived projects estimated by Freeman et al.41, which is based 319 

on historical US interest rates and starts at 4 percent, declining to 2.75 percent in year 25 and 2.5 320 

percent in year 50. We applied these discount rates to sum the AALs up to the years 2050 or 321 

2070, respectively, to calculate the present value of the total expected future damages to such 322 

developments up to each of those target years.  323 

 324 

Economic Assessment of Acquisition Costs 325 

To estimate the costs of avoiding future potential flood damages we calculated the costs of 326 

acquiring land at risk for development. We estimated the average acquisition cost in three steps, 327 

incorporating actual acquisition costs of land for conservation, agricultural land values, 328 

developed residential land values, economically optimal lot sizes, and plattage effects. 329 

 330 

Step 1: Acquisition Size  331 

The optimal lot size for a housing producer decreases with the price of land, and as the price of 332 

land falls with distance from the economic center of the area, the average lot size increases42-45. 333 

The relation between our acquisition lot size and the land price can be expressed as a linear 334 

function using county-level ( ) land price data and parcel-level ( ) parcel size. Values for 335 	 ∗ are from estimates external to the parcel-level transactions database. 336 

 337 ln = + ln 	 ∗ +  

 338 

In the equation above, the (log) area of the purchased parcel is expressed as a function of a 339 

constant term, a, the (log) price per unit of area multiplied by a coefficient, b, and a residual, e.  340 
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When the parameters are estimated using OLS estimation, the resulting estimates,  and  are 341 

then used to predict the acquisition lot sizes for different counties, as ln = +342 ln 	 . This acquisition lot size is then used in the next two steps of the method. 343 

 344 

Step 2: Plattage Adjustment 345 

Within an area, variation around the optimal lot size is associated with variations in the land 346 

price per acre, a phenomenon referred to as a “plattage effect”.  Plattage effects reflect variation 347 

in lot quality, with smaller lots typically of higher average quality and larger lots of lower 348 

average quality. Plattage effects are eliminated using a regression approach following Davis et 349 

al.46.  This model estimates the price of a lot as a function of submarket fixed effects (to control 350 

for optimal lot size) and the lot size of the parcel.  351 

 352 ln 	 = + ln + ln 	 ∗ +  

 353 

The estimates from step 1 can be nested into this specification to transform  into a relative 354 

measure. While transformation is not necessary asymptotically, it reduces the number of 355 

estimated parameters substantially, and is thus more efficient in small samples. 356 

 357 ln 	 = + (ln − ln ) + ln 	 ∗ +  

 358 

Step 3: Average Acquisition Cost 359 

Using the estimates in steps 1 and 2, average acquisition cost per acre can be estimated for each 360 

county as  361 

 362 	 = 	exp	( + ln + ln 	 ∗) 

 363 

We used a database of 1,405 land purchases by The Nature Conservancy (TNC) between 364 

2009 and 2018 to build a model that predicts the average cost of land acquisition for 365 

conservation. We built a model rather than directly using the average observed purchase costs for 366 

particular areas because: 1) we did not have observed land purchases in every county in the 367 

CONUS; 2) purchase price varies based on parcel size and a model was required to correct for 368 

this (as described below); 3) there is large variation in individual purchase prices and using a 369 

model reduces the noise that would otherwise be introduced by outlier individual purchases.  370 

County-level land price data are from two sources. The first is average farmland values 371 

by county from the 2017 Census of Agriculture produced by the US Department of 372 

Agriculture15. The second source is land underneath single-family residential structures found in 373 

Davis et al.16. This source measures the value of already-developed parcels which presumably 374 

are more desirable and higher-value than land that is currently undeveloped. To counteract this 375 

upward bias in our estimate, we use the minimum tract-level land price per acre within a county 376 

as the county-level value. In both the agricultural and residential land databases, there are 377 

missing values, because there are too few farms in an area to produce an estimated agricultural 378 

value, or too few single-family housing units in an area to produce a residential value. To arrive 379 

at an estimated value for every county in the nation, a chained predictive-mean-matching 380 

imputation algorithm is used. Additional variables used in the imputation algorithm are from the 381 
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American Community Survey for the pooled 2013-2017 sample. These variables include the 382 

median home value (log), the population (log), the average structure age (log), the residential 383 

structure type, state fixed effects, and imputation fixed effects representing whether or not the 384 

agricultural or the residential land is in the process of being imputed. 385 

The steps described above were implemented using agricultural land in the optimal lot 386 

size model (Model 1) and both the agricultural and residential data separately as 	 ∗ in 387 

the plattage model (Model 2) (Table SI4 and Figure SI5). Parcels with easements are included in 388 

Model 1 but dropped from Model 2 because they provide information on the price-acquisition 389 

size relation but do not reflect the kind of land that is the subject of the benefit-cost exercise 390 

carried out in this study. In Model 1, as predicted, the acquisition lot size in the TNC data falls 391 

with the agricultural land price per acre. In Model 2, both the agricultural and residential land 392 

price per acre is predictive of the acquisition land price. The plattage effect is negative, with 393 

parcel sizes in excess of the predicted county-level optimum facing a discount, and parcel sizes 394 

smaller than the optimum priced at a premium. Estimates from Model 2 are used to estimate the 395 

acquisition land price per acre used in this study. 396 

 We quantified acquisition costs in multiple zones: the 20% AEP (5 year), 5% (20 year), 397 

2% (50 year), 1% (100 year), and (500 year) floodplains, as well as the differential areas between 398 

them (e.g. the 2% zone minus the 5%). Comparing the costs of land acquisition to the potential 399 

damages flooding may cause to future developments will give some indication, in economic 400 

terms, of the benefits of targeted floodplain conservation. If such areas are conserved and 401 

projected developments do not occur, then the calculated damages up to 2050 and 2070 can be 402 

considered ‘mitigated’. The BCR of mitigated damages to acquisition costs will indicate whether 403 

a certain acquisition zone within a certain county is cost-effective (BCR > 1) or not (BCR < 1). 404 

 405 

Data Availability 406 

Publicly available data: 407 

• USGS National Elevation Dataset: http://www.ned.usgs.gov 408 

• HydroSHEDS: http://www.hydrosheds.org 409 

• USACE National Levee Database: http://www.nld.usace.army.mil 410 

• FEMA National Structure Inventory: http://data.femadata.com/FIMA/NSI_2010 411 

• MRLC National Land Cover Database: http://www.mrlc.gov/nlcd2011.php 412 

• USGS PAD-US: http://gapanalysis.usgs.gov/padus 413 

• Theobold (2014) National Land-Use Dataset: 414 

http://csp-inc.org/public/NLUD2010_20140326.zip 415 

• EPA ICLUS scenarios: http://www.epa.gov/iclus 416 

• FAO Harmonized World Soil Database: http://www.fao.org/soils-portal/soil-survey/soil-417 

maps-and-databases/harmonized-world-soil-database-v12/en 418 

• NOAA Intensity-Duration-Frequency curves: http://hdsc.nws.noaa.gov/hdsc/pfds 419 

• Elvidge et al. (2007) satellite luminosity data: http://www.ngdc.noaa.gov/eog 420 

• USDA Census of Agriculture: https://www.nass.usda.gov/Quick_Stats/index.php 421 

• FHA residential land price data: 422 

https://www.fhfa.gov/PolicyProgramsResearch/Research/Pages/wp1901.aspx 423 

 424 

Data available for non-commercial academic research purposes: 425 
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• Flood hazard data: contacting Christopher Sampson at Fathom Ltd. 426 

(c.sampson@fathom.global) 427 

• Hydraulic model, LISFLOOD-FP: 428 

http://www.bristol.ac.uk/geography/research/hydrology/models/lisflood/downloads/ 429 

• Global Runoff Data Center discharge data: 430 

http://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html 431 

  432 
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 576 

Annual 
Exceedance 
Probability 
Flood Zone 

Cumulative 
area of 

unprotected 
natural 

floodplain 
(km2) 

Area of additional 
unprotected 

natural floodplain 
(km2) 

 Area of additional 
unprotected 

natural floodplain 
with BCR > 1 

(km2) 

Benefit:cost 
ratio for 

additional 
floodplain 

area 

Cumulative 
benefit:cost 

ratio 

20% (5 yr) 371,129 371,129 124,559 1.30 1.30 

5% (20 yr) 529,915 158,786 102,249 4.33 2.18 

2% (50 yr) 617,011 87,096 29,553 1.39 2.07 

1% (100 yr) 675,919 58,908 6,750 0.49 1.94 

.2% (500 yr) 824,112 148,193 4,841 0.23 1.64 

 577 

Table 1. Total area of unprotected natural floodplain, area where avoided flood damages 578 

exceed acquisition costs, and benefit-cost ratios for acquiring additional unprotected 579 

natural floodplain areas. Areas and benefit-cost ratios calculated for development 580 

projected under SSP2 by 2070 using a 2.75% discount rate. 581 

  582 
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Annual 
Exceedance 
Probability 
Acquistion Area  

2050 2070 

2.75% 5% Variable 2.75% 5% Variable 

20% (5 yr) 31% 22% 29% 42% 28% 40% 

5% (20 yr) 44% 35% 43% 55% 41% 53% 

2% (50 yr) 44% 40% 42% 54% 40% 52% 

1% (100 yr) 42% 38% 40% 52% 38% 50% 

.2% (500 yr) 38% 34% 36% 48% 34% 46% 

Table 2. Percentage of US counties with BCR > 1 by 2050 and by 2070 calculated using 583 

three different discount rates.  584 

 585 

  586 
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 587 

Figure 1. Costs to acquire unprotected natural floodplain areas for each of five annual 588 

exceedance probability flood zones and the present value of future damages mitigated by 589 

avoiding development in each floodplain.  590 

  591 
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 592 

Figure 2. The area of each additional return period acquisition zone that exceeds a certain 593 

benefit-cost ratio (BCR). For instance, the 20% AEP (5 yr) floodplain has 17,328 km2 with 594 

BCR > 5, 38,495 km2 with BCR > 3 and 124,559 km2 with BCR > 1.  595 
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 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

Figure 3. Map of counties and associated benefit-cost ratios for the strategy of acquiring 613 

natural lands in 1% AEP (100-yr) floodplain to avoid future projected flood damages up to 614 

2070 using a 2.75% discount rate. 615 

 616 
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  618 

Figure 4. Costs to acquire unprotected natural floodplain areas for each of five annual 619 

exceedance probability flood zones and the present value of damages mitigated by 2070 620 

calculated using three different discount rates.  621 
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 623 

 624 

Figure 5. Maps of selected counties showing the 1% AEP floodplain, unprotected natural 625 

floodplain land and areas projected to be developed by 2070 within it. (a) Story County, 626 

IA: avoided damages = $820M; acquisition costs = $61M; BCR = 13.4; (b) Los Alamos 627 

County, NM: avoided damages = $22M; acquisition costs = $6.5M; BCR = 3.4; (c) St Louis 628 

County, MN: avoided damages = $3.4Bn; acquisition costs = $362M; BCR = 9.5; (d) 629 

Fairfax County, VA: avoided damages = $1.1Bn; acquisition costs = $150M; BCR = 7.0; (e) 630 

Delaware County, PA: avoided damages = $403M; acquisition costs = $45M; BCR = 9.0. 631 


