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Abstract. Let P¡¡a'^\x) be the Jacobi polynomial of degree n. For -j <

a > ß < j and 0 < 8 < it, it is proved that

(-.fri(«f)^*iii"'Ä(«*)i<^i("*f)i^iI

where q = max(a, ß) and N = n + j{a + ß + 1). When a = ß = 0, this

reduces to a sharpened form of the well-known Bernstein inequality for the

Legendre polynomial.

1. Introduction

It is well known that the Legendre polynomial P„(x) satisfies the inequality

(1.1) (sin0)i|P„(cos0)| <(-)*«-*,    O<0<?r;
n

see [9, (7.3.8), p. 165]. This inequality is due to S. N. Bernstein, who was the

first to determine the least possible constant, ( £)i. Recently, by using complex

variable methods, Antonov and Holsevnikov [1] have shown that the factor

n~^ in (1.1) can be replaced by (n + j)~i ; that is, they have demonstrated the

sharper result

(1.2) (sin0)*|P„(cos0)| <(-)*(«+ ^)-*,    O<0<7T.

Later, Lorch [7] has provided an alternative proof of (1.2), by utilizing essen-

tially a sharpened form of Bernstein's real variable method. Furthermore, in [8]

he has shown that the ultraspherical (Gegenbauer) polynomial PJ^ (x) satisfies
the inequality

(1.3) (sin0)A|FiA)(cos0)| < 2X-X{T(X)}-X(n + Xf~x
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for 0 < X < 1  and 0 < 0 < n, which of course improves the customary

inequality

(1.4) (sin0)Â|PiA)(cos0)|<2'-A{r(/l)}-1«A-1,        O<0<tt,

given in [9, (7.33.5), p. 171]. Inequality (1.3) also follows from a more general

inequality given by Durand [3, (23)]; see a remark made in [8].

As regards the more general Jacobi polynomial P„ (x), there does not

seem to exist an inequality generalizing (1.4). Except for the simple, yet impor-

tant, estimate

(1.5) f^MI <(" + *),        -1<x<1, q = max(a,ß)>~,

all we have is the following more recent result of Baratella [2]:

(1.6) (sin^)a+i(cos|/+^|FiQ'/,)(cos0)| < 2.821 f" + "W""*,

where 0 < 0 < § , -\ < a, ß < ^ , and

(1.7) N = n + ?t±l±l.

In view of the reflection formula [9, p. 59]

(1.8) F<a'/?)(-x) = (-l)"F^'a)(x),

Baratella's result in (1.6) can be expressed in the form

(1.9) (sin|)a+i(cos|)^^|Fia,/?)(cos0)|< 2.821 ("^V"'-*

for 0 < 0 < n and -\ < a, ß < \ , where q = max(a, ß). In this note, the

inequality in (1.6) will be sharpened. Indeed, we shall show that

(1.10) (sinfri(cosf)^|Pi-^(cos0)| < I^+H (" + *) AT«"*

for 0 < 0 < n and —\ < a, ß < j ■ When a and ß are restricted to the

interval [-\,   4], it is known that T(q + 1) < r(^). Hence (1.10) improves
(1.9) by a factor of 2.821. Baratella's proof is based on an integral equation

satisfied by the Jacobi polynomial, whereas our approach is motivated by the

complex variable method of Antonov and Holsevnikov [1].

If a = ß = 0, then our result (1.10) immediately yields (1.2). In the case

of ultraspherical polynomials, i.e., when a = ß = X- j , we can also show that

(1.10) reduces to (1.3), provided that 0<A<j.If5<2<l, then our result
reduces to one which is only slightly weaker than (1.3). For a more detailed

discussion of this case, we refer to a remark in Section 4.

2. A Mehler-type integral

Let N be given as in (1.7) and put

9(a+^+l)/2p/rv   i   1 \

(2.1)        K(a, ß, 6) =     r('K*x\  J(l-cos0)-°(l+cos0)-(°+W2.
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For 0 < 0 < n and Re a > -\ , Gasper [4] has given the following Mehler-type

integral for the Jacobi polynomial

(2.2)
Pia'ß)(cos6) fe cos N<t>
-;-ÖT-= K(a, ß , 6) /    -¡—

Fia>/?)(1) Jo  (cos(t>-cos6)i-a

^,a + ß    a-ß 1    cos0 -cosd\ , .
xf(T'T;a+2;    l+cos0   M>

where F (a, b; c; z) denotes the hypergeometric function and

(2.3) PtJ)(l)=(n+na

Motivated by the method in [1], we consider the remainder

(2.4) *■(*■«)-E'vi,"^.m=n     *m       (l)

In view of the asymptotic behavior of Pn0'^ (cos 6), the series in (2.4) clearly

converges uniformly in 8 £ (0, n). Inserting (2.2) in (2.4) gives

R

(2.5)

/ ns        T,, n     m    [&  r^,a + ß      a~ß l      COS 0 - COS 0,
n(x,6) = K(a,ß,6)Jo F{—E-t-JLla + tt    1+CM$9)

1 °°
x-¡— Y icosM<j))xmd<l>.

(C0S<f>-C0Sd)h-«tn

where M = m + \(a + ß + I). Since the series under the integral sign can be

summed up as
j /     eiN<t> e-iN<j>
-X"     —-h -
2     V.1 -xe'*     1 -xe-rtj '

we may rewrite (2.5) in the form

(2.6) ^Rn(x, 6) = l-K(a, ß, 0) • I(a, ß, 6),

where

u     r   m       i" J7ta + ß   a~ß .     ■  l . COS0-CQS0,

x-i— * "i-7jd<t>.
(cos</>-cos8)1i-a    l-xe*

To the last integral, we now apply the quadratic transformation [6, p. 251]

(2.8)

F(a,b;a + b + -;z)= Í-1

xF(a-b + -,b-a + ^;a + b + -;-=-),

which is valid for |arg( 1 - z)| < n and a + b + \ ± 0, -1, -2,.... In our case,

we have

.... a + ß       ,      a-ß cos 0-cos 0
(2'9) û=    2    '    * = —'    and    Z=    l+cos0   •
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Using the trigonometric identity 1 + cos</3 = 2cos2((/>/2), it is easily seen that

cos<f>- cos0 = 2[cos2((j)/2) - cos2(0/2)] and

líyT^z     cos(0/2)±cos(¿/2)

[      ' 2 2cos(0/2)

Consequently, it follows from (2.7) that

(2.11)

I(a,ß,d) =
21-2a[cos(0/2)]ï-a

l.Äj.I. cos(0/2) - cos(<¿>/2)

!cos(0/2)

1 eiN*

„   í   ir/o ,   1       a j
Xi_/(^ + 2'^+2'a+2'-2cos(0/2)

[cos(</./2)-cos(0/2)]i-a    1-Jce'*

(Note that Re a > -\ and hence a + \ ^ 0, -1, -2, ... .) Since 1 - cos0 =

2sin2(0/2), equation (2.1) can be written as

(2.12) K(a,ß,6) = ^±1)    2i-(sinf )-2«(cosf )-«^.
r(¿)r(a + i) 2 2

A combination of (2.6), (2.11) and (2.12) gives

(2.13) -U„(x, 0) = 2"-\J}"+1},  (sinf)-2°(cosf)-^r(a,/?, 0),
* r(i)r(a + 3)        2 2

where

™„   «  m     f8 F(fi+l      R !  *-.-v ,  *• œs(0/2) - cosW2)
Iia,ß,6)=        F(ß + -,-ß+ ^,a+-;-,,_,fl ^

2cos(0/2)

(2-14) ! ^
X   -:- •-77 dé.

[cosi4>/2) - cos(0/2)]i-a    l-xe'*

So far the only conditions which we require are

(2.15) O<0<7r    and    Rea>-±.

Now we deform the path of integration in (2.14) into two vertical lines Re </> — 0

and Re <f> — -8 . This can be achieved by showing that the contribution from
the horizontal line segment, Im é = T and -6 < Re è < 8, approaches zero

as T —► +00. Thus we have

(2.16) Via, ß,6) = il-(a,ß,8) - il+(a, ß, 0),

where

(2.17)

r  /       o   m        frífl       1 0       1 1     COSÍ0-COSÍ(±0 + IT)I±(a,ß,d)=        F(ß + -,-ß + ^;a + = ;-2--^-¿
Jo 2 2 2 2cosi02l

eiN(±e+h) (¡x

[cos i(±0 + it) - cos i0]i-° 1 - xe'(±e+'T
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The validity of (2.17) requires that

(2.18a) a + ß>0   and   ß >-\;

see the conditions for equation (3.1) below. Since the hypergeometric function
F (a ,b;c;z) is symmetric in a and b, (2.17) is also valid under the conditions

(2.18b) a>ß>-\.

One could have proceeded with the deformation of contour directly from the

integral in (2.7), but this would yield a smaller region of validity for the param-
eters a and ß .

Our next step is to estimate the integrals in (2.17).

3. Proof of (1.10)

We first recall the integral representation [6, p. 239]

(3.1) F(a,b;c;z) = ^^_ b) f tb~x(l - ^"»"'(l - zt)-°dt,

where Re c > Re b > 0 and |arg(l - z)\ < n . If Re z < 0 and Re a > 0,
then it is easily seen from (3.1) that F(a, b ; c ; z) is bounded by 1 in absolute
value. Since the real part of

cos±0-cos^(±0 + z't)

2cosj0

is negative for x > 0, it follows that

,, .« .„/„     1      «     ! !   cos¿0-cosA(±0-f-iT)xl     ,
(3.2) \Fiß + -,-ß + -;a + -;       2     ^-¿)| < 1

either under the conditions

(3.3a) a + ß>0    and    \>ß>-\,

or under the conditions

(3.3b) a > ß    and    \> ß>-\.

Applying (3.2) to (2.17), we obtain

Nr

o    |cosj(±0 + h) -cosjf

Simple calculation shows

f°° e~Nx dx
(3.4)      \I±{a,ß,8)\<Jo    ^^^^^^i^V,,.^!'

.±0-MT. 0, .      2 T    /  •   1.2 T •   2^,cos(—t—) - cos -r = 4sinh - • (sinh - + sin •=■).
2 2 4 4 2

Hence

....       .      .±0 + i't. 0. ^ _ . , t  .   0     t  .   0
(3.5)      |cos(—r—) -cos^l > 2sinh-sin- > -sin-,        0 < 0 < n.

Since
lim|l-xe'(±e+,T»| = 1,      O<0<7T,
x->0
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coupling (3.4) and (3.5) yields

(3.6) lim \I±(a,ß,8)\ < (ism*)°-iE<£±Í2,
x—>o z       z N    *

provided that either

(3.7a) a + ß>0,    ß>-\,    and    -±<a<±,

or

(3.7b) a>ß,    ß>-x2,    and    - \ < a < \.

A combination of (2.13), (2.16), and (3.6) gives

(3.8) Km ¿|*„(*, 0)| < (sin |)-i(cos §)-MIg±£.

From (2.4), (2.3), and (3.8) it follows that

(3.9) (sinfri(cosf)^i|Fi-^(cos0)| < Hj^ (" + ")*-«-!.

Let 0 = n - <j>. By (3.9) and the reflection formula (1.8),

(cosfr^(sin|)^i|Fr-)(cos^)| < E^> ("*")*—*.

Replacing 0 by 0 and reversing the roles of a and /?, we have

(3.10) (sin|rncosf)^|Fi-^(cos0)|<^^("^)A-/'-i,

either under the conditions

(3.11a) ß + a>0,    a>-\,    and     -¿<)3<i,

or under the conditions

(3.11b) ß>a,    a>-x2,    and     - \ < ß < {.

The desired inequality now follows from (3.9) and (3.10), using the set of con-

ditions given in (3.7b) and (3.1 lb). The special case a = ß can be treated by

a limiting argument.

4. Remarks

1. If a and ß are both restricted to the interval (-j, \), then the two

sets of conditions in (3.7a) and (3.11a) are the same. Hence inequality (1.10)
holds with q = min(a, ß), instead of q = max(a, ß). However, the validity

of this stronger result is only in half of the unit square (-j, j) x (-j, j),

namely, a + ß > 0. It would be desirable to extend ( 1.10) to allow a + ß < 0,

a, ß£(-\,\).

2. If a = ß, then the Jacobi polynomial P„a'ß)(x) reduces to the ultra-

spherical polynomial P„X\x), X = a + ± . More precisely, we have

(4 1) Pw(x)= r(Q+1)  J(n + 2a+l)   ia,a) Q = A_i-
(4.1) tn  (X)     r(2a+1)     r(w + a+1)^      W' a     A     2,
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see [9, (4.7.1), p. 80]. Since Pna'ß)(x) is continuous in ß, we may let ß

approach a in (3.9). In view of (4.1) and the duplication formula for the

gamma function, this gives

(4.2) (sin0)'|pW(cos0)| < ^ • T^y(n + ^X-

Lorch's result (1.3) now follows from the inequality

r(« + 2X) i
T(n+l)      in + Xy-2*'

provided that 0 < 2X < 1 ; see [8, (8)] or [5, (1.3)].   If 1 < 2X < 2, i.e.,
0 < a < j , then by the inequality [8, (10)]

r(« + 2X) i
r(« + i)    (« + 2A)»-2¿

we have from (4.2)

which is only slightly weaker than (1.3).
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