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Summary. The rate of convergence of the distribution function of a sym­

metric function of N independent and identically distributed random vari­

ables to its normal limit is investigated. Under appropriate moment con­

ditions the rate is shown to be (!)(N - +). This theorem generalizes many 

known results for special cases and two examples are given. Possible further 

extensions are indicated. 

1. Introduction 

During the past decade a good deal of effort has been devoted to extending the 

theory of Berry-Esseen bounds and Edgeworth expansions to more compli­

cated sequences of random variables than normalized sums of independent and 

identically distributed (i.i.d.) random variables or vectors. From a statistical 

point of view, this study of higher order asymptotics for large classes of test 

statistics and estimators has proved extremely fruitful: it has yielded much that 

is significant for statistical theory as well as useful in practical applications. To 

the probabilist, however, most test statistics and estimators occurring in sta­

tistical theory appear to be strange artefacts, which are neither particularly 

interesting objects for study in themselves nor very promising starting points 

for developing a general probabilistic theory. 

There is, perhaps, one exception which is the class of U-statistics in­

troduced by Hoeffding (1948). Though it is usually studied for its statistical 

applications, it surely constitutes a large class of random variables which 

would seem to be a natural extension of sums of i.i.d. random variables. Let 

X 1,X2, .. . be i.i.d. random variables and let h: JR.k~JR. be a symmetric function 

of its k arguments. For N ?;, k, a U-statistic of degree k is defined as 

U= I I h(X1,,X12 , ... ,X1) 

12it<i2<··· < ik~N 

(1.1) 
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and the idea is to study its asymptotic behavior for a fixed h as N---. oo . For k 

= 1, we are back in the case of sums of i.i.d. random variables. As soon as 

k "?, 2, the degree doesn't play an important role any more except, of course, for 

the fact that it stays fixed as N---> oo. Many authors therefore discuss only the 

case of degree two, on the understanding that the case k > 2 is similar. Let us 

follow this tradition for a moment and take 

U= L L h(X; , X), (1.2) 
1 ~ i < j ~ N 

where h(x, y) = h(y, x). Assume that 

Eh(XpX2 )=0, Eh 2 (X1 ,X2 )< oo, (1.3) 

and define 

t/J(x, y)= h(x, y)- g(x)- g(y), (1.4) 

N 

0 =(N - 1) L g(X;), L1 = L L t/I(X; , X). (1.5) 
1 ~ i < j~N 

Clearly, E(t/J(X1 , X2)[X1)=0 a.s. so that the random variables g(X;) and 

t/J(X;, X) are pairwise uncorrelated and since U = 0 +A, 

a 2 (U)= o-2(0)+ 0"2 (L1)= N(N -1)2 Eg 2 (X 1 )+~ N(N -l)Et/1 2 (X1 , X 2). (1.6) 

If it is assumed that 
(1.7) 

then 0" 2(0) dominates the right-hand side of (1.6) and ua- 1 (U) is asymptoti­

cally normal (cf. Hoeffding (1948)). 

The speed of convergence to normality was investigated by a number of 

authors who proved in increasing generality that 

(1.8) 

where if> denotes the standard normal distribution function (d.f.). Suppose that 

(1.3) and (1.7) are satisfied so that asymptotic normality is ensured. Bickel 

(1974) established the Berry-Esseen bound (1.8) under the additional assump­

tion that h is bounded. Chan and Wierman (1977) and Callaert and Janssen 

(1978) successively reduced this assumption first to Eh4 (X1 , X2) < oo and then 

to E[h(X1 ,X 2W < oo . Helmers and Van Zwet (1982) showed that E[g(X1W < oo 

suffices. They also proved that the assumption Eh 2(X1,X2)< oo in (1.3) may be 

relaxed, provided a(U) is replaced by o-(0) in (1.8). This need not concern us 

here, however, since we shall concentrate on the case of finite variance in the 

present paper. 

Let us consider the more general case of a symmetric statistic. As before, 

let X1, .. . , XN be i.i.d. and let r: lR N ---.JR. be a symmetric function of its N 

arguments. 

Define 

and assume that 

T = r(X1 , ... ,XN) 

ET=O, ET 2 =1. 

(1.9) 

(1.10) 
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We wish to study the asymptotic behavior of T as N--+ oo . The difference with 

the previous problem is that then we were dealing with a kernel function h that 

remains fixed as N--+ oo, or perhaps with uniformity classes of such functions of 

a fixed degree k. Now the degree of the kernel r equals the sample size N and 

both tend to infinity together. 

Define 
N 

1j=E(TIX), tl = I 7], (1.11) 
i = 1 

then T1 and (T-T1) are again uncorreJated. It follows that if a2 (T),....,a2 (T1) as 

N--+ oo and the summands 1j satisfy the Linde berg condition, then Ta- 1 (T) is 

asymptotically normal. 

The aim of this paper is to prove the following theorem of Berry-Esseen 

type. 

Theorem 1.1. Suppose that (1.10) is satisfied and that positive numbers A and B 

exist such that 

EIE(TIX1W;£AN- t, (1.12) 

1 + E{E(TI X 1 , ... , xN - 2)} 2 - 2E{E(T IX 1 , . .. , xN_ 1)} 2 ;£BN- 3 . (1.13) 

Then 

sup IP(T ;£x) - <P(x) l ;£ C(A + B)N- t , (1.14) 
X 

where C denotes a universal constant. 

Note that although we have formulated the theorem as a uniform error 

bound for a fixed but arbitrary N and T, it is a purely asymptotic result 

because the constant C is not specified. It applies to sequences of symmetric 

statistics TN=rN(XN,t • ... ,XN.N) where, for every fixed N, XN,t• ... ,XN,N are i.i.d. 
with a common d.f. FN, provided (1.10), (1.12) and (1.13) are satisfied for every 

N and fixed values of A and B. 

The theorem will be proved in Sects. 2 and 3. In Sect. 2 we collect some 

facts concerning L2-projections and in Sect. 3 we provide a proof of the 

theorem based on these facts. Some examples and possible extensions are 

discussed in Sects. 4 and 5. 

2. L2-Projections 

L2-projections were introduced in statistics by Hoeffding (1948, 1961) and have 

been used effectively by many authors since then. Most recently Efron and 

Stein (1981) and Karlin and Rinott (1982) have used these orthogonal pro­

jections to establish certain variance inequalities. To indicate decomposition by 

repeated orthogonal projection, these authors have introduced the descriptive 

term ANO VA-type decomposition, but we prefer to speak of Hoeffding's decom­

position instead. What follows are some simple and well-known facts concern­

ing L 2-projections written down in an easy notation. 
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Let X1 , .. . ,XN be independent random variables and let T=t(X1 , ... ,XN) 

have ET 2 <oo. Note that at this point we do not assume that X1 , ..• ,XN are 

identically distributed, that -r: is symmetric in its N arguments, or that ET = 0 

and ET2 =1. Define Q={1,2, ... ,N}. For any DcQ, let 

E(TID)=E(TIXi, iED) (2.1) 

denote the conditional expectation given all Xi with indices in D. Define 

Tv= I ( -1)\D\-\A\ E(TIA), (2.2) 
AcD 

where the summation is over all subsets A of D, including the empty set, and 

1·1 denotes the cardinality of a set Of course T<J>=E(Ti4>)=ET a.s. and for 

convenience we shall write 

1j=1(i1=E(TIXi)-ET, j=l, ... , N. (2.3) 

The basic property of Tv is that 

E(TviD')=O a.s. unless DcD'. (2.4) 

To see this, write C=DnD' and note that, if!DI-ICI=k>O, 

E(TviD')= I ( -1)1»1 - \AIE(TIA n C)= I E(T!B) I ( -1)\D\-\B\-i (~) =0 a.s .. 
A c: D Bee j=O } 

It follows in particular that ETv = 0 if D =l= 4> and that the random variables Tv, 

D c { 1, ... , N} are pairwise uncorrelated, i.e. 

(2.5) 

Since the order of the two operations in E(TviD') may be interchanged with 

impunity, we have E(TviD')=[E(TID')]v. Hence (2.4) also yields that if T 

depends only on Xi for iED', then 

1~ = 0 a.s. unless D c D'. (2.6) 

For m=O,l, . .. ,N, let fl!m denote the linear space of random variables with 

finite variance that is spanned by functions of at most m of the variables 

X1 , ... ,XN, thus 

£-'m={Z:Z= L L l/t;, .. .. ,im(X; 1 , • •• ,XiJ, EZ2 < co }. 
l~il < iz < . . . < im~N 

We define Tm to be the L 2-projection of Ton fl!m if TmEfl!m and E(T- Tm)1 is 

minimal, or equivalently, if TmEfl!m and E(T - Tm)Z =0 for all ZE£-'m. We have 

N 

T0 =ET, T1 - T0 = L 1j, f;,,- Tm-1 = L Tv, (2.7) 
j = 1 JD\=m 



197

A Berry-Esseen Bound for Symmetric Statistics 429 

To check this, note that fmE2'111 and that ETDZ =0 if IDI ~m+ 1 and ZE.Pm by 

(2.4). Hence we have Hoeffding's decomposition 

T= T0 +(T1 - T0 )+ ... +(TN- TN_ 1)= I TD 

and since all terms are pairwise uncorrelated, 

If we apply (2.8) to E(T I A) instead of T, (2.6) yields 

E(TIA)= I TD 
D e: A 

which is the inverse of relation (2.2). 

For m=O,l , ... ,N, let us write 

Ill 

T= I Tj+ W.n+Lfm . 
j~l 

m 

Dc:Q 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Clearly I Tj+ Wm is the best approximation of Tin L2 by a random variable 
j~l 

which depends on X 1 , •. . , X"' only through a sum of functions of each one of 

these variables separately. We shall need some information concerning the 

error Lim of this approximation. For r=O,l, .. . , N, define 

Q,= {1 , 2, ... , r}, Q~=Q-Q,= {r + 1, ... , N}. 

By (2.10) and (2.8), 

D c: .Q~ 

m N-m 

k= I 1=0 A c: Qm B c: Qfn 
k + L?;2 IAI=k IBI = L 

(2.13) 

(2.14) 

Now let us assume that X 10 ••• , XN are identically distributed, that T 

= -r(X1 , ... , XIV) is a symmetric function of these variables and that ET = 0, ET2 

= 1, so that we are back in the situation of Sect. 1. Then (2.15) and (2.5) imply 

that 

m=O, l , .. . ,N. (2.16) 

If D(EL1;,)=EL1;,+ 1 -ELJ;, and D•+1(EL1,;,)=DD•(£,!J;,), then (2.16) yields 

( -l)S+l Ds(EL12)= N~m (N- m- s) ET.2 20 
m L- Q,.- , s~l , 

r=2 r-s 
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(cf. Karlin and Rinott (1982) who show that EW;_m=l-(N-m)ET(-EA~-m 
is absolutely monotone). In particular, EL1;, is nondecreasing and concave for m 

=0,1, .. . ,N. Also 

0~ -D 2 (EA~)=2EL1i -EA~ =2(1-ET/ -EW()-(1-2ET/- EW}) 

= 1 + E{E(TI xl, .. . ,XN_z)} 2 - 2E{E(T IXl, ... 'XN-1w (2.17) 

and under the conditions of Theorem 1.1 we therefore have 

(2.18) 

It follows that 

(2.19) 

(2.20) 

(2.21) 

because of the concavity of EA;, . 

So far we have implicitly assumed that the random variable T is real 

valued, but of course everything in this section goes through for complex 

valued T with appropriate modifications. In (2.5), ETv Tv., should be replaced 

by ETv T0 . , where Tv· denotes the complex conjugate of Tv·; furthermore, in all 

expectations of squares such as ET 2 , ET£, EW,; , EA;, etc., the squares should 

be replaced by their moduli EIT2 I, EIT£1, EIW,;I, EILI;,I etc. Thus in particular 
(2.9) becomes 

EIT21= I EII~I· (2.22) 
Den 

3. Proof of Theorem 1.1 

Let us agree to take C~3. For l~N~3B, we have C(A+B)N-± 

~CBN-±~cN± / 3~1, so that (1.14) is trivially satisfied. We therefore 

assume that N > 3 B. 

In view of (2.12) and (2.20), 

(3.1) 

and hence, under the conditions of the theorem, 

(3 .2) 

Let 
y(t)=EeitT! (3.3) 

be the characteristic function of T1 . By (3.1) and (1.12), 
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(3.4) 

(3.5) 

Let 
1/!(t) = Eei t T (3.6) 

denote the characteristic function of T. According to Esseen's smoothing lem­

ma (cf. Feller (1971), p. 538) 

supiP(T~x)-<P(x)l~ - J - dt+- . 
1 H 11/!(t) e- W ~ 4 

X TC -fl t H 

Define h = min(2 N~, H) and let C1 , C 2 , .. . denote universal constants through­

out the proof. From (1.12), (3.1) and the proof of the classical Berry-Esseen 

theorem we conclude that 

Because of (3 .2) 

and combining these results we find 

sup/P(T~x)-<P(x)l~.!._ f 11/!(t)-yN(t)ldt 
x n _11 t 

+_!_ J 11/!(t)ldt+ C2 AN--i·. 
n h~ / ti~H t 

(3 .7) 

To analyze 1/!(t) for it I~ h, we employ decomposition (2.12) for m = N, i.e. T 

= T1 + L1 N, to obtain 

1/!(t)=Eeitf,(l + it.d N) + RN= yN(t) +it Ee;rf, L1 N+ RN, (3.8) 

Bt2 

'
R I ~1.t 2 EL1 2 :::;;- (3.9) 

N -2 N-4N 

in view of (2.20). Similarly, 

ltEeitf, LlNI ~It I {ELl~} t ~(!B) t it i N -t. (3.10) 
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A more delicate analysis starts with noting that 

N 

Eeiti',.1N= L L Eeitf, TD 
k=2 IDI=k 

= ,t (~) y N -r(t)ET.a,.i~ eitT, 

= ,tz C) }'N - •(t)ET.a, ll (eitTj- y(t)) 

where the final step follows from (2.4). For 2 ;i,r ;£ N, 

(N)
2 

;£ 6 (N- 2) (N + 2) 
r r-2 r+2 

and since 

repeated application of Schwarz's inequality yields 

W.R. van Zwet 

(3.11) 

\Eeitf, .1NI ;£6± ,tz (~~~r (ETJ_.)t. (~: ~rl y 2(t)lt(N - rl(l-l y 2{t)l) t r 

;£ 1-~: 2 (t)l. Lt2 (~~~) ETJ.T. Lt2 (~:~) IY2(t)IN-r(l-ly 2(t)l)'+ 2 r 
6't [ N (N- 2) ]t 

Sl-\y2 (t)l .~ 2 r- 2 ETJ', . . 

Invoking {2.18) and {3.5), we see that for It\;£ H 

ltEe;rf, .1 Nl ;£ (24B)±Itl- 1 N- t . (3.12) 

Combining (3.8), (3.9), {3.10) and (3.12) and then using {3.2), we arrive at 

L ll/t(t)~I'N(t)l dt;£(B+8B+)lv-t;£6(A+B)N-t. (3.13) 

It remains to consider t/l(t) for h ;£ ltl ;£ H in order to 

integral in (3 .7). For any fixed It\ in this interval we take 

-[3NlogN] 
m- z ' 

t 

bound the second 

(3.14) 

where [x] denotes the integer part of x. For ltl~h, we have 0;£m;£N, and 

using decomposition (2.12) for this value of m, we obtain 

l/t(t)=Eexp{it (t
1

1j+Wm)}·(l+itL1m)+Rm, (3.15) 

1 2 2 Bmt2 3B1og N 
IRml ;£2t E.1m;£ 2Nz :S 2N (3.16) 

because of (2.21). Since \tl ;£ H, (3.4) and (3.2) imply 
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IEexp{it (t
1 
7]+ wm) }i~jy(t) l m~exp{- ;~} 

~exp{ -logN + 3t: }~N-1 exp { 121A2 }~2:. (3.17) 

Let us define the complex valued random variable Z = exp {it Wm} which 

depends on Xm+ t> ... , X N only. By (2.15) and two applications of (2.4), 

E exp {it Ct?i+ Wm)} Lim 

m N - m 

= I I L L Ym-k(t) · E[TAvB IT eitTjE(Z jB)] 
k=l 1=0 AcQm Bel]:>, jeA 
k + l~2 jAj =k IBI=I 
m N-m 

=I I 
k=l 1=0 
k+/~2 

L I ym - k(t)·E[TA vBIT(eitTj_y(t))ZnJ. 
Ac:Qm Bc:Q_th jeA 

jAj=k IBI =I 

It follows from (2.22) and (2.6) that 

I E I Z~I = EIZ2
1 = 1. 

BcQg, 

By Schwarz's inequality and (3.11), 

Ei TAvB n (eitTj- y(t)) z nl ~ (ETLn} ~ (l-l y 2(t)l) t iA I (E I Z~I}! 
jEA 

(3.18) 

(3.19) 

for every AcQ, and BcQ~. Another application of Schwarz's inequality to 

the terms in (3.18) with k=l and k~2 separately, followed by the use of (2.18) 

and (2.19) yields 

IE exp {it (t
1 
7]+ W,n)} Ll,) ~mly(t)im-l(1-iy 2 (t)l)t 

· Ct~ B~f,ETJ,+ , rc~mB~f,EIZ~~r 
jB j=l IB I= l 

+[I Nfn L L k(k-l) ETLn]t 
k=2 l=O Acn.., BcQ:>,m(m-1) 

IAi=k IBI=I 

· [ I L m(m -l) IY 2 (t)lm- k(l -ly2 (t)l)k L EIZ~I] t 
k=2 A<=l?rn k(k-1) Bel]:>, 

jA j=k 

~mly(t)f 111 - 1 (1- ly 2 (t)l)+ C~t : 1 (~ =~) Er~.r 

+ 6} Lt2 ( ~ ~ ~) ETJ,.r Lt2 (~: ~) I y2(t)[m - k(l -ly2(t)ll r 
~ H'" [~ [y(t)lm- 1 (1-lyz(t)l)t + 6t N - 3!2(1-[yz(t)[) - 1 J. (3.20) 
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Hence, by (3.4), (3.5), (3.14) and (3.2), 

ltE exp {it (~ 1 7}+ Wm)} Llml 

~(3B)± ( 2N- -t log N exp g~} + 2t N - -i-Jtl- 1 ] 

~5B ± [N- -i logN +N- ±Jtl - 1] (3.21} 

for h ~ ltl ~H. Combining (3.15}-(3.17) and (3.21) and again using (3.2), we 

arrive at 

J 
1

1/J(t)ld <3B(logN)2 AlogN 5Bt(logN)2 5Bt < 7( -t 

< < t t = 4 N + N + 2Nf + N* = A+ B) N . 
h= iti=H (3.22) 

Together (3.7), (3.13) and (3.22) establish Theorem 1.1. D 

4. Examples 

In this section we apply Theorem 1.1 to two special cases - U-statistics and 

linear functions of order statistics - to see whether we can obtain results 

comparable to the best available ones for these well-studied special cases. 

Let X 1 , ... , X N be i.i.d. random variables and let h be a function of k( ~ N) 

variables satisfying 

Eh(X1> ... ,Xk)=O, Eh2 (X 1, .. . ,Xk)<oo. (4.1) 

Define the U-statistic U by (1.1), the function g by 

(4.2) 

and suppose that 

Eg2 (X 1)>0, Elg 1(Xt)l 3 <w. (4.3) 

We shall show that Theorem 1.1 implies 

Corollary 4.1. There exists a universal constant C such that 

whenever 1 ~ k ~ N and provided ( 4.1) and ( 4.3) are satisfied. 

For k = 2 this is the best result known for the case where 

E h2(X 1 , . .. , X k) < w , as was pointed out in section 1. Since the assumption of 

finite variance is a natural limitation of the results in this paper, we conclude 

that Theorem 1.1 performs as well as might be expected for this special case. 

This is not really surprising, as Theorem 1.1 and its proof are modeled after 

the earlier work on U-statistics. 

To prove the corollary, we begin by noting that (2.6) implies that 

Un=O if JDI~k+l. (4.4) 
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For r = 0, 1, ... , k, define 

g,(X 1• ... , X,)= (h(X 1, ... , XJ)n,. = L ( -l)r- IAI E(h(X 1 , .. ·, Xk)l A). (4.5) 
A c..Q,. 

In particular, g0 =0 and g 1 =gas defined in (4.2). It follows from (2.9) that 

(4.6) 

Obviously, for r = 0, 1, ... , k, 

(N -r·) 
Un,.= k-r g,(X1, ... ,XJ (4.7) 

and because of (2.7), (4.4) and (4.6) we have 

(N -1)2 

EU2 =NEU2 = N . Eg2(X) 1 1 ~ k - 1 1 , 
(4.8) 

(4.9) 

(4.10) 

Define T = Uja(U), so that ET2 = 1. Take 

( 4.11) 

By (4.8)- (4.10), 

(N -2)2 

N - 2 k-2 Eh2(X1, ... ,Xk) 
'"' (N. ) ET.2 ~ --- ~ ~ BN 3 (4.12) '--- - 2 n,. - EU2 -

Y= 2 r I 1 

N ole that the results of these computations arc correct also for k = l. ln view 
of (2.17) and (2.18), it follows that assumptions (1.12) and (1.13) of Theorem 1.1 
are satisfied with A and B as in (4.11). The corollary follows. 
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We now turn to our second example. Let X 1,X2 , •• . ,XN be i.i.d. random 

variables with a common distribution function F, which is not assumed to be 

continuous. Let X< 1 >~X< 2 >~ ... ;2;X<N> denote the corresponding order statistics. 
For real numbers c 1 , c 2 , ... , c N, we consider a normed linear function of order 

statistics 

Suppose that 

and let 

Theorem 1.1 implies 

N 

L=N- t L ciXUJ-EX(j)). 
j = 1 

max lc)=a, N max lci-ci_ 1 \=b. 
1;2j;2N 2;i,j;[,N 

Corollary 4.2. There exists a universal constant C such that 

whenever (4.14) and (4.15) are satisfied. 

(4.13) 

(4.14) 

(4.15) 

If a 2 (L) is bounded below and EIX 1\3 , a and b are bounded above as 

N ~ oo, then Corollary 4.2 provides a Berry~Esseen bound of order N-t . In 

view of (4.15) we are then dealing with the case of smooth weights c1 , .• . ,eN, 

but not necessarily smooth underlying distribution function F. For this case, 

the best result to date has been obtained by Helmers (1981; 1982) and this 

result is essentially equivalent to Corollary 4.2. Thus once again, Theorem 1.1 

appears to perform in a satisfactory manner. 

To prove corollary 4.2 we adopt some additional notation. For n ~ N, 

X 1 ,n;2;X 2 ,n;2; . .. ;2;Xn:n will denote the order statistics corresponding to 

X 1, X 2 , . .. ,Xn; we take Xo :n = - oo, Xn+ t :n= + oo. We shall find it convenient 
to introduce i.i.d. random variables U1, U2 , ••. , UN with a common uniform 

distribution on (0,1) and pretend that X;=F- 1(UJ for i=l, ... ,N. Clearly this 

does not affect the distribution of L. The rank of Vi among U1 , . .. . UN will be 

denoted by Ri, 

and we define 

N 

Ri= L l(O,U,](Uk), 
k= 1 

(4.16) 

where x 1\ y=min(x,y) and x v y=max(x,y). Furthermore we let bj, N be the 
beta density 

N! . 1 N . 

bj.N(y)=U-l)!(N-j)!y;- (1-y) -;, O<y<l, 
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and we define the functions G, H and M by 

X ~ X 

G(x)= J F(y)dy, H(x)= J (1-F(y))dy, M(x)= J F(y)(1-F(y))dy. (4.17) 
- CXl X - 00 

Obviously G, H and Mare monotone and by (4.14), M is bounded. Finally we 

introduce the random variable 

and note that 

Straightforward but somewhat tedious computations show that with proba­

bility 1 

N t L 1 = N t E(LI U1 ) 

1 N I 

= N L cJ {1 10.u,)(y)-(1- y)} bi.N(y)dF- '(y), (4.20) 
j~l 0 

N-1 

Ntz= L (ci+ l -c)(M(Xj:N- 2)-M(Xi_1,N_z)) 
i ~ I 

K, 

- L (cH 1 - c)(G(Xi:N)-G(Xi - l:N)) 
i ~ 1 

N 

+ L (ci-ci _ 1)(H(Xj+I:N)-H(Xi:N)). (4.21) 
j - K, 

By (4.15), L lcil bi,N(y);;i;aN and hence 

NtiL11~a{J' ydF-'(y)+ f (1-y)dF - '(y)} 
0 u, 

;;;; a{IF- '(U1)1 +! IF- '(y)l dy} = a { IX ,I+ EIX 11}. (4.22) 

Because of (4.15) and the monotonicity of M, G and H, 

IZI;;i;bN- i [M(oo)+G(XN_ 1 AXN)+H(XN-l v XN)]. (4.23) 

Define T = L / rr(L). Combining (4.14), (4.22) and (4.23) we find after elemen­

tary calculations 

4a 3 EIX 13 

E ITI 3 < 1 N -t 
' - a3(L) , 

(4.24) 

EZ 2 25b 2 {E IX 1} 2 
- - < I N - 3 
a2 (L) = a2 (L) · 

(4.25) 

Corollary 4.2 follows from (4.19), (4.24), (4.25) and Theorem 1.1. 
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We should perhaps point out that (4.20) and (4.21) are valid under the sole 

assumption that EIX 11 < oo and can therefore be used to treat other cases than 

the one of smooth weights. Any set of assumptions ensuring that EJ7~J 3 

=@(N-t) and EZ 2 / ~ 2 (L)=@(N- 3 ) as N---"OO, will produce a Berry-Esseen 

bound of order N - t. Smoothness of the underlying distribution function F can 

clearly replace smoothness of the weights ci and intermediate versions are also 

possible. 

5. Possible Extensions 

Theorem 1.1 provides a Berry-Esseen bound for a symmetric function r of i.i.d. 

random variables X 1 , ... , X N under the relatively simple moment assumptions 

(1.12) and (1.13). For a particular case it may be laborious to check these 

assumptions, but the work involved is basically straightforward. The technical 

intricacies of the proof of a Berry-Esseen-type result have been dispensed with 

and what remains can be done by brute force. Of course this only makes sense 

up to a point: if too much brute force is needed, one may prefer to tackle the 

intricacies directly instead. 

It would seem that this might be the deciding factor in judging how far the 

present result can usefully be generalized. There doesn't seem to be a reason, a 

priori, why one should need the symmetry of r or the fact that X 1 , . • . , X N are 

identically distributed. Hoeffding's decomposition (2.9) works without these 

assumptions and it should be possible to adapt the remainder of the proof. In 
short, one should be able to generalize theorem 1.1 to arbitrary functions of 

independent random variables. Of course the assumptions needed to replace 

(1.12) and (1.13) will not look nearly as pleasant; worse still, they will probably 

be almost impossible to check in most nontrivial cases. 

One would guess, however, that there is one slight but significant general­

ization that would still be feasible. This is the k-sample situation, where the 

independent random variables X 1 , . .. , X N are split into a fixed number (k) of 

groups. Within each group the variables are i.i.d. and r is a symmetric function 

of the variables in such a group. 

Another possible type of extension is to relax the moment assumptions 

ET2 < ro and EJNtT1J3 < ro by the following standard argument. Let T= T 
+ R. If we have a Berry-Esseen bound for f, 

sup IP(T~x)- <P(x)J ~cN-t (5.1) 
X 

and R satisfies 

(5.2) 

then we have a Berry-Esseen bound for T, 

sup JP(T~x)- <P(x)J ~(a+b+c) N - t.. (5.3) 
X 

In principle, no moments of R - and therefore of T - are needed, but we note 

that (5.2) is often established with the aid of a moment of low order and the 
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Markov inequality. We have not incorporated this idea in Theorem 1.1 be­

cause it is well-known and may be applied ad hoc whenever needed. 

The above argument may be used for other purposes than merely to relax 

the moment assumptions. As we have noted before (cf. (2.17) and (2.18)), 

assumption (1.13) of Theorem 1.1 is equivalent to 

(5.4) 

However, if we require that for some positive integer N' ~ N, 

N (N) E(T-f.) 2 = '\' ET. 2 :::;,BN- t . 
N ~ ~- . 

r = N'+ 1 r 
(5.5) 

then 

and by (5.3) and (3.2) the conclusion of Theorem 1.1 will hold for T if it holds 

for TN' . But for TN' instead ofT, assumption (5.4) reduces to 

(5.6) 

because of (2.7), (2.6) and (2.4). It follows that (5.5) and (5.6) together may 

replace assumption (1.13) in Theorem 1.1. 

We may even go one step further and replace assumption (5.6) in its turn 

by the requirement that for some N" with 1~N"~N', 

N' N 1 
L ( - )ETJr~B(NiogN)- 2 , 

r=N" + 1 r -1 
(5.7) 

(5.8) 

To see this, we go over the proof of Theorem 1.1 and find that the full force of 

assumption (5.4) (or (2.18)), as opposed to (2.19), is used only in (3.12) and 

(3.20). In both places, a strengthened version of (2.19), viz. 

N (N 1) L . ~ 1 ETJ,.~B(NlogN) - 2 
r = 2 I 

(5.9) 

would also have been sufficient. Alternatively, we could have required a mix­

ture of (5.4) and (5.9), such as (5.8) combined with 

I (~ -1) ETJr~B(N log N)- 2 , 

r=N"+l 1-1 
(5.10) 

and the proof would still have gone through with minor modifications. Apply­

ing (5.10) to TN. instead ofT, we obtain (5.7). 
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Thus we have shown that (5.5), (5.7) and (5.8) together may replace assump­

tion (1.13) in Theorem 1.1. These conditions may be substantially weaker than 

(1.13 ), especially if N' and N" are taken to be of the order of Nt (log N)- 2 and 

(log N)2 respectively. In general, however, these assumptions will be hard to 

check. 
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