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A BERRY-ESSEEN THEOREM AND EDGEWORTH EXPANSIONS

FOR UNIFORMLY ELLIPTIC INHOMOGENEOUS MARKOV

CHAINS

DMITRY DOLGOPYAT AND YEOR HAFOUTA

Abstract. We prove a Berry-Esseen theorem and Edgeworth expansions for partial

sums of the form SN =
N∑

n=1

fn(Xn, Xn+1), where {Xn} is a uniformly elliptic inhomo-

geneous Markov chain and {fn} is a sequence of uniformly bounded functions. The
Berry-Esseen theorem holds without additional assumptions, while expansions of or-
der 1 hold when {fn} is irreducible, which is an optimal condition. For higher order
expansions, we then focus on two situations. The first is when the essential supremum
of fn is of order O(n−β) for some β ∈ (0, 1/2). In this case it turns out that expan-
sions of any order r < 1

1−2β
hold, and this condition is optimal. The second case is

uniformly elliptic chains on a compact Riemannian manifold. When fn are uniformly
Lipschitz continuous we show that SN admits expansions of all orders. When fn are
uniformly Hölder continuous with some exponent α ∈ (0, 1), we show that SN admits
expansions of all orders r < 1+α

1−α
. For Hölder continues functions with α < 1 our

results are new also for uniformly elliptic homogeneous Markov chains and a single
functional f = fn. In fact, we show that the condition r < 1+α

1−α
is optimal even in the

homogeneous case.

1. Introduction

Let Y1, Y2, Y3, ... be a uniformly bounded sequences of independent random variables.

Set S̄N =

N∑

n=1

(Yn − E(Yn)), VN = Var(SN) and σN =
√
VN . The classical central

limit theorem (CLT) states that if σN → ∞ then, as N → ∞, the distribution of

ŜN = S̄N/σN converges to the standard normal distribution. A related classical result
is the Berry-Esseen theorem [27] which is a quantification of the CLT stating that there
is an absolute constant C0 > 0 so that for every N ≥ 1

(1.1) sup
t∈R

∣∣∣P(ŜN ≤ t)− Φ(t)
∣∣∣ ≤ C0σ

−3
N

N∑

j=1

E
[∣∣Yj − E[Yj ]

∣∣3]

where Φ is the standard normal distribution function (we refer to [6] for similar result
obtained simultaneously). In [28], Esseen proved, in particular, that the optimal con-
stant C0 in the RHS of (1.1) is greater than 0.4. Since then there were many efforts to
provide close to tight upper bounds on C0, and currently the smallest possible known
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choice for C0 is C0 = 0.56, see [52] and references therein. In particular, when Yn are
uniformly bounded then with ‖Y ‖∞ = supn ‖Yn‖∞ we have

(1.2) sup
t∈R

∣∣∣P(ŜN ≤ t)− Φ(t)
∣∣∣ ≤ C0‖Y ‖∞σ−1

N .

It turns out that the rate of σ−1
N in (1.2) is optimal, see below. By now the optimal

convergence rate in the CLT was obtained for wide classes of stationary Markov chains
[49, 50, 42] and other weakly dependent random processes including chaotic dynamical
systems [56, 37, 42, 35, 45, 46], uniformly bounded stationary sufficiently fast φ-mixing
sequences [54], U -statistics [10, 34] and locally dependent random variables [2, 4, 12]
(the last three papers use Stein’s method).
The rate σ−1

N is optimal for two reasons. First, for the lattice random variables the

distribution function t 7→ P(ŜN ≤ t) has jumps of order σ−1
N . Secondly even if the

distributions of the summands have smooth densities the rate of convergence is still
O
(
σ−1
N

)
if the third moment of the sum is different from Gaussian. To address the

moment obstacle one could introduce appropriate corrections1. Namely, fix r ≥ 1. We
say that the Edgeworth expansions of order r hold if there are polynomials P1,N , ..., Pr,N

with degrees not depending on N and coefficients uniformly bounded in N so that

(1.3) sup
t∈R

∣∣P(ŜN ≤ t)− Φ(t)−
r∑

j=1

σ−j
N Pj,N(t)φ(t)

∣∣ = o(σ−r
N )

where φ(t) = 1√
2π
e−t2/2 is the standard normal density function. These expansions

provide a more accurate approximations of the distribution function of ŜN in comparison
with the Berry-Esseen theorem.
For independent random variables it was proven by Esseen in [27], that the expansion

of order 1 holds iff the distribution of SN is non-lattice. The conditions for higher order
expansions are not yet completely understood. Sufficient conditions for the Edgeworth
expansions of an arbitrary order were first obtained in [14] under the assumption that
the characteristic function of the sum E(eitSN ) decays exponentially in N uniformly for
large t. Later the same expansions were obtained in [27, 29, 7, 9, 1] under weaker decay
conditions2, where the second paper considered non identically distributed variables and
the fourth and fifth considered random iid vectors. Later Edgeworth expansions were
proven for several classes of weakly dependent random variables including stationary
Markov chains ([49, 50, 30]), chaotic dynamical systems ([13, 30, 31]) and certain classes
of local statistics ([8, 41, 5, 11]). In particular, Hervé-Pène proved in [43] that for several
classes of stationary processes the first order Edgeworth expansion holds if the system
is irreducible, in the sense that SN can not be represented as S ′

N + HN where S ′
N

is lattice valued and HN is bounded. We also mention that in [3, 55] so called weak
expansions, i.e. expansions of the form E (φ (SN/σN )) where φ is a smooth test function
were studied.

1In the case the arithmeticity obstacle is present, that is, the distribution is lattice, one can consider
asymptotic expansions of P(SN = k) see [29, 33, 44, 19] and references wherein.

2The decay conditions used in the above papers are optimal, since one can provide examples where
the decay is slightly weaker and there are oscillatory corrections to Edgeworth expansion, see [18, 19].
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Both Berry–Esseen Theorem and Edgeworth expansions require a detailed control
of the characteristic function. For dependent variables, the most powerful method for
analyzing the characteristic function is the spectral approach developed by Nagaev
[49, 50] (see [36, 42] for the detailed exposition of the spectral method). Since the
spectral method relies on perturbation theory for the spectrum of linear operators,
extending it to a non stationary setting turned out to be a non trivial task. Recently
a significant progress on this problem was achieved by using a contraction properties
of the projective metric which allows to prove spectral gap type estimates for the non-
stationary compositions of linear operators ([48, 58, 25, 26]). In particular, complex
sequential Ruelle-Perron-Frobenius Theorem, proven in [40] provides a powerful tool
for proving the Central Limit Theorem and its extensions in the non stationary case.
This theorem allows to obtain both Berry–Esseen theorem ([40, 39]) and Edgeworth
expansions ([38, 24]) in the non stationary setting for both Markov chains and dynamical
systems.
However, the results of [40, 39, 38, 24] are in a certain sense perturbative. Namely,

those papers study either a small perturbation of a fixed stationary system, or they deal
with random systems assuming that a system comes to a small neighborhood of a fixed
system with a positive frequency. One difficulty in studying the non-stationary case is
that there could be large cancellations of the consecutive terms, so that the variance
of the sum, can be much smaller then the sum of the variances of the summands.
Recently [20] developed a structure theory for Markov chains which allows to find, for
each additive functional, a representative in the same homology class (the homologous
functionals satisfy the same limit theorems) with the smallest L2 distance from either
zero or from a given lattice in R. This structure theory was used in [20] to prove the local
limit theorem for non-stationary Markov chains in both diffusive and large deviations
regimes.

In the present paper we combine the methods of [40] and [20] to obtain several optimal
results concerning the convergence rate in the CLT for bounded additive functional of
uniformly elliptic non-stationary Markov chains. Our results include

• Berry–Esseen bound, which holds without any additional assumptions;
• first order Edgeworth expansion in the irreducible case, extending theorems of
Esseen and of Hervé-Pène;

• higher order expansions for the chains with either decaying L∞ norm or with
bounded Hölder norm.

We emphasize that our assumptions concern only regularity of the observables. No
additional assumptions dealing with either the growth of variance or with the decay of
characteristic function away from zero are made.
The structure of the paper is the following. Section 2 contains the precise statements

of our results. The necessary background from [40, 20] is given in Section 3. In Sec-
tion 4 we discuss the Edgeworth expansions. In general, those expansions follow from
the asymptotics of the characteristic function around 0, together with decay of the
characteristic functions over appropriate domains. In Section 4 we will show that the
desired expansions around the origin hold under certain logarithmic growth conditions.
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We demonstrate that under the above growth conditions the asymptotics of the charac-
teristic function near zero always comes from the Edgeworth polynomials (regardless of
whether the Edgeworth expansions hold or not). Those polynomials are defined canon-
ically, and we show that under our logarithmic growth conditions the polynomials have
bounded coefficients. The main step in our proofs is a verification of the latter growth
conditions for the uniformly elliptic Markov chains considered in this paper. This is ac-
complished in Section 5. Using the sequential complex Perron-Frobenius Theorem from
[40], the required estimates are obtained by studying the behavior around the origin of
a resulting sequential complex pressure functions. For independent variables the n-th
pressure function coincides with the logarithm of the characteristic function of the n-th
summand, and our arguments essentially reduce to the ones in [27, 29]. In comparison
with [40], where the Markov chains in random environment were studied, the main
difficulty is that the variance does not grow linearly fast in the number of summands
N . The Berry–Essen theorem is a direct consequence of the detailed asymptotics of
the characteristic function near zero established in Section 5. The first order expansion
also follows by combining the same estimates with the results of [20].
In order to achieve the desired rate of decay away from 0, an additional structure

is needed. Thus we consider two special classes of additive functionals. The first is
when the essential supremum of the n-th summand converges to 0 as n → ∞. We
show in Section 6 that if ‖fn‖∞ = O

(
n−β

)
for some β ∈ (0, 1/2) then the partial

sums admit expansions of any order r < 1
1−2β

, and that this condition is optimal. The

second type of additive functionals we consider are Hölder continuous functions. If
{Xn} is a Markov chain evolving on a compact Riemannian manifold with uniformly

bounded and bounded away from 0 densities and SN =
N∑

n=1

fn(Xn, Xn+1), then we show

in Section 7 that when fn’s are uniformly bounded Lipschitz functions then SN admits
Edgeworth expansions of all orders, while when fn’s are uniformly bounded Hölder
continuous functions with exponent α ∈ (0, 1), then SN admits expansions of every
order r < 1+α

1−α
, and that the latter condition is optimal. In fact, we will show that the

condition r > 1+α
1−α

is optimal even in the stationary case when {Xn} is homogeneous
Markov chain and fn = f does not depend on n.

2. Main results

2.1. A Berry-Esseen theorem and expansions of order 1. Let (Xi,Fi), i ≥ 1 be
a sequence of measurable spaces. For each i, let Ri(x, dy), x ∈ Xi be a measurable
family of (transition) probability measures on Xi+1. Let µ1 be any probability measure
on X1, and let X1 be an X1-valued random variable with distribution µ1. Let {Xj} be
the Markov started from X1 with the transition probabilities

P(Xj+1 ∈ A|Xj = x) = Rj(x,A),
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where x ∈ Xj and A ⊂ Xj+1 is a measurable set. Each Rj also gives rise to a transition
operator given by

Rjg(x) = E[g(Xj+1)|Xj = x] =

∫
g(y)Rj(x, dy)

which maps an integrable function g on Xj+1 to an integrbale function on Xj (the
integrability is with respect to the laws of Xj+1 and Xj, respectively). We assume
here that there are probability measures mj , j > 1 on Xj and families of transition
probabilities pj(x, y) so that

Rjg(x) =

∫
g(y)pj(x, y)dmj+1(y).

Moreover, there exists ε0 > 0 so that for any j we have

(2.1) sup
x,y

pj(x, y) ≤ 1/ε0,

and the transition probabilities of the second step3 transition operators Rj ◦ Rj+1 of
Xj+2 given Xj are bounded from below by ε0 (this is the uniform ellipticity condition):

(2.2) inf
j≥1

inf
x,z

∫
pj(x, y)pj+1(y, z)dmj+1(y) ≥ ε0.

Next, for a uniformly bounded sequence of measurable functions fn : Xn × Xn+1 → R

we set Yn = fn(Xn, Xn+1) and

(2.3) SN =
N∑

n=1

(Yn − E(Yn)).

Set VN = Var(SN ) and σN =
√
VN . Then by [20, Theorem 2.2] we have lim

N→∞
VN = ∞

if and only if one can not decompose Yn as

Yn = E(Yn) + an+1(Xn+1, Xn+2)− an(Xn, Xn+1) + gn(Xn, Xn+1)

where an are uniformly bounded functions and
∑

n

gn(Xn, Xn+1) converges almost

surely.
The CLT in the case VN → ∞ is due to [15], see [59] for a modern proof. Our first

result here is a version of the Berry-Esseen theorem. Denote

(2.4) ŜN = (SN − E[SN ]) /σN .

3The assumptions that we have uniform lower bound on the two step density and that the summands
fn introduced below depend only on two variables are taken form [20]. In fact, the arguments of
[20] also work in the case we have uniform ellipticity after an arbitrary fixed number of steps and fn
depend on finitely many variables around xn require only minor modifications (but lead to a significant
complication of the notation). On the other hand there are some new effects in the case f depends
on two variables which could not be seen in the case (considered in [15]) where fn depend on a single
variable. In this paper we keep the convention from [20] and assume two step ellipticity and two step
dependence for additive functionals.
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1. Theorem. Suppose that lim
N→∞

VN = ∞. Then there is a constant C > 0 which

depends only on sup
n

‖Yn‖L∞ and ε0 so that for any N ≥ 1,

(2.5) sup
t∈R

∣∣∣P(ŜN ≤ t)− Φ(t)
∣∣∣ ≤ Cσ−1

N

where Φ is the standard normal distribution function.

Next we introduce some terminology from [20]. We say that a sequence ZN of random
variables is center tight if there are constants cN such that {ZN − cN} is tight. Two

additive functionals fn and f̃n are homologous if
N∑

n=1

(fn(Xn, Xn+1) − f̃n(Xn, Xn+1)) is

center tight. We say that {fn} is reducible if it is homologous to an additive functional
taking values in hZ for some h > 0. If {fn} is not reducible, it is called irreducible.

2. Theorem. If VN diverges and {fn} is irreducible then SN satisfies the Edgeworth
expansion of order 1, where

P1,N(t) =
E[(Sn − E[Sn])

3]

6VN
(t3 − 3t).

Next, we say that fn stably4 obeys Edgeworth expansion of order r if any additive
functional homologous to fn satisfies Edgeworth expansions of order r.

3. Corollary. fn stably obeys Edgeworth expansion of order 1 iff it is irreducible.

Proof. If fn is irreducible then any homologous additive functional f̃n is also irreducible,
so by Theorem 2, f̃n obeys Edgeworth expansion of order 1.
If fn is reducible then its homology class contains an hZ valued functional f̃n, for

some h > 0. By the LLT of [20, Section 5], S̃N has jumps of order 1/
√
VN , so S̃N does

not obey expansion of order 1. �

2.2. High order expansions.

2.2.1. Summands with small essential supremum. We obtain the following extension of
the Edgeworth expansions for function fn which converge to 0 as n → ∞.

4. Theorem. Suppose that lim
N→∞

VN = ∞, and that there are C > 0 and β ∈ (0, 1/2)

so that for all n ∈ N we have ‖fn‖∞ ≤ C

nβ
. Let r ≥ 1 be an integer satisfying

(2.6) r <
1

1− 2β
.

Then SN admits an Edgeworth expansion of order r. In particular, if ‖fn‖∞ = O(n−1/2)
then SN admits Edgeworth expansions of all orders.

4The notion of stable Edgeworth expansion is motivated by the notion of stable local limit theorem
studied in [53, 57]. We note that [19] obtains conditions for the stability of Edgeworth expansions for
the sums of independent integer valued random variables (in the integer case one studies the expansions
for P(SN = kN )).
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The following result shows that the conditions of Theorem 4 are optimal.

5. Theorem. For every β ∈ (0, 1
2
) there exists a sequence of centered independent

random variables Xn so that C1n
−β ≤ ‖Xn‖L∞ ≤ C2n

−β for some C1, C2 > 0 and all

n large enough, V (SN) is of order N1−2β but SN =

N∑

n=1

Xn fails to satisfy Edgeworth

expansions of any order s such that s > 1
1−2β

.

Taking β ∈ (0, 1/4) we have 1
1−2β

< 2, and we get from Theorem 5 that SN might

not admit Edgeworth expansions of order larger than 1 if ‖fn‖∞ ≍ n−β.

2.2.2. Markov chains on compact Riemannian manifolds. Let us assume that {Xn}
is a Markov chain on a compact Riemannian manifold M with transition densities
pn(x, y) bounded and bounded away from 0, uniformly in n. Let α ∈ (0, 1] and let
fn : M ×M → R be observables satisfying ‖fn‖α := max(sup |fn|, vα(fn)) ≤ 1, where
vα(fn) is the Hölder constant of fn corresponding to the exponent α. Consider the sum

SN =

N∑

n=1

fn(Xn, Xn+1).

6. Theorem. Suppose that VN = V (SN) → ∞.

(i)If α = 1 then SN satisfies the Edgeworth expansion of all orders.

(ii) If α < 1 then SN satisfies the Edgeworth expansion of any order r < 1+α
1−α

.

For smooth functions, expansions of all orders were obtained in [30] for stationary
Markov chains and functions fn = f which do not depend on n. Here we have to
overcome the difficulty that the variance of fn(Xn, Xn+1) might be small, and hence
the proof differs from the one in [30] even for smooth functions, so it is also new in
the stationary case. The proof of Theorem 6 follows the approach of [16]. We note
that similar estimates are used in [16, 17] to prove polynomial bounds for the decay of
correlations for hyperbolic suspension flows with Hölder roof functions. However, the
bound of [16, 17] are not explicit whereas here we get an explicit (and optimal, see
below) control on the possible location of resonances.
We see that as α → 1, the largest order of the expansions ensured by Theorem 6(ii)

diverges to ∞. The following theorem shows that the conditions of Theorem 6(ii) are
optimal.

7. Theorem. Let {xn} be iid random variables uniformly distributed on [−1, 1]. For
every 0 < α < 1 there exists an increasing odd function f : [−1, 1] → [−1, 1] which is

Hölder continuous with exponent α and is onto [−1, 1], so that Sn =
n∑

j=1

f(xj) does not

admit Edgeworth expansion of any order r > 1+α
1−α

.

Theorem 7 show that the conditions of Theorem 6(ii) are optimal even in the station-
ary case. The idea in the proof of Theorem 7 is to first approximate α by numbers of
the form αq,p = ln(p)/ ln(p+q), for some p, q ≥ 2 so that q|(p−1). Then, the restriction
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of the function f to [0, 1] will be the, so called, Cantor function (see [32]) corresponding
to a certain Cantor set with Hausdorff dimension αq,p.

2.3. The canonical form of the Edgeworth polynomials. We note that in the
non-stationary setting, (1.3) does not define the Edgeworth polynomials uniquely since
we could always modify the coefficients by terms of order o(σ−r

N ). However, it turns out
that one could make a canonical choice which a simple computation of its coefficient
in a quite general setting including additive functionals of uniformly elliptic Markov
chains considered here.
Given a nonconstant random variable S with finite moments of all orders, let aj(S)

denote the normalized cumulant

aj(S) =
1

V (S)ij
dj

dtj

∣∣∣
t=0

ln
[
E
(
eit(S−E(S))

)]
.

8. Theorem. There exist polynomials Pj(z; a3, a4, . . . , a3j) such that for each integer
r ≥ 1 there is a positive constant δr = δr(ε0, K), K = sup

n
‖fn(Xn, Xn+1)‖L∞, such that

if SN and ŜN are given by (2.3) and (2.4), respectively, then denoting

(2.7) Pj,N(z) = Pj(z, a3(SN), . . . , a3j(SN)),

Er,N(z) = Φ(z) + φ(z)
r∑

j=1

σ−j
N Pj,N(z) and letting Êr,N denote the Fourier transform of

Er,N(z) we have

(2.8)

∫ δrσN

−δrσN

∣∣∣∣∣∣

E

(
eitŜN

)
− Êr,N(t)
t

∣∣∣∣∣∣
dt = O

(
σ
−(1+r)
N

)
.

We note that our proofs of Theorems 2, 4 and 6 provide the Edgeworth expansions
with the above polynomials Pj,n.
The polynomials Pj are given in Definition 15. In §5.4 we show that for additive

functionals of the Markov chains considered in this paper the Edgeworth polynomials
have bounded coefficients. This is done by verifying Assumption 17 which ensures the
boundness for an abstract sequence of random variables.
We note that (2.8) holds without any additional assumptions. However, to ensure

that the term Er,N(z) provides a good approximation to P(ŜN ≤ z) we need to control
the LHS of (2.8) on longer intervals of size Bσr

N for an arbitrary B. In the case r = 1
the contribution of [−BσN , BσN ] \ [−δ1σN , δ1σN ] is analyzed in [20]. The case r > 1 is

addressed in Sections 6 and 7 where we control the characteristic function of ŜN under
the assumptions of Theorems 4 and 6, respectively.

3. Background

3.1. A sequential RPF theorem. For all j ∈ N and z ∈ C, let R
(j)
z the operator

given by

R(j)
z g(x) = E[g(Xj+1)e

zfj(Xj ,Xj+1)|Xj = x] = Rj(e
zfj(x,·)g)(x)
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where g : Xj+1 → R is a bounded function. Denote by Bj the space of bounded
functions on Xj, equipped with the supremum norm ‖ · ‖∞. For every integer j ≥ 1,
n ∈ N and z ∈ C consider the n-th order iterates Rj,n

z : Bj+n → Bj given by

(3.1) Rj,n
z = R(j)

z ◦R(j+1)
z ◦ · · · ◦R(j+n−1)

z .

We have the following.

9. Theorem. There exists a complex neighborhood U of 0 which depends only on
‖f‖∞ := sup

j
sup |fj | and ε0 (from the definition of the uniform ellipticity) so that

for any z ∈ U and an integer j ≥ 1 there exists a triplet λj(z), h
(z)
j and ν

(z)
j consisting

of a nonzero complex number λj(z), a complex function h
(z)
j ∈ Bj and a continuous

linear functional ν
(z)
j ∈ B∗

j satisfying that ν
(z)
j (1) = 1, ν

(z)
j (h

(z)
j ) = 1 and

R(j)
z h

(z)
j+1 = λj(z)h

(z)
j , and (R(j)

z )∗ν
(z)
j = λj(z)ν

(z)
j+1

where (R
(j)
z )∗ : B∗

j → B∗
j+1 is the dual operator of R

(z)
j and B∗

j is the dual space of the

Banach space Bj. When z = t ∈ R then h
(t)
j is strictly positive, ν

(t)
j is a probability

measure and there exist constants a, b > 0, which depend only on ‖f‖∞ and ε0 so that

λj(t) ∈ [a, b] and h
(t)
j ≥ a. When t = 0 we have λj(0) = 1 and h

(0)
j = 1.

Moreover, this triplet is analytic and uniformly bounded. Namely, the maps

λj(·) : U → C, h
(·)
j : U → Bj and ν

(·)
j : U → B∗

j

are analytic, where B∗
j is the dual space of Bj, and there exists a constant C > 0 so

that

(3.2) max
(
sup
z∈U

|λj(z)|, sup
z∈U

‖h(z)
j ‖∞, sup

z∈U
‖ν(z)

j ‖∞
)
≤ C

where ‖ν‖∞ is the operator norm of a linear functional ν : Bj → C.
Furthermore, there exist constants C > 0 and δ ∈ (0, 1) such that for all n ≥ 1,

j ∈ N, z ∈ U and q ∈ Bj+n,

(3.3)

∥∥∥∥
Rj,n

z q

λj,n(z)
−
(
ν
(z)
j+n(q)

)
h
(z)
j

∥∥∥∥
∞

≤ C‖q‖∞ · δn

and

(3.4)

∥∥∥∥
(Rj,n

z )∗µ

λj,n(z)
−
(
µh

(z)
j

)
ν
(z)
j+n

∥∥∥∥
∞

≤ C‖µ‖∞ · δn

where λj,n(z) =

n−1∏

k=0

λj+k(z).

The proof of Theorem 9 was given in [40, Ch.4&6] by a successive application of the
complex projective contraction.We remark that the arguments in [40, Ch.4&6] formally
require us to have a two sided sequence of operators, and in order to overcome this

technical difficulty, for j ≤ 0 we define Xj = X1 and R
(j)
z g(x) = E[g(X1)]. This amount

to taking independent copies {Zj : j ≤ 0} of X1, setting Xj = Zj for j ≤ 0 and fj = 0.
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In fact, in [40, Ch.4&6] the setup included random operators R
(j)
z = Rθjω

z , when ω ∈ Ω
and (Ω,F , P, θ) is some invertible measure preserving system, which is not necessarily
ergodic. The main reason for considering random operators in [40], and not just a
sequence of operators, is that the random Ruelle-Perron-Frobenius (RPF) theorem
was needed in the proof of the local CLT from [40, Ch. 2], where random operators
arise after a certain conditioning argument. The measurability of the resulting RPF

triplets λω(z), h
(z)
ω , ν

(z)
ω as functions of ω played an important rule in that proof, which

lead to consider a more general steup of random operators in [40, Ch. 4], for which
there is meaning to such measurability. However, in our purely sequential setup such
measurability issues do not arises, and thus we can just repeat the arguments from [40,
Ch. 4] pertaining to a fixed ω and ignore the ones addressing measurability.

10. Remark. In the proof of the Berry-Esseen theorem and the Edgeworth expansions
it will be convenient to assume that an := E[fn(Xn, Xn+1)] = 0. This amount to
replacing fn with fn − an, and hence to replacing Rj

z with e−ajzRj
z and replacing λj(z)

with e−zajλj(z).

3.2. The structure constants. As it was mentioned in the introduction a new feature
of our work is that we do not make any assumptions on how slow variance of SN grows.
In this section we recall a few results from [20] which provide some geometric control
on the variance.

By a random hexagon based at n we mean a tuple

Pn = (Xn−2,Xn−1,Xn;Yn−1,Yn,Yn+1)

where (Xn−2,Xn−1) and (Yn,Yn+1) are independent, (Xn−2,Xn−1) and (Xn−2, Xn−1)
are equality distributed, (Yn,Yn+1) and (Xn, Xn+1) are equality distributed and Xn

and Yn−1 are conditionally independent given the previous choices and are sampled
according to the bridge distributions

P(Xn ∈ E|Xn−1 = xn−1,Yn+1 = yn+1) = P(Xn ∈ E|Xn−1 = xn−1, Xn+1 = yn+1)

and

P(Yn−1 ∈ E|Xn−2 = xn−2,Yn = yn) = P(Xn−1 ∈ E|Xn−2 = xn−2, Xn = yn).

The balance Γ(Pn) of the hexagon is given by

Γ(Pn) = fn−2(Xn−2,Xn−1) + fn−1(Xn−1,Xn) + fn(Xn,Yn+1)

−fn−2(Xn−2,Yn−1)− fn−1(Yn−1,Yn)− fn(Yn,Yn+1).

Next, let

(3.5) u2
n = E[Γ(Pn)

2].

11. Theorem ([20], Theorem 2.1). There exist positive constants C1, C2, C3, C4 so that
for any m ≥ 0 and N ≥ 3,

(3.6) C1

m+N∑

n=m+3

u2
n − C2 ≤ VN = Var(SN − Sm) ≤ C3

m+N∑

n=m+3

u2
n + C4.
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It turns out that the hexagon process also allows to control the characteristic function
of SN . Denote

(3.7) dn(ξ)
2 = E[|eiξΓ(Pn) − 1|2] = 4E[sin2(ξΓ(Pn)/2)], DN(ξ) =

N∑

n=1

d2n(ξ).

12. Lemma ([20], eq. (4.2.6)). There are constants C, c > 0 so that for each N and
ξ ∈ R, the characteristic function ΦN (ξ) = E

(
eiξSN

)
satisfies

(3.8) |ΦN (ξ)| ≤ Ce−cDN (ξ).

3.3. Mixing and moment estimates. Next we discuss the mixing properties of {Xn}.
13. Lemma (Proposition 1.11 (2), [20]). There exist δ ∈ (0, 1) and A > 0 so that for
all n, k ∈ N we have∣∣Cov

(
fn(Xn, Xn+1), fn+k(Xn+k, Xn+k+1)

)∣∣ ≤ Aδk.

Next, for each j and n consider the random variable Sj,n given by

(3.9) Sj,n =

j+n−1∑

k=j

fk(Xk, Xk+1).

Then S1,n = Sn.

14. Lemma (Lemma 2.16, [20]). For every integer p ≥ 1 there are constant Cp, Rp > 0
so that for all j and n,

∣∣E
[(
Sj,n − E(Sj,n)

)p]∣∣ ≤ Rp + Cp

(
Var(Sj,n)

)[p/2]
.

4. Edgewoth expansions under logarithmic growth assumptions

4.1. The Edgewoth polynomials. Let S be a random variable with finite moments
of all orders. We recall that the k-th cumulant of S is given by

Γk(S) =
1

ik
dk

dtk
(
lnE[eitS ]

)∣∣
t=0

.

Note that Γk(aS) = akΓk(S) for every a ∈ R. Moreover, Γ1(S) = E[S], Γ2(S) = Var(S)
and for k ≥ 3 by (1.34) in [51], we have

(4.1) Γk(S) =

k∑

v=1

(−1)v−1

v

∑

k1+...+kv=k

k!

k1!k2! · · · kv!
αk1αk2 · · ·αkv

where αm = αm(S) = E[Sm] (this formula is a consequence of the Taylor expansion of
the function ln(1 + z)).

The cumulants of order k ≥ 3 measure the distance of the distribution of Ŝ =(
S − E[S]

)
/σ, from the standard normal distribution, where σ =

√
Var(S), assuming

of course that σ > 0. We have Γk(S) = 0 for all k ≥ 3 if and only if Ŝ is standard

normal, and we refer to [51] for conditions on Γk(Ŝ) which insure that the distribution

function of Ŝ is close to the standard normal distribution function in the uniform metric.
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We also refer to [3, 55] for expansions of expectations of smooth functions of Ŝ which
involve growth properties of cumulants.
Next, let us assume that E[S] = 0 and σ2 = E[S2] > 0. Consider the function

Λ(t;S) = lnE[eitS/σ] + t2/2.

Then Λ(0;S) = 0, Λ′
n(0;S) = E[S] = 0, Λ′′

n(0;S) = E[S2]/σ2 − 1 = 0, and for k ≥ 3 we
have

Λ(k)(0) :=
dk

dtk
Λ(t;S)

∣∣
t=0

= ikΓk(S)σ
−k.

Thus, the k-th Taylor polynomial of Λ(t;S) is given by

Pk(t;S) =
k∑

j=3

ijΓj(S)

j!σj
tj =

k∑

j=3

ijaj(S)σ
−(j−2)tj .

where5 aj(S) =
Γj(S)

j!σ2 . Let us consider the formal power series

Γ(t;S) =
∑

j≥3

ijΓj(S)

j!σj
tj =

∑

j≥3

ijaj(S)σ
−(j−2)tj,

where aj(S) is viewed as a variable independent of σ. This leads to the following formal
series

exp(Γ(t;S)) = 1 +
∑

j≥1

ijΓ(t;S)j

j!
= 1 +

∑

j≥1

σ−jAj(t;S)

where Aj(t;S) is the polynomial given by

Aj(t;S) =

j∑

m=1

1

m!

∑

k1,...,km∈Aj,m

m∏

u=1

ikiaki(S)t
j+2m

and Aj,m is the set of all m-tuples (k1, ..., km) of integers such that

ki ≥ 3 and
∑

i

ki = 2m+ j.

15. Definition. The j-th Edgewoth polynomial S is the unique polynomial Pj(t;S) so

that the Fourier transform of φ(t)Pj(t;S) is e
−t2/2Aj(t;S), where φ(t) is the standard

normal density.

Notice that the polynomials Aj(t;S) and Pj(t;S) depend on S only through the first
3j moments. Note also that Aj(0;S) = 0 for all j.

5The reason we divide Γj(S) by σ2 is that under suitable restrictions on S, the quantities |Γj(S)σ
−2|

will be bounded by some constant not depending on S (see next section). This will be the case when
S = Sn, for which the latter quantities will be bounded in n. Here Sn are the sums considered in
Section 2.
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16. Remark. In order to compute Aj(t;S) for j ≤ k it is enough to expand ePk+2(t;S)

to a power series and represent it in the form 1 +
∑

j≥1

σ−j
n Ãj(t;S). Indeed, it follows

that Ãj(t;S) = Aj(t;S) for all j ≤ k since

Γ(t, S)− Pk+2(t;S) = σ−(k+1)
∞∑

j=k+3

ijaj(S)σ
−(j−k−3)tj.

Thus, to compute Aj(t;S), j ≤ k we first write

ePk+2(t;S) = 1 +

∞∑

j=1

Pk+2(t;S)
j

j!
.

Now, since Pk(t;S) has a factor6 σ−1, we can compute Aj(t;S), j ≤ k by considering
only the first k summands

1 +

k∑

j=1

Pk+2(t;S)
j

j!
.

After writing the above expression in the form 1+

∞∑

j=1

σ−jĀj,k(t;S) (this is a finite sum)

we have Aj(t;S) = Āj,k(t;S) for all j ≤ k.

In particular P3(t;S) =
i3a3(S)t

3

6σ
=

A1(t;S)

σ
, whence

P1(t;S) =
a3(S)

6
(t3 − 3t) =

E[(S − E[S])3]

6σ2
(t3 − 3t)

where we have used that the transform Fourier of (t3 − 3t)φ(t) is i3e−
1

2
ξ2ξ3.

4.2. A Berry-Esseen theorem and Edgeworth expansions via decay of char-

acteristic functions. Let Wn be a sequence of centered random variables so that
lim
n→∞

Var(Wn) = ∞. Let us set

Γn(t) = Γ(t;Wn), Λn(t) = Λ(t;Wn), Aj,n(t) = Aj(t;Wn), Pj,n(t) = Pj(t;Wn).

Let us also set σn =
√

Var(Wn). We will prove here Edgeworth expansions under the
following logarithmic growth assumptions.

17. Assumption. For some k ≥ 3, for all j ≤ k there exist constants Cj, εj > 0 so that

(4.2) sup
t∈[−εjσn,εjσn]

|Λ(j)
n (t)| ≤ Cjσ

−(j−2)
n .

Note that under Assumption 17 the polynomials Aj,n and Pj,n, j ≤ k have bounded
coefficients (for that it is enough to only consider t = 0). For t = 0 conditions of the

form |Λ(j)
n (0)| = |Γj(Wn/σn)| ≤ (j!)1+γσ

−(j−2)
n , γ ≥ 0 appear in literature [21, 23, 51] in

the context of moderate deviations and related results (see also references therein).
The relevance of Assumption 17 stems from the following facts.

6Recall that aj(S) are viewed as constants.
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18. Proposition. Let Assumption 17 hold with k = 3. Then there exists a constant
C > 0 so that for every n ≥ 1 we have

sup
t∈R

|P(Wn/σn ≤ t)− Φ(t)| ≤ Cσ−1
n

where Φ is the standard normal distribution and density function.

19. Proposition. Let r ≥ 1 be an integer. Let Assumption 17 hold with k = r + 3.
Suppose also that for every B > 0 and all δ > 0

(4.3)

∫

δ≤|x|≤Bσr−1
n

|E(eixWn)/x|dx = o(σ−r
n ).

Then

(4.4) sup
t

∣∣∣∣∣P(Wn/σn ≤ t)− Φ(t)−
r∑

j=1

σ−j
n Pj,n(t)φ(t)

∣∣∣∣∣ = o(σ−r
n )

where Φ and φ are the standard normal distribution and density function, respectively.

4.3. Auxillary estimates. Here we present several technical estimates needed in the
proofs of Propositions 18 and 19.
We need two lemmata.

20. Lemma. Let k ≥ 3 be an integer and let Assumption 17 hold with this k. Then
there exist constants δk, Bk > 0 so that for every real t ∈ [−σn, σn],

|Pk,n(t)| ≤ Bkσ
−1
n |t|3 = Bkt

2|t/σn|.
Therefore, there is a constant δk > 0 so that for every t ∈ [−δkσn, δkσn],

|ePk,n(t)| ≤ et
2/4.

21. Lemma. Let Assumption 17 hold with k = 3. Then there exist δ0 > 0 and α ∈
(0, 1/2) so that for every real t such that |t/σn| ≤ δ0 we have |eΛn(t)| ≤ eαt

2

.

Proof of Lemmas 20 and 21. Let us first prove Lemma 20. By taking t = 0 in (4.2)
and using that Γj(aW ) = ajW we have |Γj(Wn)| ≤ Cjσ

2
n. Thus, if |t/σn| < 1 then with

Ak = max
3≤j≤k

Cj and Bk = kAk we have

|Pk,n(t)| ≤
k∑

j=3

|Γj(Wn)|
j!σj

n

|t|j ≤ Akt
2

k∑

j=3

|t/σn|j−2/j! ≤ Akt
2

k∑

j=3

|t/σn| ≤ Bk|t|3σ−1
n .

Hence, if |t/σn| ≤ 1
4Bk

:= δk then |Pk,n(t)| ≤ t2/4 and so
∣∣ePk,n(t)

∣∣ ≤ et
2/4.

Finally, to prove Lemma 21, using that the second Taylor polynomial P2,n(t) of Λn

around the origin vanishes, we can write write Λn(t) = P2,n(t) + R2,n(t) = R2,n(t),
where R2,n(t) is the Taylor remainder of order 2 around the origin. Then by the

Lagrange form of the Taylor remainder we can write R2,n(t) =
t3Λ′′′

n (t1)
3!

for some t1 such
that |t1| ≤ |t|. Therefore, by Assumption 17 we have

R2,n(t) = O(t3/σn) = t2O(|t/σn|), if |t| ≤ ε1.
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Thus when |t/σn| is small enough |Λn(t)| = |R2,n(t)| < t2/3, and Lemma 21 follows
with α = 1/3. �

Combining Lemma 21 with Proposition 24 proven in Section 5 we recover the fol-
lowing result, which was proved in [20, Theorem 6.1] for the uniformly elliptic Markov
chains considered in this paper.

22. Corollary. Under assumption 17 with k = 3 there exist constants c > 0 and δ > 0
so that for every natural n and t ∈ [−δ, δ] we have

|E[eitWn ]| ≤ e−ct2σ2
n .

The key step in estimating the rate of convergence for the CLT is the following.

23. Proposition. Let r ≥ 0 be an integer and let Assumption 17 hold with k = r + 3.
Then there is a constant δr > 0 such that

∫ δrσn

−δrσn

∣∣∣∣∣
E[eitWn/σn ]− e−t2/2(1 +Qr,n(t))

|t|

∣∣∣∣∣ dt = O(σ−r−1
n )

where for r = 0 we set Q0,n(t) = 0 and for r ≥ 1,

Qr,n(t) =
r∑

j=1

σ−j
n Aj,n(t)

Proof. Write

(4.5) E[eitWn/σn ] = e−t2/2eΛn(t) = e−t2/2ePr+2,n(t)+Rr+2,n(t)

where Rr+2,n(t) is the Taylor remainder of order r + 2 around 0. Using the Lagrange
form of Taylor remainders together with Assumption 17 we get that

(4.6) Rr+2,n(t) = O(tr+3σ−(r+1)
n ).

Next, by the mean value theorem and Lemmas 20 and 21 there are constants δr > 0,
C0 > 0 and b0 ∈ (0, 1/2) so that if |t/σn| ≤ δr then

(4.7)
∣∣eΛn(t) − ePr+2,n(t)

∣∣ ≤ C0e
b0t2 |Rr+2,n(t)|.

Moreover, by Lemma 20 and the Lagrange form of Taylor remainders,

(4.8)

∣∣∣∣∣e
Pr+2,n(t) −

(
1 +

r∑

j=1

Pj+2,n(t)
j

j!

)∣∣∣∣∣ ≤ Dre
b0t2σ−(r+1)

n |t|3(r+2)

where Dr > 0 is some constant (when r = 0 then the left hand side vanishes since
P2,n(t) = 0). Combining (4.5), (4.6), (4.7) and (4.8), for every real t so that |t/σn| ≤ δr
we have∣∣∣∣∣E[e

itWn/σn ]− e−t2/2

(
1 +

r∑

j=1

Pj+2,n(t)
j

j!

)∣∣∣∣∣ ≤ Ce−ct2σ−(r+1)
n max

(
|t|, |t|(r+3)(r+2)

)
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where c = 1/2− b0 > 0. Next, by Remark 16, we have
r∑

j=1

Pr+2,n(t)
j

j!
= Qr,n(t) + max(|t|, |t|r(r+2))O(σ−r−1

n )

where the term max(|t|, |t|r(r+2))O(σ−r−1
n ) comes from the terms which include powers

of σ−1
n larger than r (when r = 0 both the left hand side and Qr,n(t) equal 0). We

conclude that∣∣∣E[eitWn/σn ]− e−t2/2(1 +Qr,n(t))
∣∣∣ ≤ Ce−ct2σ−(r+1)

n max
(
|t|, |t|(r+3)(r+2)

)
.

Therefore,
∫ δrσn

−δrσn

∣∣∣∣∣
E[eitWn/σn ]− e−t2/2(1 +Qr,n(t))

|t|

∣∣∣∣∣ dt

≤ Cσ−(r+1)
n

∫ ∞

−∞
e−ct2

(
1 + |t|(r+3)(r+2)−1

)
dt ≤ C ′σ−(r+1)

n

completing the proof of the proposition. �

4.4. Proofs of Propositions 18 and 19.

Proof of Proposition 18. The first step in the proof is quite standard. We use gener-
alized Esseen inequality [29, §XVI.3]. Let F : R → R be a probability distribution
function and G : R → R be a differential function with bounded derivative so that
G(−∞) = 0. Let f(t) =

∫
eitxdF (x) and g(t) =

∫
eitxdG(x) be the corresponding

Fourier transforms. Then for every T > 0 we have

(4.9) sup
x∈R

|F (x)−G(x)| ≤ 2

∫ T

−T

∣∣∣∣
f(t)− g(t)

t

∣∣∣∣ dt+
24‖G′‖∞

πT
.

Taking F to be the distribution of Wn/σn, G to be the standard normal distribution
and Tn = δ1σn where δ1 comes from Lemma 20 we conclude that Proposition 18 will
follow if we prove that

(4.10)

∫ δ1σn

−δ1σn

∣∣∣∣∣
E[eitWn/σn ]− e−t2/2

t

∣∣∣∣∣ dt ≤ Cσ−1
n

for some constant C. Finally, (4.10) follows from Proposition 23 with r = 0. �

Proof of Proposition 19. Relying on Proposition 23, the proof proceeds essentially in
the same way as [27, 29]. We provide the details for readers’ convenience.
Let F = Fn be the distribution function of Wn/σn, and G = Gn,r be the function

whose Fourier transform is e−t2/2(1 + Qn,r(t)), where Qn,r comes from Proposition 23.
Then Gn,r has the form

Gn,r(t) = Φ(t) +

r∑

j=1

σ−j
n Pj,n(t)φ(t)

where Pj,n’s are the Edgeworth polynomials of Wn.
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Let ε > 0 and B = 1/ε. Applying (4.9) with F = Fn, G = Gn and T = Bσr
n we

obtain

sup
t

∣∣∣∣∣P (Wn/σn ≤ t)− Φ(t)−
r∑

j=1

σ−j
n Pj,n(t)φ(t)

∣∣∣∣∣ ≤ I1 + I2 + I3 +O(ε)σ−r
n

where for δ small enough

I1 =

∫ δσn

−δσn

∣∣∣∣∣
E[eitWn/σn ]− e−t2/2(1 +Qr,n(t))

t

∣∣∣∣∣ dt

I2 =

∫

δσn≤|t|≤Bσr
n

∣∣∣∣
E[eitWn/σn ]

t

∣∣∣∣ dt, I3 =

∫

|t|≥σnδ

e−t2/2

∣∣∣∣
1 +Qr,n(t)

t

∣∣∣∣ dt.

By Proposition 23 we have I1 = o(σ−r
n ), (4.3) gives that I2 = o(σ−r

n ), while I3 = O(e−cσ2
n)

for some c > 0 sinceQr,n is a polynomial with bounded coefficients and degree depending
only on r. �

5. Application to uniformly elliptic inhomogeneous Markov chains

5.1. Verification of Assumption 17. In this section we consider uniformly bounded
additive functional SN of a Markov chain Xn which satisfies (2.1) and (2.2). We prove
the following.

24.Proposition. The sequence of random variables Sn verifies Assumption 17 for every
k, namely, if Λn(t) = lnE[eitSn/σn ] + t2/2 then for every k ≥ 3 there exist constants
δk, Ck > 0 so that for all n,

sup
t∈[−σnδk ,σnδk]

|Λ(k)
n (t)| ≤ Ckσ

−(k−2)
n .

The proof of Proposition 24 is based on the construction of sequential pressure func-
tions, as described in the following section.

25. Remark. In [51, Theorem 4.26] the authors show that if Sn =

n∑

j=1

Yj/σn, and {Yj}

is an exponentially fast φ-mixing uniformly bounded centered Markov chain, such that
Var(Yj) is bounded away from 0 then there is a constant C such that for all m ∈ N

|Γj(Sn/σn)| ≤ Cmm!σ−(m−2)
n . It follows that the function Λn is real analytic and, hence,

Assumption 17 holds for every k. By [20, Proposition 1.22], the Markov chains {Xn}
considered in this paper are also exponentially fast φ-mixing, however, we consider
functionals Yn = fn(Xn, Xn+1) whose variance can be small, and so Proposition 24
cannot be derived from [51, Theorem 4.26] despite the related setup.

5.2. The sequential pressure function. Definition and basic properties. Recall
Theorem 9. For every j ≥ 1, denote by µj the distribution of Xj (which is a probability
measure on Xj). Recall that λj(z) is uniformly bounded in j and λj(0) = 1. Let Πj(z)
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denote the analytic branch of the logarithms of λj(z), such that Πj(0) = 0. We call
Πj(z) the sequential pressure functions. Then

(5.1) sup
j

sup
|z|≤s0

|Πj(z)| ≤ c0

where s0 and c0 are some positive constants. We note that all the derivatives of Πj at
z = 0 are real numbers, since the function λj(z) is positive for real z’s.

26.Remark. By Remark 10, upon replacing fn with fn−E[fn(Xn, Xn+1)], the resulting
pressure function becomes Πj(z) − E[fn(Xn, Xn+1)]z. This has no affect on the value
of the pressure function at z = 0 and on the derivatives of it of any order larger than
1. Thus, it will essentially make no difference in the following arguments if we have
already centralized fn or not.

Let j, n be positive integers. Set

Γj,n(z) = lnE[ezSj,n], Πj,n(z) =

j+n−1∑

s=j

Πs(z)

where Sj,n is defined in (3.9).

27. Lemma. There is a constant a > 0 with the following property: for every integer
k ≥ 0 there exists ck > 0 such that for each j, n for all complex z so that |z| ≤ a we
have

(5.2)
∣∣Γ(k)

j,n(z)− Π
(k)
j,n(z)

∣∣ ≤ ck

where g(k)(z) denotes the k-th derivative of a function g(z).

Note that for k = 0, 1, 2 and z = 0 we have Γ
′

j,n(0) = E[Sj,n], Γ
′′

j,n(0) = Var(Sj,n)

while for larger k’s Γ
(k)
j,n(0) is just the k-th cumulant of Sj,n. In particular,

Π′
1,n(0) = E(Sn) +O(1) and Π′′

1,n(0) = σ2
n +O(1).

Proof. Since hj(0) = 1 and the norms ‖h(z)
j ‖∞ are uniformly bounded in j around 0,

it follows from the Cauchy integral formula that
∂hj

∂z
is uniformly bounded around the

origin. Hence, if δ0 is small enough then for any complex z with |z| ≤ δ0 we have

(5.3)
1

2
< inf

j
|µ1(h

(z)
1 )|.

Recall that E[ezSj,n ] = µj(R
j,n
z 1). By (3.3), if |z| is sufficiently small then for all j and

n we have

(5.4) E[ezSj,n ] = e
∑j+n−1

s=j Πs(z)(µj(h
(z)
j ) + δj,n(z))

where δj,n is an analytic function so that |δj,n(z)| ≤ Cδn for some C > 0 and δ ∈ (0, 1)

which do not depend on j and n. In fact, since h
(0)
j = 1 we have δj,n(0) = 0 and so

Cauchy integral formula also implies |δj,n(z)| ≤ C|z|δn. Using (5.3), we can take the
logarithms of both sides of (5.4) and derive that when |z| is sufficiently small, there is
a constant c0 so that

(5.5)
∣∣Γj,n(z)− Πj,n(z)

∣∣ ≤ c0
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Applying the Cauchy integral formula once more we conclude that for each k there
exists a constant ck > 0 so that for every j and n we have

(5.6)
∣∣Γ(k)

j,n(z)− Π
(k)
j,n(z)

∣∣ ≤ ck

and the lemma follows. �

5.3. The derivatives of the pressure function around the origin. Here we prove
several useful auxiliary estimates.

28. Lemma. Let k ≥ 2 be an integer, and let S be a real-valued random variable with
finite first k moments. Let us define ϕ(t) = E

(
eitS
)
and Λ(t) = lnϕ(t). Then there

exists a constant Dk which depends only on k so that with r0 =
1

2
√
E(S2)

sup
t∈[−r0,r0]

|Λ(k)(t)| ≤ DkE[|S|k].

Proof. We first recall that for the characteristic function ϕ(t) = E
(
eitS
)
of a random

variable S with finite first k moments and any real t we have

|ϕ(t)− 1| ≤ |t|E[|S|] ≤ |t|‖S‖L2

and that for j = 0, 1, 2, ..., k we have

(5.7) |ϕ(j)(t)| ≤ E[|S|j].

Next, let Λ(t) = lnϕ(t) and r0 =
1

2
√
E(S2)

. Then |ϕ(t)| ≥ 1
2
for all t ∈ [−r0, r0]. By

Faá di Bruno’s formula, for every t ∈ [−r0, r0] we have

|Λ(k)(t)| =
∣∣∣∣∣
∑

m1,...,mk

k!∏k
j=1(mj !(j!)mj )

· 1

ϕ(t)
∑k

j=1
mj

k∏

j=1

(
(i)jE[SjeitS ]

)mj

∣∣∣∣∣

where (m1, ..., mk) range over all the k-tuples of nonnegative integers such that∑

j

jmj = k. Now the lemma follows from (5.7) and the Hölder inequality. �

29. Lemma. Fix some integer k ≥ 2 and let B1 < B2 be constants. Then if B1 is
sufficiently large there are constants D and r0 depending only on B1, B2 and k so that
for every t ∈ [−r0, r0] and each j, n ∈ N such that B1 ≤ Var(Sj,n) ≤ B2, we have

|Π(k)
j,n(it)| ≤ D.

Proof. Let Λj,n(t) = lnE[eitSj,n ]. Then, in the notation of Lemma 27, Λj,n(t) = Γj,n(it).
Applying Lemma 28 with S = Sj,n and using (5.6) and Lemma 14 we obtain that for
every t ∈ [−r0, r0] we have

|Π(k)
j,n(it)| ≤ ck + |Λ(k)

j,n(t)| ≤ ck +DkE[|Sj,n|k] ≤ ck + C
(
Var(Sj,n)

)k/2 ≤ ck + CB
k/2
2

competing the proof of the lemma. �
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30. Corollary. For every k ≥ 2 there exist constants εk > 0 and Ck > 0 so that for
each n ∈ N and t ∈ [−εk, εk],

|Π(k)
1,n(it)| ≤ Ckσ

2
n.

Hence, with Π̃n(t) = Π1,n(it/σn) he have

sup
t∈[−εkσn,εkσn]

|Π̃(k)
n (t)| ≤ Ckσ

−(k−2)
n .

Proof. Fix some k ≥ 2. Let B1 and B2 be large constants so that Lemma 29 holds. Let
r0 be the constant specified in Lemma 29. Let I1, I2, ..., Imn

be disjoint intervals whose
union cover {1, ..., n} so that

B1 ≤ Var(SIl) ≤ B2

where for each l we set SIl =
∑

j∈Il

fj(Xj, Xj+1). Note that it is indeed possible to find

such intervals if B1 and B2/B1 are sufficiently large because of Theorem 11. Indeed, with
u2
n denoting the structural constants appearing there, there are constants C1, C2 > 0 so

that for any n ≥ 3 and j,

(5.8) C−1
1

j+n−1∑

m=j

u2
m − C2 ≤ Var(Sj,n) ≤ C1

j+n−1∑

m=j

u2
m + C2.

It is also clear that mn/σ
2
n is uniformly bounded away from 0 and ∞ (if n is large

enough). Now, by Lemma 29 there are εk > 0 and Ak > 0 so that for each 1 ≤ l ≤ mn

and t ∈ [−εk, εk], ∣∣∣∣∣
∑

j∈Il

Π
(k)
j (it)

∣∣∣∣∣ ≤ Ak.

Hence, |Π1,n(it)| ≤
∑

l

∣∣∣∣∣
∑

j∈Il

Π
(k)
j (it)

∣∣∣∣∣ ≤ Akmn ≤ Ckσ
2
n. �

5.4. Verification of Assumption 17.

Proof of Proposition 24. Since both sides of (5.4) with j = 1 are analytic, |δ1,n(z)| ≤
C|z|δn for some δ ∈ (0, 1) and C > 0. Moreover µ1(h

(0)
1 ) = 1. Hence, if |z| is small

enough then

lnE[ezSn ] = Π1,n(z) +Gn(z)

where Gn(z) = ln
(
µ1(h

(z)
1 ) + δ1,n(z)

)
, which is an analytic and uniformly bounded

function around the origin (uniformly in n). Thus Proposition 24 follows from Corol-
lary 30. �

31. Corollary. Let r ≥ 1. Suppose that for any B > 0 and δ > 0 small enough,

(5.9)

∫

δ≤|x|≤Bσr−1
n

|E(eixSn)/x|dx = o(σ−r
n ).
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Then

(5.10) sup
t

∣∣∣∣∣P((Sn − E[Sn])/σn ≤ t)− Φ(t)−
r∑

j=1

σ−j
n Pj,n(t)φ(t)

∣∣∣∣∣ = o(σ−r
n )

where Φ and φ are the standard normal distribution and density function, respectively,
and Pj,n(t) = Pj(t, Ŝn) are the Edgeworth polynomials of S̄n = Sn − E[Sn].

Corollary 31 follows from Proposition 19 since Sn verifies Assumption 17.

5.5. A Berry-Esseen theorem and Expansions of order 1.

Proof of Theorems 1 and 2. First, Theorem 1 follows from Propositions 24 and 18.
Next, applying Theorem 3.5 and inequality (4.2.7) from [20] we see that if {fn} is

irreducible then condition (5.9) with r = 1 is satisfied. This proves the result. �

6. High order expansions for summands with small essential supremum,

proof of Theorem 4 and 5

6.1. Existence of expansions. Recall (3.7). In order to prove Theorem 4, we need
the following:

32. Lemma. [20, eq. (3.3.7)] ∃δ > 0 s.t. if ‖fn‖∞|ξ| ≤ δ then d2n(ξ) ≥
ξ2u2

n

2
.

Proof of Theorem 4. Let us fix some r < 1
1−2β

, and take some r < r0 <
1

1−2β
. We claim

that there are constants c, C > 0 so that for all N large enough we have

|ΦN(ξ)| ≤ exp
(
−cξ2VN

)
for |ξ| ≤ Cσr0−1

N .

This is enough for the Edgeworth expansion of order r to hold by Corollary 31.
In order to prove the claim, let N0 = N0(N) be the smallest positive integer such

that σr0−1
N ‖fn‖∞ ≤ δ for all n > N0 where δ is the number from Lemma 32. Then,

since ‖fn‖ = O(n−β)

(6.1) N0 = O

(
σ

r0−1

β

N

)
= O

(
V

r0−1

2β

N

)
.

Let us show now that N0 = o(N), which in particular yields that N0 < N/2 if N is
large enough. The assumption that ‖fn‖∞ = O(n−β) also implies that u2

n = O(n−2β)
and so by (3.6),

(6.2) VN = O(N1−2β).

Combining this with r0 <
1

1−2β
we see that σ

r0−1

β

N = O(Nκ), where

(6.3) κ =
(r0 − 1)

2β
(1− 2β) = 1− 1− r0(1− 2β)

2β
< 1.

Therefore, N0 = O(Nκ).
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Next, let us write

N∑

n=N0+1

u2
n =

3∑

k=0

∑

N0<n≤N,
n mod 4=k

u2
n :=

3∑

k=0

UN0,N,k.

Let kN be so that UN0,N,kN = max{UN0,N,k : 0 ≤ k ≤ 3}. Then by (3.6) there are
constants C,D > 0 so that

(6.4) V (SN − SN0
) ≤ CUN0,N,kN +D.

Combining (3.8), Lemma 32, and (6.4) we see that the characteristic function of SN

satisfies

(6.5) |ΦN (ξ)| ≤ exp
(
−cξ2V (SN − SN0

)
)
for |ξ| ≤ Cσr0−1

N

where C > 0 is some constant which depends on β, r0, and ε0 but not on ξ or N . Note
that by Lemma 13 we have

VN = VN0
+ V (SN − SN0

) + 2Cov(SN0
, SN − SN0

) = VN0
+ V (SN − SN0

) +O(1).

It follows that
V (SN − SN0

) = VN − VN0
+O(1).

On the other hand, by (6.2),

VN0
≤ N1−2β

0 ≤ C ′V κ
N

where κ is given by (6.3). Therefore V (SN −SN0
) = VN +O (V κ

N) . Combining this with
(6.5) gives

|ΦN(ξ)| ≤ exp
(
−cξ2(VN +O(V κ

N))
)
for |ξ| ≤ Cσr0−1

N

and the claim follows since κ < 1. �

6.2. Optimality.

Proof of Theorem 5. Fix some 0 < β < 1/2, and take an integer s > 1
1−2β

. Then

sβ := (s− 1)

(
1

2
− β

)
> β.

Take c ∈ (β, sβ). Set qn = 2[c log2 n] and pn = [n−βqn]. Let

an =
pn
qn

.

Since c > β we have

n−β(1 + o(1)) = n−β − 2−[c log2 n] ≤ an ≤ n−β.

Let Yn be an iid sequence so that P (Yn = ±1) = 1
2
. Set

Xn = anYn =
pn
qn

Yn.

Then, E[Xn] = 0, |Xn| = an ≍ n−β and V (Xn) = a2n ≍ n−2β . Next, since qn divides qN
if n ≤ N we have

qNSN = SN2
[c log2 N ] ∈ Z
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and so the minimal jump of SN is at least 1
qN
. Therefore, if αN is a possible value of

SN then

P
(
SN ∈ (αN , αN +

1

2
2−[c log2 N ]]

)
= 0.

On the other hand, if SN obeyed an expansion of order s then, choosing αN = O(σN)
and denoting εN = 2−[c log2 N ]σ−1

N , we would get

0 = P
(
SN ∈ (αN , αN +

1

2
2−[c log2 N ]]

)
= P

(
SN/σN ∈ (αN/σN , αN/σN + εN ]

)

= P
(
SN/σN ≤ αN/σN + εN

)
− P

(
SN/σN ≤ αN/σN

)

= Φ(αN/σN + εN)− Φ(αN/σN)

+
1√
2π

s∑

j=1

(
Pj,N(αN/σN + εN)e

− 1

2
(αN /σN+εN )2 − Pj,N(αN/σN )e

− 1

2
α2
N
σ−2

N

)
σ−j
N

+o(σ−s
N ) ≥ CεN + o(σ−s

N ) ≥ C ′2−c log2 Nσ−1
N + o(σ−s

N ).

Since σ2
N if of order

N∑

n=1

n−2β ≍ N1−2β we must have

c >
(s− 1)(1− 2β)

2
= sβ

which contradicts that c ∈ (β, sβ). Taking s = s(β) to be the smallest integer such that
s > 1

1−2β
we see that the expansions of orders r > 1

1−2β
do not hold. �

7. High order expansions for Hölder continuous functions on

Riemannian manifolds.

7.1. Distribution of Hölder functions. The following estimate plays an important
role in the proof of Theorem 6.

33. Lemma. For every Riemanian manifold X there is a constant c such that for each
real-valued function ϕ on X with ‖ϕ‖α ≤ 1 and each t, ε

ν(ϕ ∈ [t, t+ ε]) ≥ cε1/αmin(ν(ϕ ≥ t + ε), µ(ϕ ≤ t))

where ν is the normalized Riemannian volume on X .

Proof. Since X is compact, it can be covered by a finite number of coordinate charts.
Hence for any given ε′ we can cover X by the Cr images of coordinate cubes of size ε′

so that the multiplicity of the cover is bounded by a constant K which is independent
of ε′.
Now, let ε′ = δε1/α where δ is so small that the diameter of each partition element is

smaller than ε1/α/2. Consider the cover of X described above and let A be the union
of all cover elements Q such that ϕ(x) ≥ t + ε

2
for each x ∈ Q and S be the union of

all partition elements which intersect ∂A. By the Isoperimetric Inequality,

Area(∂A) ≥ h

K
min(ν(A), ν(Ac)) ≥ h

K
min(ν(ϕ ≥ t+ ε), ν(ϕ ≤ t))
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where h is the Cheeger constant of X . On the other hand, there exists a constant κ
which does not depend on ε or α so that

Area(∂A) ≤ Area(∂S) ≤ Kκε1/αν(S)
since for each cover element Q ⊂ S we have

Area(∂S
⋂

∂Q) ≤ κε1/αν(Q).

Since ϕ ∈ [t, t+ ε] on S the result follows. �

7.2. Proof of Theorem 6. For the rest of Section 7 we consider the following setting.
Let {Xn} evolve on a compact Riemannian manifoldM with transition densities pn(x, y)
bounded and bounded away from 0. Let us assume that fn : M × M → R satisfy
‖fn‖α := max(sup |fn|, vα(fn)) ≤ 1 for some 0 < α ≤ 1. Denote ΦN(ξ) = E(eξSN ).

34. Proposition. For all 0 < α ≤ 1 and δ > 0 there exists C1(α, δ), c1 = c1(α, δ) > 0
so that for every n ∈ N and ξ ∈ R with |ξ| ≥ δ we have

|ΦN (ξ)| ≤ C1 exp
(
−c1VN |ξ|1−

1

α

)
.

Theorem 6 follows by Proposition 34 together with Corollary 31.

The main step in the proof of Proposition 34 is the following.

35. Lemma. For every Riemanian manifold X for every δ > 0 there is a constant ĉ
such that for each real-valued function ϕ on X with ‖ϕ‖α ≤ 1 and each ξ such that
|ξ| ≥ δ,
∫∫

sin2

(
ξ[ϕ(x1)− ϕ(x2)]

2

)
ν(x1)dν(x2) ≤ ĉ|ξ|1−(1/α)

∫∫
[ϕ(x1)− ϕ(x2)]

2 ν(x1)dν(x2).

where ν is the normalized Riemannian volume on X .

The lemma will be proven in §7.3, here we complete the proof of the proposition
based on the lemma.
Let µ denote the normalized Riemannian volume on M. Let us fix some n ∈ N and

consider a random hexagon Pn = (xn−2, xn−1, xn; yn−1, yn, yn+1) based at n.
Recall (3.5) and (3.7). By uniform ellipticity we have

(7.1) u2
n ≍

∫
Γ2(Pn)dµ

6(Pn), d2n(ξ) ≍
∫

sin2

(
ξΓ(Pn)

2

)
dµ6(Pn).

where
Γ(Pn) = fn−2(xn−2, xn−1) + fn−1(xn−1, xn) + fn(xn, yn+1)

−fn−2(xn−2, yn−1)− fn−1(yn−1, yn)− fn(yn, yn+1)

is the balance of Pn.
Applying Lemma 35 with X = M ×M and

φxn−2,yn+1
(xn−1, xn) = fn−2(xn−2, xn−1) + fn−1(xn−1, xn) + fn(xn, yn+1)

and integrating with respect to xn−2 and yn+1 we obtain d2n(ξ) ≥ Cξ1−(1/α)u2
n.

Now Proposition 34 follows from (3.8) �
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7.3. The proof of Lemma 35. Set

∆(x1, x2) = |ϕ(x1)− ϕn(x2)|, ε = ξ−1, u2 =

∫∫
∆2(x1, x2)ν(x1)dν(x2),

d2(ξ) =

∫∫
sin2

(
∆(x1, x2)

2ε

)
ν(x1)dν(x2).

Decompose X×X = A1∪A2 where A1 =
{
(x1, x2) : ∆ ≤ ε

8

}
and A2 is its complement.

We split the proof of Lemma 35 into two cases.

Case 1. If the integral of ∆2 over A1 is larger than the integral over A2 then using
that

∣∣ sin t
t

∣∣ ≥ c for |t| ≤ 1/8 we get

d2(ξ) ≥
∫∫

A1

sin2 ∆(x1, x2)

2ε
dν(x1)dν(x2) ≥

c2ξ2

4
u2.

Case 2. Now we assume that the integral over A2 is larger. Let

lk = 2kε, k∗ = argmax [lk(ν × ν)(∆ ∈ [lk, 2lk))] , l = lk∗

and
v = l(ν × ν)(∆ ∈ [l, 2l)).

Note that under the assumptions of Case 2 we have

(7.2) u2 ≤ C0

log2(1/ε)∑

k=−3

∑

k

l2k(ν × ν)(∆ ∈ [lk, 2lk)) ≤ C0v

log2(1/ε)∑

k=−3

lk ≤ Cv.

Next, let m denote a median of ϕ with respect to ν, ϕ̃ = ϕ−m and

Ω1 = {ϕ̃ ≤ l/2}, Ω2 = {ϕ̃ ∈ (−l/2, l/2)}, Ω3 = {ϕ̃ ≥ l/2}.
Let us assume that µ(Ω3) ≥ µ(Ω1), the case where the opposite inequality holds being
similar. Since ∆(x1, x2) < l for (x1, x2) ∈ Ω2 × Ω2 we have

(ν × ν)(∆ ≥ l) ≤ 2 [ν(Ω1) + ν(Ω3)] ≤ 4ν(Ω3).

Let

Ω′
j = {ϕ̃ ∈ [(j + 0.1)ε, (j + 0.2)ε]} Ω′′

j = {ϕ̃ ∈ [(j + 0.3)ε, (j + 0.4)ε]}.

Since m is a median, ν(Ω1 ∪ Ω2) ≥
1

2
. Hence Lemma 33 shows that that for j ≤ l

4ε
we

have

(7.3) ν(Ω′
j) ≥ cε1/αν(Ω3), ν(Ω′′

j ) ≥ cε1/αν(Ω3).

On the other hand there is a constant δ0 > 0 such that for each x1 ∈ X we have that

sin2

(
∆(x1, x2)

2ε

)
≥ δ0 either for all j and all x2 ∈ Ω′

j or for all j for all x2 ∈ Ω′′
j . It

follows that if A2 dominates then

d2(ξ) ≥ δ0min




l/4ε∑

j=1

ν(Ω′
j),

l/4ε∑

j=1

ν(Ω′′
j )


 ≥ ĉlµ(Ω3) = c̃ε1/α−1l(ν×ν)(∆ ∈ [l, 2l)) = c̃ε1/α−1v.
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Combining this with (7.2) we obtain that if A2 dominates then d2(ξ) ≥ cε1/α−1u2.

Combining the estimates of cases 1 and 2 we obtain the result. �

7.4. Cantor functions. In order to show the optimality of Theorem 6 we need to
consider a function f for which the estimate of Lemma 35 is optimal. Moreover, we
want f to grow on a set of small Hausdorff dimension and we want the distribution of
f to have atoms at values which are commensurable with each other. It turns out that
Cantor functions studied in [32, 22] satisfy these conditions. So in this subsection we
describe briefly the construction and properties of Cantor functions.
Let us fix some integers p ≥ 3, k ≥ 1 and let q = (p− 1)k. Set

αp,p+q =
1

logp(q + p)
=

ln p

ln(p+ q)
.

On [0, 1], let Cp,p+q (where q = (p−1)k) be the Cantor set of all numbers of the form

x =

∞∑

j=1

(k + 1)aj
(p+ q)j

, aj = 0, 1, ..., p − 1. In other words Cp,p+q consists of all number in

[0, 1] which can be written in base p+ q so that all its digits are divisible by k + 1.
Let f be the corresponding Cantor function ([32]). Namely, for x ∈ Cp,p+q we have

f(x) =
∑

j

aj
pj
, if x =

∑

j

(k + 1)aj
(p+ q)j

,

while outside Cp,p+q we have

f(x) = sup
y∈Cp,p+q , y≤x

f(y) =
n∑

j=1

bj
pj

where x =
∑

j

xj

(p+ q)j
, bj =

[
xj

k + 1

]
+ 1

and n is the first index so that xn is not divisible by k + 1. By [32, Theorem 2] (see
also [22]), f is Hölder continuous with exponent αp,q, which is also the the Hausdorff
dimension of Cp,q+p. Note that f is increasing (see [32, Theorem 1]) and that f(0) = 0
and f(1) = 1.

36. Lemma. For each n ∈ N

(7.4) Leb{x ∈ [0, 1] : pnf(x) 6∈ Z} =

(
p

p+ q

)n

.

Proof. To prove the lemma we explain the inductive construction of f by following the
recursive construction of the set Cp,q+p. First, we split [0, 1] into p+ q closed intervals
I1, I2, ..., Ip+q of the same length 1

p+q
so that Is is to the left of Is+1 for each s. Next,

define intervals J1, J2, ..., J2p+1 as follows: we define J1 = I1, and then inductively
J2l+1 = Isl+k+1, if J2l−1 = Isl. For 1 ≤ l < p we define and J2l to be the union of the
intervals Is between J2l−1 and J2l+1. On J2l we define f |J2l = l

p
.

The reconstruction of the function f now proceeds by induction. Suppose that at the
n-th step of the construction f was additionally defined on a union of closed intervals
U1, ..., Ujn, jn = (p − 1)pn−1 of length k(p + q)−n so that f |Uj

= jp−n, Uj is to the
left of Uj+1, and the gap between Uj and Uj+1 is (p + q)−n, where U0 = {0} and
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Ujn+1 = {1}. Let us split the interval between Uj and Uj+1 into equal p + q intervals
I1,j,n+1, I2,j,n+1, ..., Ip+q,j,n+1 of length (p+q)−n−1 so that Is,j,n+1 is to the left of Is+1,j,n+1

for each s. In the (n+1)-th step the intervals J1,j,n+1, J2,j,n+1, ..., J2p+1,j,n+1 are defined
as follows: we define J1,j,n+1 = I1,j,n+1, and then inductively J2l+1,j,n+1 = Isl+k+1,j,n+1,
if J2l−1,j,n+1 = Isl,j,n+1. For 1 ≤ l < p we define and J2l,j,n+1 to be the union of the
intervals Is,j,n+1 between J2l−1,j,n+1 and J2l+1,j,n+1. On J2l,j,n+1 we define

f |J2l,j,n+1
=

jp+ l

pn+1
=

j

pn
+

l

pn+1
.

In view of the above recursive construction of f , we obtain (7.4) since in the (n+1)-th
step there are pn intervals of length (p+ q)−n on which f has not been defined yet, and
the values of f in all the steps proceeding the n-th step do not have the form s/pn for
s ∈ Z. �

7.5. Optimality.

Proof of Theorem 7. We first observe that it is enough to prove Theorem 7 for a dense
set of numbers α in (0, 1). Indeed, if the theorem holds for α belonging to a dense set
A, given α0 ∈ (0, 1) and r > α0+1

1−α0
, we can find α ∈ A so that α > α0 and r > α+1

1−α
. Now,

the α-Hölder continuous function we get from Theorem 7 with this α is also α0-Hölder
continuous so the result follows.
Next, let us consider the set

A =

{
ln p

ln(p+ q)
: p, q ∈ N, p ≥ 3, q|(p− 1)

}
.

This set is dense in (0, 1). Indeed, let 0 < a < b < 1. Then, using that ln p
ln(q+p)

= 1
logp(q+p)

,

for all p ≥ 3 and denoting k = q
(p−1)

, k ∈ N we have

1

logp(q + p)
∈ (a, b) ⇐⇒ p1/b−1 < k + 1− 1

p
< p1/a−1.

Since lim
p→∞

p1/a−1 − p1/b−1 = ∞, we can find a number k satisfying the above inequality

provided that p is large enough.
Thus we fix some integers p ≥ 3, k ≥ 1 and let q = (p− 1)k. Set

α = αp,p+q =
1

logp(q + p)
=

ln p

ln(p+ q)
.

Let f : [−1, 1] → [−1, 1] be the odd function whose restriction to [0, 1] is the Cantor
function from §7.4. We will now show that Snf does not obey Edgworth expansions
of any order r > α+1

α−1
. Let r = r(α) be the smallest integer so that r > α+1

α−1
, where

α = αp,q. Let us take
α

1−α
< c < r

2
− 1

2
and set kN = p[c logp N ]. Then

P(kNSN 6∈ Z) ≤ NP(kNf 6∈ Z) = N

(
p

p+ q

)[c logp N ]

= O
(
N1−[(1/α)−1]c

)
= oN→∞(1)
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where the second step follows from Lemma 36 and the last step follows since

c

(
1

α
− 1

)
=

c(1− α)

α
> 1.

Let pN = p[c logp N ]σN = kNσN which is of order N c+1/2. Then

lim
N→∞

P(SN/σN ∈ (pN)
−1
Z) = 1.

Thus, by considering points in (pN)
−1Z which are of order 1, we find that if C is large

enough then denoting

mN = argmax{P(SN/σN = k/pN) : |k/pN | ≤ C}
and recalling that c+ 1

2
> r we have

(7.5) P(SN/σN = mN/pN) ≥ C1p
−1
N ≥ C2N

−c−1/2 ≥ C3σ
−r
N

where C1, C2 and C3 are positive constants. On the other hand, if SN obeyed expansions
of order r then

P

(
SN

σN
=

mN

pN

)
≤ lim sup

δ→0+

[
P

(
SN

σN
≤ mN

pN

)
− P

(
SN

σN
≤ mN

pN
− δ

)]
= o(σ−r

N )

which is inconsistent with (7.5). �
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[25] L. Dubois Projective metrics and contraction principles for complex cones, J. Lond. Math.
Soc. 79 (2009) 719–737.

[26] L. Dubois An explicit Berry-Esseen bound for uniformly expanding maps on the interval,
Israel J. Math. 186 (2011) 221–250.

[27] C.-G. Esseen Fourier analysis of distribution functions. A mathematical study of the Laplace-
Gaussian law, Acta Math. 77 (1945) 1–125.

[28] C.-G. Esseen, A moment inequality with an application to the central limit theorem”, Skand.
Aktuarietidskr. 39, (1956) 160–170.

[29] W. Feller, An introduction to probability theory and its applications, Vol. II., 2d edition, John
Wiley & Sons, Inc., New York-London-Sydney, 1971.

[30] K. Fernando, C. Liverani Edgeworth expansions for weakly dependent random variables, Ann.
de l’Institut Henri Poincare Prob. & Stat. 57 (2021) 469–505.

[31] K. Fernando, F. Pène Expansions in the local and the central limit theorems for dynamical
systems, arXiv:2008.08726.

[32] R.E. Gilman, A class of functions continuous but not absolutely continuous, Ann. Math. 33
(1932) 433–442.

[33] B.V. Gnedenko, A.N. Kolmogorov Limit distributions for sums of independent random vari-
ables, Cambridge, Addison-Wesley, 1954.

[34] W.F. Grams, R.J. Serfling, Convergence rates for U -statistics and related statistics, Ann.
Stat. 1 (1973) 153–160.
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