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One of the ways that a crossover may be constructed from a Bessel low-pass
filter employs the standard low-pass to high-pass transformation. Various frequency
normalizations can be chosen for best magnitude and polar response, although the
linear phase approximation in the passband of the low-pass is not maintained at
higher frequencies. The resulting crossover is compared to the Butterworth and
Linkwitz-Riley types in terms of the magnitude, phase, and time domain responses.

A REVIEW OF CROSSOVERS

There are many choices for crossovers today, due especially to the flexibility of digital
signal processing. We now have added incentive to examine unconventional crossover types.
Each type has its own tradeoffs between constraints of flatness, cutoff slope, polar response, and
phase response. See [1] and [2] for more complete coverage of crossover constraints and types.
Much of the content of this paper is closely related to previous work by Lipshitz and Vanderkooy
in [3].

Our sensitivity to frequency response flatness makes this one of the highest priorities. It is
often used as a starting point when choosing a crossover type.

Cutoff slopes of at least 12 dB per octave are usually chosen because of limitations in the
frequency range that drivers can faithfully reproduce. Even this is less than optimal for most
drivers.

Polar response is the combined magnitude versus listening angle from noncoincident
drivers [4]. The ideal case is a large lobe in the polar response directly in front of the drivers, and
happens when low-pass and high-pass outputs are in-phase.

The phase response of a crossover is one of its most subtle aspects, and so is often
ignored. A purely linear phase shift, which is equivalent to a time delay, is otherwise inaudible,
as is a small non-linear phase shift. Still, there is evidence that phase coloration is audible in
certain circumstances [5], and certainly some people are more sensitive to it than others.

A first-order crossover is unique, in that it sums with a flat magnitude response and zero
resultant phase shift, although the low-pass and high-pass outputs are in phase quadrature (90
degrees), and the drivers must perform over a huge frequency range. The phase quadrature that is
characteristic of odd-order crossovers results in a moderate shift in the polar response lobe.

In spite of this, third-order Butterworth has been popular for its flat sound pressure and
power responses, and 18 dB per octave cutoff slope.

Second-order crossovers have historically been chosen for their simplicity, and a usable
12 dB per octave cutoff.

                                                          
1 Presented at the 105th Convention of the Audio Engineering Society, San Francisco, CA, 1998 September 26-29



2

Fourth-order Linkwitz-Riley presents an attractive option, with flat summed response, 24
dB per octave cutoff, and outputs which are always in phase with each other, producing optimal
polar response.

Steeper cutoff slopes are known to require higher orders with greater phase shift, which
for the linear phase case is equivalent to more time delay.

A number of other novel and useful designs exist which should be considered when
choosing a crossover. Generating the high-pass output by subtracting the low-pass output from an
appropriately time-delayed version of the input results in a linear phase crossover, with tradeoffs
in cutoff slope, polar response, and flatness [1]. Overlapping the design frequencies and
equalizing the response can result in a linear phase crossover [3], with a tradeoff in polar
response. A crossover with perfect polar response can be designed with a compromise in phase
response or cutoff slope [6].

BESSEL LOW-PASS AND HIGH-PASS FILTERS

The focus of this paper is on crossovers derived using more traditional methods, which
begin with an all-pole lowpass filter with transfer function of the form 1

p(s) ,where p(s) is a
polynomial whose roots are the poles.

The Bessel filter uses a p(s), which is a Bessel polynomial, but is more properly called a
Thomson filter, after one of its developers [7]. Still less known is the fact that it was reported
several years earlier by Kiyasu [8].

Bessel low-pass filters have maximally flat group delay about 0 Hz [9], so the phase
response is approximately linear in the passband, while at higher frequencies the linearity
degrades, and the group delay drops to zero (see Fig. 1 and 2). This nonlinearity has minimal
impact because it occurs primarily when the output level is low. In fact, Bessel low-pass and all-
pass filters may be used purely for audio time delay, as described in [10].

The high-pass output transfer function may be generated in different ways, one of which
is to replace every instance of  s with 1

s . This popular method results in the general transfer
function (1); (2) is a fourth-order Bessel example.
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Note the reversed coefficient order of the high-pass, and an nth-order zero at the origin.
Characteristics of the low-pass with respect to 0 Hz are preserved somewhat, but in the high-pass
they are with respect to infinite frequency instead. The nature of the response of the high-pass
follows from equation (3) below.

The magnitude responses are mirror images of each other on a log-frequency scale; the
negative sign has no effect on this. The phase of the low-pass typically drops near ωo  from an
asymptote of zero as the frequency is increased, and asymptotically approaches a negative value.
However, the phase of the high-pass at ωh is the negative of the low-pass at ω, which follows
from the negative sign in (3). It rises from zero at high frequency, and approaches a positive
asymptote as the frequency is decreased. This results in offset curves with similar shape. Any
asymmetry of the s-shaped phase curve is mirrored between the low-pass and high-pass. See Fig.
5 for a second-order example, where the phase curve has inherent symmetry.

One special case is where the denominator polynomial p(s) has symmetric coefficients,
where the nth coefficient is equal to the constant term; the (n-1)st coefficient is equal to the linear
term, etc. This is the case for Butterworth and therefore the Linkwitz-Riley types [3]. A fourth-
order Linkwitz-Riley is given as an example in equation (4).

When this is the case, coefficient reversal has no effect on p(s), and the high-pass differs
from the low-pass only in the numerator term sn . This numerator can easily be shown to produce
a constant phase shift of 90, 180, 270, or 360 degrees (which is in-phase for a constant
frequency), with respect to the low-pass, when frequency response is evaluated for s = jω (ω =
2πf). For the second-order case (jω)2 = -ω 2  and the negative sign indicates a polarity reversal (or
180-degree phase shift at all frequencies).

NORMALIZATIONS

Transfer functions may be frequency normalized by replacing all instances of s with s/ωo
for some ωo > 0. This is equivalent to shifting the response curve right (ωo > 1) or left (ωo < 1)
when viewed on a log-frequency scale, and so changes the overlap between low-pass and high-
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pass. Normalizations may be based on the magnitude response of either output at ωo , flattest
summed response, or any other criteria.

Once the function is normalized, renormalizing with ωo has the effect of centering the
response about ωo , so that it is actually denormalized.

In this paper the low-pass will be normalized with s/ωo , while the high-pass will be
normalized by replacing s with sωo , and the overlap is then proportional to ωo

2 . Transfer
functions and graphs have a design frequency of ωo = 1 (f = 1/2π Hz), although other values of
ωo are used temporarily in the normalization process.

Normalization does not change the shape of the low-pass or high-pass magnitude or phase
response, only their design frequencies and summed response. To see this, note that when we
normalize a transfer function, we get g(s)= f(s/ωo ). If we now consider the response about ωo ,
and about ωf = 1, we may substitute jωfωo for s in g(s). Then we get:

The magnitude and phase responses about ωo are also about ωf = 1, and are identical to
the original response about ω = 1. Group delay, being the negative derivative of phase with
respect to ω, will also be scaled in magnitude, but otherwise retains its shape.

Normalization influences the symmetry of p(s), but perfect symmetry is not achievable in
general. This means that it will not always be possible to make the low-pass and high-pass phase
response differ exactly by a constant multiple of 90 degrees for any normalization. The situation
can be clarified by normalization for cn = 1, as done by Lipshitz and Vanderkooy in [1] and [5],
where c0 = 1 for unity gain at 0 Hz. This form reveals any inherent asymmetry. Equation (6)
shows the general low-pass, while (7) is the fourth-order Bessel denominator. Note that it
becomes nearly symmetric, and relatively similar to the Linkwitz-Riley in (4).



5

PHASE-MATCHED BESSELS

The textbook low-pass Bessel is often designed for an approximate time delay of 1/ωo ,
rather than for the common -3 dB or -6 dB level at ωo  used for crossovers. This design will be
used as a reference, to which other normalizations are compared. It has quite a lot of overlap,
with very little attenuation at the design frequency, as shown in Fig. 3, for a second-order Bessel
with the typical reversed connection.

Bessel polynomials of degree three or higher are not inherently symmetric, but may be
normalized to be nearly symmetric by requiring a phase shift at ωo  of 45 degrees per order,
negative for the low-pass, positive for the high-pass. This results in a fairly constant relative
phase at all other frequencies. Equation (8) shows an equation for deriving the normalization
constant of the fourth-order Bessel, where the imaginary part of the denominator is set to zero for
180-degree phase shift at ωp .

This normalization is not new, but was presented in a slightly different context in [5],
with a normalization constant of 0.9759, which is the square of the ratio of the phase-match ωo in
equation (8) to the ωo in  equations (6) and (7).

Since the phase nonlinearity of the high-pass is now in the passband, the crossover
resulting from the sum of the two approaches phase linearity only at lower frequencies. This
doesn’t preclude it from being a useful crossover.

The summed magnitude response of the Bessel normalized by the 45-degree criterion is
fairly flat, within 2dB for the second-order and fourth-order. We may adjust the overlap slightly
for flattest magnitude response instead, at the expense of the polar response. Figures 4-6 show
the results of four normalizations for the second-order filter. The –3 dB and phase-match
normalizations are illustrated in Fig. 5 and 6. Note that for the second-order phase-match design,
low-pass and high-pass group delays are exactly the same.

The fourth-order is illustrated in Fig. 7-9, Fig. 7 being a 3-D plot of frequency response
versus normalization. Fig. 8 shows four cases, which are cross-sections of figure 7. The phase-
match case has good flatness as well as the best polar response. The fourth-order Linkwitz-Riley
is very similar when viewed about ωo = 1.0, compared to 0.31 on Fig. 7. The third-order Bessel
magnitude has comparable behavior.

In a real application, phase shifts and amplitude variations in the drivers will require
some adjustment of the overlap for best performance. The sensitivity of the crossover response to
normalization should be considered [2].
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COMPARISON OF TYPES

Butterworth, Linkwitz-Riley, and Bessel crossovers may be thought of as very separate
types, while in fact they are all particular cases in a continuous space of possible crossovers. The
separate and summed magnitude responses are distinct but comparable, as can be seen by
graphing them together (Fig. 10). The Bessel and Linkwitz-Riley are the most similar. The
Butterworth has the sharpest initial cutoff, and a +3dB sum at crossover. The Linkwitz-Riley has
moderate rolloff and a flat sum. The Bessel has the widest, most gradual crossover region, and a
gentle dip in the summed response. All responses converge at frequencies far from ωo .

The phase responses also look similar, but the amount of peaking in the group delay
curve varies somewhat, as shown in Fig. 11. There is no peaking in the Bessel low-pass, while
there is a little in the high-pass for orders > 2. The summed response has only a little peaking.
The group delay curve is directly related to the behavior in the time domain, as discussed in [11].
The most overshoot and ringing is exhibited by the Butterworth design, and the least by the
Bessel.

Often when discussing crossovers, the low-pass step response is considered by itself,
while the high-pass and summed step response is usually far from ideal, except in the case of the
linear phase crossover; this has been known for some time [12], but step-response graphs of
higher-order crossovers are generally avoided out of good taste!

Table 1 gives Bessel crossover denominators normalized for time delay and phase match.
Note the relative symmetry for the phase-match cases.

In summary, it is seen that a Bessel crossover designed as described above is not radically
different from other common types, particularly compared to the Linkwitz-Riley. It does not
maintain linear phase response at higher frequencies, but has the most linear phase of the three
discussed, along with fairly good magnitude flatness and minimal lobing for the even orders. It is
one good choice when the drivers used have a wide enough range to support the wider crossover
region, and when good transient behavior is desired.
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