PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 10, Pages 2911–2915 S 0002-9939(99)04888-1 Article electronically published on April 23, 1999

A BESSEL FUNCTION MULTIPLIER

DANIEL OBERLIN AND HART F. SMITH

(Communicated by Christopher D. Sogge)

ABSTRACT. We obtain nearly sharp estimates for the $L^p(\mathbb{R}^2)$ norms of certain convolution operators.

For $n \geq 1$ let λ_n be the measure on \mathbb{R}^2 obtained by multiplying normalized arclength measure on $\{|x|=1\}$ by the oscillating factor $e^{in\arg(x)}$. For $1\leq p\leq \infty$, let C(p,n) denote the norm of the operator $T_nf \doteq \lambda_n * f$ on $L^p(\mathbb{R}^2)$. The purpose of this note is to estimate the rate of decay of C(p,n) as $n\to\infty$. By duality, it is enough to consider $p\geq 2$. Examples below will show that

(1)
$$C(p,n) \ge C(p)n^{-\frac{1}{6} - \frac{1}{3p}}$$
 if $2 \le p \le 4$,

and

(2)
$$C(p,n) \ge C(p)n^{-\frac{1}{p}} \quad \text{if} \quad 4 \le p \le \infty.$$

On the other hand, we will observe that

(3)
$$C(2,n) \leq Cn^{-\frac{1}{3}},$$

$$C(\infty,n) \leq C$$

and then prove the following result.

Theorem. There is a positive number a such that

(4)
$$C(4,n) \le Cn^{-\frac{1}{4}}(\log(n))^a.$$

Interpolating (3) and (4) gives upper bounds for C(p, n) which differ only by a power of $\log(n)$ from the lower bounds of (1) and (2), thus providing nearly sharp estimates for C(p, n).

The above question naturally arises when considering the $L^p(\mathbb{R}^3)$ mapping properties of the operator T given by convolution with respect to a compact piece of arclength measure on the helix

$$t \to (\cos t, \sin t, t)$$
.

T is an example of a folding Fourier integral operator in dimension 3, whose singular set is of dimension 1. The sharp $L^p \to L^2$ mapping properties of T were established by the first author in [O]. The operator T_n arises when considering the

Both authors are partially supported by the NSF.

©1999 American Mathematical Society

Received by the editors December 15, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 42B15, 42B20.

Key words and phrases. Fourier transform, convolution operator, oscillatory integral, Bessel function.

 L^p smoothing properties of T; that is, for which values of α_p is $|D|^{\alpha_p}T$ bounded on $L^p(\mathbb{R}^3)$. Since

$$T(e^{-inx_3} f(x_1, x_2)) = e^{-inx_3} (T_n f)(x_1, x_2),$$

the exponents in (1) and (2) give upper bounds on α_p . In particular, the smoothing exponent for T is less than that of averaging in \mathbb{R}^2 over the cubic $t \to (t, t^3)$, where the corresponding value of α_p is

$$\alpha_p = \begin{cases} \frac{1}{3} & \text{if} \quad 2 \le p < 3, \\ \\ \frac{1}{p} & \text{if} \quad 3 < p < \infty. \end{cases}$$

See, for example, [SW] or [SS]. The authors would like to thank Chris Sogge for discussions which led to consideration of this question.

To see (2), apply the operator $T_n f \doteq \lambda_n * f$ to $f(x) = e^{-in \arg(x)} \chi_A(x)$ where A is the annulus $\{1 \leq |x| \leq 1 + 1/n\}$. One observes that there is a constant C such that $|T_n f(x)| \geq C$ if $|x| \leq C/n$ and (2) follows (for all p, but (1) is better for $p \leq 4$).

The example for (1) is a little more complicated: for fixed n, and $1 \le j \le n^{1/3}$, let $\theta_j = jn^{-1/3}$, $\omega_j = (\cos(\theta_j), \sin(\theta_j))$, and $\omega_j' = (-\sin(\theta_j), \cos(\theta_j))$. Let B_j be the disk $\{|x - \omega_j| \le \varepsilon n^{-\frac{1}{3}}\}$ where ε is a positive number independent of n and small enough to insure that, for any n, the disks B_j are pairwise disjoint. Let

$$f_j(x) = e^{in(x \cdot \omega_j')} \chi_{B_j}(x).$$

One can check that

(5)
$$|T_n f_j(x)| \ge cn^{-\frac{1}{3}} \quad \text{if} \quad |x| \le cn^{-\frac{1}{3}}$$

for some small positive c independent of n and j. Let r_j be the jth Rademacher function on [0,1] and put

$$f(t,x) = \sum_{j=1}^{n^{\frac{1}{3}}} r_j(t) f_j(x).$$

Then

(6)
$$||f(t,\cdot)||_p \le Cn^{-\frac{1}{3p}}.$$

Also

$$\int_0^1 \|T_n f(t,\cdot)\|_p^p dt \ge \int_{|x| \le cn^{-1/3}} \left(\sum_j |T_n f_j(x)|^2\right)^{p/2} dx \ge c^{2+p} n^{-\frac{2}{3} - \frac{p}{6}},$$

where the third inequality uses (5). With (6) this yields (1).

A computation shows that $\widehat{T}_n(\xi) = e^{in\arg(\xi)}J_n(|\xi|)$ (whence the name of this note). Thus (3) follows from the estimate, uniform in n,

$$|J_n(r)| \le Cr^{-\frac{1}{3}}$$
 if $r \ge 1$

(see p.357 in [S]) combined with the observation

(7)
$$|J_n(r)| \le \frac{C}{n} \quad \text{if} \quad 0 \le r \le \frac{3n}{4}.$$

To begin the proof of (4), let ρ be a smooth cutoff function which is equal to 1 on the annulus $\{\frac{3}{4} \leq |\xi| \leq \frac{5}{4}\}$ and is supported in the annulus $\{\frac{1}{2} \leq |\xi| \leq \frac{3}{2}\}$. Let S_n be the operator defined by $\widehat{S}_n(\xi) = \widehat{T}_n(\xi)\rho(|n^{-1}\xi|)$. The easy estimate

$$|J_n(r)| \le Cn^{-\frac{1}{2}}$$
 if $r \ge \frac{5n}{4}$

combines with (7) to show that the $L^2(\mathbb{R}^2)$ operator norm $||T_n - S_n||_{2,2}$ is $O(n^{-\frac{1}{2}})$. Interpolating this with $||T_n - S_n||_{\infty,\infty} = O(1)$ yields $||T_n - S_n||_{4,4} = O(n^{-\frac{1}{4}})$. Thus (4) will follow from

(8)
$$||S_n||_{4,4} \le Cn^{-\frac{1}{4}}(\log(n))^a$$

which is our principal result. The Fourier transform $\widehat{S}_n(\xi)$ is supported in the annulus $A_n = \{\frac{n}{2} \leq |\xi| \leq \frac{3n}{2}\}$. Having fixed n, we will decompose S_n by decomposing A_n into a union of annuli A_n^j as follows:

$$\begin{array}{lcl} \text{for } j \geq 1, \, \text{set } A_n^j & = & \big\{ n + 2^j n^{\frac{1}{3}} \leq |\xi| \leq n + 2^{j+1} n^{\frac{1}{3}} \big\} \,; \\ \\ \text{set } A_n^0 & = & \big\{ n - 2 n^{\frac{1}{3}} \leq |\xi| \leq n + 2 n^{\frac{1}{3}} \big\} \,; \\ \\ \text{for } j \leq -1, \, \text{set } A_n^j & = & \big\{ n - 2^{|j|+1} n^{\frac{1}{3}} \leq |\xi| \leq n - 2^{|j|} n^{\frac{1}{3}} \big\} \,. \end{array}$$

Introducing a suitable partition of unity on the Fourier transform side leads to the decomposition

$$S_n = \sum_j S_n^j.$$

For fixed n, the number of terms S_n^j is $O(\log(n))$. Thus (8) will follow from

(9)
$$||S_n^j||_{4,4} \le Cn^{-\frac{1}{4}} (\log(n))^b$$

for all j and n and some b>0. At this point we make a further decomposition of A_n^j into sectors A_n^{jl} of opening angle $\delta \doteq 2^{|j|/2} n^{-\frac{1}{3}}$. This leads to a decomposition

$$S_n^j = \sum_{l=1}^{\delta^{-1}} S_n^{jl}.$$

The function \widehat{S}_n^{jl} is supported in a set R^{jl} obtained from the intersection of the annulus $n+\frac{1}{2}n\delta^2 \leq |\xi| \leq n+3n\delta^2$ with a sector of angle δ ; thus, R^{jl} is essentially a rectangle of dimensions $n\delta$ by $n\delta^2$, with major dimension $n\delta$ normal to the vector through the center of R^{jl} .

Lemma.

$$||S_n^{jl}||_{4,4} \le Cn^{-\frac{1}{4}}\delta^{\frac{1}{4}}.$$

Proof. We will obtain the lemma by interpolating the following estimates:

(10)
$$||S_n^{jl}||_{2,2} \leq C(n\delta)^{-\frac{1}{2}},$$

$$||S_n^{jl}||_{\infty,\infty} \leq C\delta.$$

The first estimate in (10) is a bound on $J_n(r)$ over the annulus A_n^j . The desired estimates are well known, but we provide the simple argument here for completeness.

For j = 0, the desired bounds follow from the uniform bound $|J_n(r)| \le C n^{-\frac{1}{3}}$. For $j \ne 0$, it suffices to show that

$$\left| \int_0^{\pi} e^{int - in(1 \pm \delta^2) \sin t} dt \right| \le C (n\delta)^{-\frac{1}{2}},$$

where C is uniform over $n \in \mathbb{Z}$ and $\delta^2 < 1/2$.

We let $\phi(t) = t - (1 \pm \delta^2) \sin t$. On the interval $0 \le t \le \delta$, we have $|\phi'(t)| \ge c\delta^2$, and $\phi'(t)$ is monotonic, so Proposition 2 of [S], page 332, implies that

$$\left| \int_0^\delta e^{int - in(1 \pm \delta^2)\sin t} dt \right| \le C (n\delta^2)^{-1} \le C (n\delta)^{-\frac{1}{2}}.$$

On the interval $\delta \leq t \leq \pi - \delta$, it follows that $|\phi''(t)| \geq c\delta$, and the same proposition implies that

$$\left| \int_{\delta}^{\pi-\delta} e^{int-in(1\pm\delta^2)\sin t} dt \right| \le C (n\delta)^{-\frac{1}{2}}.$$

On the interval $\pi - \delta \le t \le \pi$, $|\phi'(t)| \ge 1$, and the integral is bounded by n^{-1} .

For the second estimate of (10), it suffices to consider the term S_n^{j0} , associated to the rectangle R_n^{j0} with center on the positive ξ_2 axis. The partition of unity element associated to this rectangle is of the form $\widehat{\psi}((n\delta)^{-1}\xi_1,(n\delta^2)^{-1}(\xi_2-n))$, where ψ is a Schwartz function, whose seminorms are bounded by constants independent of n, j, l. Thus, the convolution kernel associated to S_n^{j0} is of the form

$$K_n^{j0}(x) = n^2 \delta^3 \int_{-\pi}^{\pi} e^{in(x_2 - \sin t) + int} \,\psi(n\delta(x_1 - \cos t), n\delta^2(x_2 - \sin t)) \,dt \,.$$

We need to show that

(11)
$$\int \left| K_n^{j0}(x) \right| dx \le C \delta.$$

The contribution from the integral over $|t| \leq \delta$ trivially satisfies (11), so it suffices to consider the following term:

$$\widetilde{K}(x) = n^2 \delta^3 \int e^{in(t-\sin t)} \chi(\delta^{-1}t) \,\psi\left(n\delta(x_1 - \cos t), n\delta^2(x_2 - \sin t)\right) dt$$

where $\chi(s)=1$ for $|s|\geq 2,$ and $\chi(s)=0$ for $|s|\leq 1$. Integration by parts yields

$$\widetilde{K}(x) = in\delta^3 \int e^{in(t-\sin t)} \, \frac{\partial}{\partial t} \left[\frac{\chi(\delta^{-1}t)}{1-\cos t} \, \psi \left(n\delta(x_1-\cos t), n\delta^2(x_2-\sin t) \right) \, \right] \, dt \, .$$

The term where the derivative falls on the term in front of ψ satisfies (11), since

$$\int \left| \frac{\partial}{\partial t} \left(\frac{\chi(\delta^{-1}t)}{1 - \cos t} \right) \right| dt \le C\delta^{-2} \le Cn\delta.$$

The term where the derivative falls on the x_2 place of ψ also satisfies (11), since

$$\int \left| \frac{\chi(\delta^{-1}t) \cos t}{1 - \cos t} \right| dt \le C\delta^{-1}.$$

The term where the derivative falls on the x_1 place of ψ would appear to lead to bounds comparable to $\delta \log(\delta^{-1})$; however, one further integration by parts shows that this term too satisfies (11).

We now prove (9) by noting that the angle δ was chosen so that the sets $R^{jl} + R^{jl'}$ have bounded overlap for R^{jl} and $R^{jl'}$ in the same quadrant, i.e., so that the orthogonality argument of [F] applies. This argument yields

$$\Big\| \sum_l S_n^{jl} f \Big\|_4 \le C \Big\| \left(\sum_l |S_n^{jl} f|^2 \right)^{\frac{1}{2}} \Big\|_4.$$

The number of indices l is $O(\delta^{-1})$, so

$$\sum_{l} |S_{n}^{jl} f(x)|^{2} \le C\delta^{-\frac{1}{2}} \Big(\sum_{l} |S_{n}^{jl} f(x)|^{4} \Big)^{\frac{1}{2}}.$$

With \hat{f}_{jl} representing the localisation of \hat{f} to an appropriate sector, we thus have

$$\begin{split} \left\| \sum_{l} S_{n}^{jl} f \right\|_{4} & \leq C \delta^{-\frac{1}{4}} \left\| \left(\sum_{l} |S_{n}^{jl} f|^{4} \right)^{\frac{1}{4}} \right\|_{4} \\ & \leq C n^{-\frac{1}{4}} \left\| \left(\sum_{l} |f_{jl}|^{4} \right)^{\frac{1}{4}} \right\|_{4} \\ & \leq C n^{-\frac{1}{4}} \left\| \left(\sum_{l} |f_{jl}|^{2} \right)^{\frac{1}{2}} \right\|_{4}. \end{split}$$

A result of Córdoba [C] gives

$$\left\| \left(\sum_{l} |f_{jl}|^2 \right)^{\frac{1}{2}} \right\|_4 \le C(\log(n))^b \|f\|_4$$

for some positive b, which completes the proof of (9).

References

- [C] A. Córdoba, Geometric Fourier Analysis, vol. 32, Ann. Inst. Fourier, 1982, pp. 215–226.MR 84i:42029
- [F] C. Fefferman, A note on spherical summation multipliers, Israel J. Math 15 (1973), 44–52.
 MR 47:9169
- [O] D. Oberlin, Convolution estimates for some measures on curves, Proc. Amer. Math. Soc 99 (1987), 56–60.
- [SS] H. F. Smith and C. D. Sogge, L^p regularity for the wave equation with strictly convex obstacles, Duke Math. J. 73 (1994), 97–153. MR 95c:35048
- [S] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1993.
- [SW] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239–1295. MR 80k:42033

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306 E-mail address: oberlin@math.fsu.edu

Department of Mathematics, University of Washington, Seattle, Washington 98195 $E\text{-}mail\ address:\ hart@math.washington.edu$