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A BESSEL FUNCTION MULTIPLIER

DANIEL OBERLIN AND HART F. SMITH

(Communicated by Christopher D. Sogge)

Abstract. We obtain nearly sharp estimates for the Lp(R2) norms of certain
convolution operators.

For n ≥ 1 let λn be the measure on R2 obtained by multiplying normalized
arclength measure on {|x| = 1} by the oscillating factor ein arg(x). For 1 ≤ p ≤ ∞,
let C(p, n) denote the norm of the operator Tnf

.= λn ∗ f on Lp(R2). The purpose
of this note is to estimate the rate of decay of C(p, n) as n →∞. By duality, it is
enough to consider p ≥ 2. Examples below will show that

C(p, n) ≥ C(p)n−
1
6− 1

3p if 2 ≤ p ≤ 4,(1)

and

C(p, n) ≥ C(p)n−
1
p if 4 ≤ p ≤ ∞.(2)

On the other hand, we will observe that

C(2, n) ≤ Cn−
1
3 ,

C(∞, n) ≤ C

(3)

and then prove the following result.

Theorem. There is a positive number a such that

C(4, n) ≤ Cn−
1
4 (log(n))a.(4)

Interpolating (3) and (4) gives upper bounds for C(p, n) which differ only by a
power of log(n) from the lower bounds of (1) and (2), thus providing nearly sharp
estimates for C(p, n).

The above question naturally arises when considering the Lp(R3) mapping prop-
erties of the operator T given by convolution with respect to a compact piece of
arclength measure on the helix

t → (cos t, sin t, t) .

T is an example of a folding Fourier integral operator in dimension 3, whose sin-
gular set is of dimension 1. The sharp Lp → L2 mapping properties of T were
established by the first author in [O]. The operator Tn arises when considering the

Received by the editors December 15, 1997.
1991 Mathematics Subject Classification. Primary 42B15, 42B20.
Key words and phrases. Fourier transform, convolution operator, oscillatory integral, Bessel

function.
Both authors are partially supported by the NSF.

c©1999 American Mathematical Society

2911

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2912 DANIEL OBERLIN AND HART F. SMITH

Lp smoothing properties of T ; that is, for which values of αp is |D|αpT bounded on
Lp(R3). Since

T
(
e−inx3 f(x1, x2)

)
= e−inx3(Tnf)(x1, x2) ,

the exponents in (1) and (2) give upper bounds on αp. In particular, the smoothing
exponent for T is less than that of averaging in R2 over the cubic t→ (t, t3) , where
the corresponding value of αp is

αp =


1
3 if 2 ≤ p < 3 ,

1
p if 3 < p <∞ .

See, for example, [SW] or [SS]. The authors would like to thank Chris Sogge for
discussions which led to consideration of this question.

To see (2), apply the operator Tnf
.= λn ∗ f to f(x) = e−in arg(x)χA(x) where

A is the annulus {1 ≤ |x| ≤ 1 + 1/n}. One observes that there is a constant C
such that |Tnf(x)| ≥ C if |x| ≤ C/n and (2) follows (for all p, but (1) is better for
p ≤ 4).

The example for (1) is a little more complicated: for fixed n, and 1 ≤ j ≤ n1/3,
let θj = jn−1/3, ωj = (cos(θj), sin(θj)), and ω

′
j = (− sin(θj), cos(θj)). Let Bj be

the disk {|x−ωj | ≤ εn−
1
3 } where ε is a positive number independent of n and small

enough to insure that, for any n, the disks Bj are pairwise disjoint. Let

fj(x) = ein(x·ω′j)χBj (x).

One can check that

|Tnfj(x)| ≥ cn−
1
3 if |x| ≤ cn−

1
3(5)

for some small positive c independent of n and j. Let rj be the jth Rademacher
function on [0, 1] and put

f(t, x) =
n

1
3∑

j=1

rj(t)fj(x).

Then

‖f(t, ·)‖p ≤ Cn−
1
3p .(6)

Also ∫ 1

0

‖Tnf(t, ·)‖p
p dt ≥

∫
|x|≤cn−1/3

(∑
j

|Tnfj(x)|2
)p/2

dx ≥ c2+pn−
2
3− p

6 ,

where the third inequality uses (5). With (6) this yields (1).
A computation shows that T̂n(ξ) = ein arg(ξ)Jn(|ξ|) (whence the name of this

note). Thus (3) follows from the estimate, uniform in n,

|Jn(r)| ≤ Cr−
1
3 if r ≥ 1

(see p.357 in [S]) combined with the observation

|Jn(r)| ≤ C

n
if 0 ≤ r ≤ 3n

4
.(7)
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To begin the proof of (4), let ρ be a smooth cutoff function which is equal to 1
on the annulus { 3

4 ≤ |ξ| ≤ 5
4} and is supported in the annulus { 1

2 ≤ |ξ| ≤ 3
2}. Let

Sn be the operator defined by Ŝn(ξ) = T̂n(ξ)ρ(|n−1ξ|). The easy estimate

|Jn(r)| ≤ Cn−
1
2 if r ≥ 5n

4

combines with (7) to show that the L2(R2) operator norm ‖Tn−Sn‖2,2 is O(n−
1
2 ).

Interpolating this with ‖Tn−Sn‖∞,∞ = O(1) yields ‖Tn−Sn‖4,4 = O(n−
1
4 ). Thus

(4) will follow from

‖Sn‖4,4 ≤ Cn−
1
4 (log(n))a

,(8)

which is our principal result. The Fourier transform Ŝn(ξ) is supported in the an-
nulus An = {n

2 ≤ |ξ| ≤ 3n
2 }. Having fixed n, we will decompose Sn by decomposing

An into a union of annuli Aj
n as follows:

for j ≥ 1, set Aj
n = {n+ 2jn

1
3 ≤ |ξ| ≤ n+ 2j+1n

1
3 } ;

set A0
n = {n− 2n

1
3 ≤ |ξ| ≤ n+ 2n

1
3 } ;

for j ≤ −1, set Aj
n = {n− 2|j|+1n

1
3 ≤ |ξ| ≤ n− 2|j|n

1
3 } .

Introducing a suitable partition of unity on the Fourier transform side leads to the
decomposition

Sn =
∑

j

Sj
n.

For fixed n, the number of terms Sj
n is O(log(n)). Thus (8) will follow from

‖Sj
n‖4,4 ≤ Cn−

1
4 (log(n))b(9)

for all j and n and some b > 0. At this point we make a further decomposition of
Aj

n into sectors Ajl
n of opening angle δ .= 2|j|/2n−

1
3 . This leads to a decomposition

Sj
n =

δ−1∑
l=1

Sjl
n .

The function Ŝjl
n is supported in a set Rjl obtained from the intersection of the

annulus n+ 1
2nδ

2 ≤ |ξ| ≤ n+ 3nδ2 with a sector of angle δ; thus, Rjl is essentially
a rectangle of dimensions nδ by nδ2, with major dimension nδ normal to the vector
through the center of Rjl.

Lemma.

‖Sjl
n ‖4,4 ≤ Cn−

1
4 δ

1
4 .

Proof. We will obtain the lemma by interpolating the following estimates:

‖Sjl
n ‖2,2 ≤ C (nδ)−

1
2 ,

‖Sjl
n ‖∞,∞ ≤ C δ .

(10)

The first estimate in (10) is a bound on Jn(r) over the annulus Aj
n. The desired

estimates are well known, but we provide the simple argument here for complete-
ness.
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For j = 0, the desired bounds follow from the uniform bound |Jn(r)| ≤ C n−
1
3 .

For j 6= 0, it suffices to show that∣∣∣ ∫ π

0

eint−in(1±δ2) sin t dt
∣∣∣ ≤ C (nδ)−

1
2 ,

where C is uniform over n ∈ Z and δ2 ≤ 1/2.
We let φ(t) = t− (1± δ2) sin t . On the interval 0 ≤ t ≤ δ, we have |φ′(t)| ≥ cδ2,

and φ′(t) is monotonic, so Proposition 2 of [S], page 332, implies that∣∣∣ ∫ δ

0

eint−in(1±δ2) sin t dt
∣∣∣ ≤ C (nδ2)−1 ≤ C (nδ)−

1
2 .

On the interval δ ≤ t ≤ π− δ, it follows that |φ′′(t)| ≥ cδ, and the same proposition
implies that ∣∣∣ ∫ π−δ

δ

eint−in(1±δ2) sin t dt
∣∣∣ ≤ C (nδ)−

1
2 .

On the interval π − δ ≤ t ≤ π , |φ′(t)| ≥ 1, and the integral is bounded by n−1 .
For the second estimate of (10), it suffices to consider the term Sj0

n , associated to
the rectangle Rj0

n with center on the positive ξ2 axis. The partition of unity element
associated to this rectangle is of the form ψ̂

(
(nδ)−1ξ1, (nδ2)−1(ξ2 − n)

)
, where ψ

is a Schwartz function, whose seminorms are bounded by constants independent of
n, j, l . Thus, the convolution kernel associated to Sj0

n is of the form

Kj0
n (x) = n2δ3

∫ π

−π

ein(x2−sin t)+int ψ
(
nδ(x1 − cos t), nδ2(x2 − sin t)

)
dt .

We need to show that ∫ ∣∣Kj0
n (x)

∣∣ dx ≤ C δ .(11)

The contribution from the integral over |t| ≤ δ trivially satisfies (11), so it suffices
to consider the following term:

K̃(x) = n2δ3
∫
ein(t−sin t) χ(δ−1t)ψ

(
nδ(x1 − cos t), nδ2(x2 − sin t)

)
dt ,

where χ(s) = 1 for |s| ≥ 2, and χ(s) = 0 for |s| ≤ 1 . Integration by parts yields

K̃(x) = inδ3
∫
ein(t−sin t) ∂

∂t

[
χ(δ−1t)
1− cos t

ψ
(
nδ(x1 − cos t), nδ2(x2 − sin t)

) ]
dt .

The term where the derivative falls on the term in front of ψ satisfies (11), since∫ ∣∣∣∣ ∂∂t
(
χ(δ−1t)
1− cos t

) ∣∣∣∣ dt ≤ Cδ−2 ≤ Cnδ .

The term where the derivative falls on the x2 place of ψ also satisfies (11), since∫ ∣∣∣∣ χ(δ−1t) cos t
1− cos t

∣∣∣∣ dt ≤ Cδ−1 .

The term where the derivative falls on the x1 place of ψ would appear to lead to
bounds comparable to δ log(δ−1) ; however, one further integration by parts shows
that this term too satisfies (11).
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We now prove (9) by noting that the angle δ was chosen so that the sets Rjl+Rjl′

have bounded overlap for Rjl and Rjl′ in the same quadrant, i.e., so that the
orthogonality argument of [F] applies. This argument yields∥∥∥ ∑

l

Sjl
n f

∥∥∥
4
≤ C

∥∥∥ ( ∑
l

|Sjl
n f |2

) 1
2

∥∥∥
4
.

The number of indices l is O(δ−1), so∑
l

∣∣Sjl
n f(x)

∣∣2 ≤ Cδ−
1
2

(∑
l

∣∣Sjl
n f(x)

∣∣4 ) 1
2
.

With f̂jl representing the localisation of f̂ to an appropriate sector, we thus have∥∥∥ ∑
l

Sjl
n f

∥∥∥
4

≤ Cδ−
1
4

∥∥∥ (∑
l

|Sjl
n f |4

) 1
4

∥∥∥
4

≤ Cn−
1
4

∥∥∥ ( ∑
l

|fjl|4
) 1

4
∥∥∥

4

≤ Cn−
1
4

∥∥∥ (∑
l

|fjl|2
) 1

2
∥∥∥

4
.

A result of Córdoba [C] gives∥∥∥ (∑
l

|fjl|2
) 1

2
∥∥∥

4
≤ C(log(n))b‖f‖4

for some positive b, which completes the proof of (9).
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[C] A. Córdoba, Geometric Fourier Analysis, vol. 32, Ann. Inst. Fourier, 1982, pp. 215–226.
MR 84i:42029

[F] C. Fefferman, A note on spherical summation multipliers, Israel J. Math 15 (1973), 44–52.
MR 47:9169

[O] D. Oberlin, Convolution estimates for some measures on curves, Proc. Amer. Math. Soc
99 (1987), 56–60.

[SS] H. F. Smith and C. D. Sogge, Lp regularity for the wave equation with strictly convex
obstacles, Duke Math. J. 73 (1994), 97–153. MR 95c:35048

[S] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory
Integrals, Princeton University Press, Princeton, 1993.

[SW] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull.

Amer. Math. Soc. 84 (1978), 1239–1295. MR 80k:42033

Department of Mathematics, Florida State University, Tallahassee, Florida 32306

E-mail address: oberlin@math.fsu.edu

Department of Mathematics, University of Washington, Seattle, Washington 98195

E-mail address: hart@math.washington.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


